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Abstract

While antitrust authorities strive to detect, prosecute, and thereby deter collu-
sion, entities harmed by collusion are also encouraged to pursue their own strategies
to deter collusion. The implications of such delegation of deterrence have largely
been ignored, however. In a procurement context, we find that buyers may prefer
to accommodate rather than deter collusion among their suppliers. In other cir-
cumstances, when they do deter collusion, the deterrence strategies may actually
reduce social welfare below what it would be under collusion. The observation that
the social cost of deterrence by market participants can exceed that of collusion
emphasizes the importance of effective antitrust enforcement. We also show that
a multi-market buyer, such as a centralized procurement authority, may optimally
deter collusion when multiple independent buyers would not, consistent with the
view that “large” buyers are less susceptible to collusion.
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1 Introduction

Collusive conduct has long been recognized as harmful, both in the academic literature
and in practice.1 This has led most major jurisdictions to adopt antitrust laws and set
up enforcement agencies dedicated to deterring collusion. In addition to these efforts,
entities harmed by collusion have been encouraged to take matters into their own hands
and pursue strategies to deter collusion.2 However, the implications of such delegation of
deterrence have largely been ignored. Prompted by this, we study the private costs and
benefits of deterrence. We show that relying on market participants may result in socially
insufficient deterrence, particularly because of free-riding problems among them. Con-
versely, given the limited tools available to participants to achieve deterrence,3 even when
they deter collusion, they may do so in such a way that society is better off with collusion
than with market participants’ deterring it. This suggests that antitrust enforcement by
governments and legal authorities may be even more important than hitherto thought.

Specifically, we study a procurement context in which buyers face the possibility of
collusion by suppliers, which is a setting of practical relevance for both public and private
procurers.4 We further assume that, if it occurs, collusion takes the form of a market
allocation, whereby suppliers coordinate on who refrains from bidding below the reserve
in a given market. Such market allocation schemes are among the most common collusive
practices,5 and have spurred the development of dedicated policy task forces (e.g., the U.S.
Procurement Collusion Strike Force created in 2019) and detailed procurement guidelines.6

The large and repeated public purchases prompted by the COVID pandemic, as well as
recent evidence on the human cost of bid rotation schemes affecting public procurement,7

1See, e.g., Smith (1776) and Stigler (1964) and, e.g., the U.S. Federal Trade Commission’s discussion of
the Sherman Act of 1890 (https://www.ftc.gov/tips-advice/competition-guidance/guide-antitrust-laws/
antitrust-laws).

2For example, U.S. DOJ (2015a) encourages procurement officials to, among other things, expand
the list of bidders, maintain records, and press vendors to explain and justify their prices.

3See, e.g., Aubert et al. (2006) on the value of enhanced deterrence tools, such as incentives for
whistleblowers, that require governmental support.

4Kawai and Nakabayashi (2021) document large-scale collusion by construction firms participat-
ing in Japanese government procurement auctions. Executives at optical disc drive manufacturer
Hitachi-LG Data Storage pleaded guilty to felony charges that they “conspired with co-conspirators
to suppress and eliminate competition by rigging bids for optical disk drives sold to Dell Inc. and
Hewlett-Packard Company (HP) and/or fixing prices for optical disk drives sold to Microsoft Corpo-
ration” (U.S. Department of Justice Press Release, December 13, 2011, https://www.justice.gov/opa/pr/
three-hitachi-lg-data-storage-executives-agree-plead-guilty-participating-bid-rigging-and).

5According to the U.S. DOJ’s antitrust primer on price fixing, bid rigging, and market allocation
schemes, “Most criminal antitrust prosecutions involve price fixing, bid rigging, or market division or
allocation schemes” (U.S. Department of Justice, 2015b, pp. 1-2). See also U.S. DOJ (2015a).

6See, e.g., OECD (2009), U.S. DOJ (2015b), and U.K. CMA (2020).
7Barkley (2021) quantifies the cost in terms of human life of a bid rotation scheme used by a four-

firm bidding ring in the Mexican insulin market, where disjoint procurement divisions used first-price
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further emphasize the relevance of these issues.
When taking collusion or competition as a given, buyers find it optimal to set a

more aggressive reserve in the case of collusion because they end up paying the reserve
more often.8 However, buyers can also deter collusion by setting a sufficiently aggressive
reserve. As we show, this is best achieved with a differentiated treatment of markets
because asymmetry impedes collusion. Still, deterrence comes at the cost of inefficiently
low volumes of trade due to the lower reserves. Consequently, deterrence is optimal only
when collusion is somewhat fragile, namely, if the discount factor is not too large; otherwise
buyers are better off by accommodating collusion and setting the reserve accordingly.

The comparative statics of the buyers’ optimal reserves with respect to the discount
factor exhibit three regions. For small values of the discount factor, collusion is blockaded
by setting the optimal reserve for competition, which is independent of the discount
factor. However, as the discount factor increases, collusion is no longer blockaded by the
competitive reserve, and deterrence becomes optimal. Because collusion becomes easier as
the discount factor increases, the required deterrence reserves decrease with the discount
factor. Eventually, accommodation becomes the best strategy for the buyer, at which
point the optimal reserves increase discontinuously and no longer depend on the discount
factor. Consequently, the optimal reserves vary non-monotonically with the discount
factor.

We also show that buyers may fail to coordinate their deterrence strategies: they may
fail to replicate an integrated buyer’s optimal differentiated treatment across markets and
even fail altogether to deter collusion when an integrated buyer would. By contrast, there
is never a coordination failure in accommodating collusion. As a result, an integrated
buyer deters collusion in more circumstances than would independent buyers. This result
resonates with the concerns expressed by the European Commission that the prospect of
delays in the award procedure, which often carry administrative, budgetary or even polit-
ical consequences, dissuade procurement officers from dealing effectively with suspected
cases of collusion (EC, 2021).

Our results further highlight that even though a market allocation misallocates re-
sources whenever the designated supplier does not have the lowest cost, deterrence, which
replaces inefficient production with insufficient trade, can be even worse for society than
collusion. Indeed, we show that the buyer may find it optimal to deter collusion when

sealed-bid auctions with an identical reserve price. The ring’s designated winner submitted a bid at
(or just below) the reserve price, while the others submitted slightly higher bids. The government’s
successful deterrence strategy involved removing entry restrictions and consolidating procurement under
a centralized authority.

8Specifically, trade takes place under the same circumstances under competition and collusion
(namely, when a supplier has a cost below the reserve) but, conditional on trade taking place, the buyer
always pays the reserve under collusion, whereas it can benefit from a lower price under competition.
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society would be better off if collusion were accommodated.
In addition to studying the sustainability of collusion, our focus on market allocations

enables us also to study the initiation of collusion. In our setup, a supplier can signal its
intent to collude by bidding at the reserve—a credible signal that the supplier had a low
enough cost to compete, but chose not to do so, thus indicating a natural allocation of
the market. We find that, as long as bids are publicly observed, it is profitable to initiate
collusion in this way whenever collusion is sustainable. Accounting for initiation enables
us to revisit the common wisdom on classic defensive measures.

Bid rigging through the use of allocation schemes has received considerable atten-
tion in the economics literature (see, e.g., Harrington, 2006; Marshall and Marx, 2012).9

Indeed, Stigler (1964, p. 46) recognizes the effectiveness of customer allocations as a col-
lusive scheme, noting that, relative to fixing market shares, “Almost as efficient a method
of eliminating secret price-cutting is to assign each buyer to a single seller.” The possi-
bility of deterring bidding rings through defensive measures has also has been extensively
studied. Our findings related to auction formats and information disclosure are broadly
consistent with the literature (e.g., Klemperer, 2002; Kovacic et al., 2006; Marshall and
Marx, 2009; Kumar et al., 2015; Marshall et al., 2014; Marx, 2017), and those on the
ability of aggressive reserves to deter bid rigging echo existing results (e.g., Graham and
Marshall, 1987; Thomas, 2005; McAfee and McMillan, 1992; Kirkegaard, 2005; Larionov,
2021).10 However, much less work has been done on the costs of implementing defensive
measures and the optimal deployment of defensive measures taking into account both the
benefits and costs of doing so, which is the focus of our paper.

An exception is Zhang (forth.), who studies optimal collusion in a repeated first-price
auction setup, and finds that lower reserves can be used to deter collusion, and that the
auctioneer may nevertheless optimally choose to accommodate rather than deter collusion.
Our paper differs in that we focus on a setup with multiple markets and collusion based
on a market allocation, allowing us to study, among other things, the value of asymmetric
reserves across markets and the possibility of coordination (or miscoordination) of reserves
across markets. Furthermore, we analyze the effects of deterrence strategies on social
surplus and discuss policy implications.

Our finding that initiating collusion may sometimes be more difficult than sustaining
it resonates with the discussion by Green et al. (2015) of the challenges that firms face

9Rey and Stiglitz (1995) show that exclusive territories, which are a type of market allocation, can
reduce competition. Recent empirical evidence of bid rigging based on geographic market allocations is
found in Barrus and Scott (2020). See Kawai et al. (forth.) on using bid rotation and incumbency to
detect collusion.

10Abdulkadiroğlu and Chung (2003) consider auction design in the face of colluding bidders that
optimize their collusive mechanism based on the auction design. In contrast, we take as given a collusive
mechanism based on market allocation.
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when trying to initiate collusion.11 Finally, our analysis also relates to the literature on
multimarket contact. In a setting in which firms can collude symmetrically in every
market, Bernheim and Whinston (1990) show that multimarket contact helps collusion
only if markets are asymmetric.12 In contrast, we consider a procurement setting in which
the winner takes all; as a result, multimarket contact supports collusion even when the
markets are symmetric.

The remainder of the paper is organized as follows. Section 2 contains the baseline
model. We analyze defensive measures in Section 3 and tradeoffs between accommodating
and fighting collusion in Section 4. We consider extensions in Section 5 before discussing
in Section 6 social welfare effects and implications for competition policy. Section 7
concludes the paper.

2 Baseline model

We are interested in firms’ ability to collude by allocating markets among themselves, and
in the factors that may affect their incentives to initiate and sustain such collusion. To
this aim, we consider a discrete-time, infinite-horizon setting with two buyers operating
in separate markets. A market could correspond to a distinct customer segment, product,
service, or geographic area. Because each buyer corresponds to its own market, we use
the terms buyer and market interchangeably.

2.1 Setup

There are two suppliers who, at the beginning of each period, draw their costs of serving
any market in that period from a distribution, which is denoted by G and has finite,
positive density g over the support [c, c].

Whether a supplier’s cost is the same for both markets or whether it is market specific
does not affect the analysis. For the sake of exposition, we adopt the former interpretation.
Cost draws are independent across suppliers and time, and are the suppliers’ private
information.

In every period, each buyer wishes to make a purchase, for which it has value v > c.
Buyers rely on first-price auctions, with a reserve equal to r ∈ (c, c]—reserves outside
this range are dominated for the buyers. We assume that, in each period, suppliers bid
simultaneously, both within and across procurements, and that bids are publicly observed
before the next procurement. In a one-shot setting, the Bayes Nash equilibrium is unique

11Empirical evidence on initiation of collusion through price signals is also provided by, for example,
Alé-Chilet (2017) and Byrne and de Roos (2019).

12Byford and Gans (2014) compare collusion within versus across markets in a similar setup.
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(Lebrun, 1999). All agents are risk neutral with quasi-linear utility and discount the
future according to the common discount factor δ ∈ [0, 1). All of the above is common
knowledge.

Let
πm(c) ≡ max{0, r − c}

denote a supplier’s monopoly payoff per market given cost c, and let

πm ≡ Ec [πm(c)] =

∫ r

c

G(c)dc

denote a supplier’s expected monopoly payoff per market.
Similarly, let πc(c) denote the expected competitive payoff per market for a supplier

with cost c, that is,
πc(c) ≡ Ec̃ [max{0,min{r, c̃} − c}] ,

where c̃ denotes the rival’s cost, and let

πc ≡ Ec [πc(c)] =

∫ r

c

G(c) [1−G (c)] dc

denote a supplier’s expected competitive payoff per market. As is clear from these ex-
pressions, competitive payoffs are lower than monopoly payoffs.

The supplier’s benefit from collusion is then

B ≡ πm − πc =

∫ r

c

G2(c)dc, (1)

which is positive and increasing in r.
Figure 1 displays the suppliers’ payoff and expected payoff functions when costs are

uniformly distributed over [0, 1].

Remark: sales auctions. For the sake of exposition, we present our analysis in the context
of procurement auctions; however, it applies equally to the case of sales auctions when
suppliers repeatedly sell scarce resources, each one constituting a “market,” at discrete
points in time over an infinite horizon (e.g., annual wine auctions).13

13For instance, assume that two buyers privately and independently draw their values from distribution
G over [v, v], and two suppliers have a reservation value of r ∈ (v, v). In each market, for a buyer
with value v the monopsony payoff is then πm(v) ≡ min {0, v − r}, whereas the competitive payoff is
πc(v) ≡ Eṽ [max {0, v −max {ṽ, r}}].
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(a) Monopoly and competitive payoffs
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Figure 1: Expected payoffs under monopoly and competition when costs are uniformly distributed over
[0, 1]. Panel (a) assumes r = c and varies c from c to c. Panel (b) takes expectations over c as r varies
from c to c.

2.2 Market allocation

A market allocation scheme assigns each market to a designated supplier and specifies that
the other supplier should not bid less than the reserve in that market. When the reserve is
less than c, it is, however, both efficient and profitable to allow the other supplier to trade
at the reserve when the designated supplier’s own cost exceeds the reserve. Hence, in what
follows, we consider the following market allocation scheme: (i) the designated supplier
bids slightly below the reserve when its cost lies below it, and at cost otherwise; and (ii)
the non-designated supplier bids the reserve whenever its cost lies below it, and bids at
cost otherwise;14 (iii) any deviation results in competitive conduct thereafter. We assume
away the possibility of transfers between the suppliers. When considering attempts by
suppliers to signal the initiation of collusion, we focus on signaling by bidding the reserve,
as this provides a credible signal of the initiator’s intent.

Under a market allocation, the designated supplier obtains the monopoly profit and
the other supplier, when its cost is c, obtains an interim expected payoff equal to

πn (c) ≡ [1−G(r)]πm (c) ,

which accounts for the probability 1−G(r) that the designated supplier’s cost exceeds r.

14Specifying that the non-designated supplier should not bid at all (or, equivalently, bid above the
reserve) would reduce expected profits, which also makes collusion more difficult to sustain, but would not
affect our insights about the timing of purchases or the auction format. For further analysis of profitable
tacit collusive schemes without explicit communication, see Skrzypacz and Hopenhayn (2004).
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The non-designated supplier’s expected payoff is therefore

πn ≡ Ec [πn (c)] = [1−G(r)]πm,

which involves some sacrifice: the cost of collusion for the non-designated supplier is given
by

C ≡ πc − πn =

∫ r

c

[G(r)−G(c)]G(c)dc, (2)

which is positive and increasing in r.
The market allocation is profitable for the suppliers if and only if:15

B > C. (3)

Thus, we say that a market is always “at risk” for a market allocation if (3) holds for all
r ∈ (c, c]. We have:

Lemma 1. The market is always at risk for a market allocation if the distribution G has
a monotone hazard rate (i.e., if G (c) /g (c) is increasing in c).

Proof. See Appendix A.1.

Because the designated bidder is not always the more efficient supplier, total profits
may be greater under competition than under collusion. However, Lemma 1 shows that
a market is at risk whenever the distribution G(c) is log-concave.16 The family of distri-
butions with this property is large and includes most of the “standard” distributions such
as the uniform, normal, exponential, power, and extreme value distribution.17 From now
on, we focus on markets that are indeed at risk.

2.3 Scope for collusion

We analyze here the critical discount factor required to initiate and sustain a market
allocation when a market is at risk. We start with sustainability, and first derive the

15Although we focus on symmetric suppliers, our results are not knife edged in the sense that asym-
metries between the suppliers’ distributions can be accommodated. For example, for asymmetric sup-
pliers, (3) becomes min{πm1 + πn2 , π

m
2 + πn1} > πc1 + πc2, where, for k 6= h ∈ {1, 2}, πmk =

∫ r
c
Gk(c)dc,

πnh = [1−Gk(r)]πmh , and π
c
k =

∫ r
c

[1−Gh(c)]Gk(c)dc.
16This follows from [lnG(·)]′ = g(·)/G(·), which implies that log-concavity of G amounts to G/g being

increasing.
17See Bagnoli and Bergstrom (2005, Table 1) for a more comprehensive list.
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collusive and deviation payoffs. In any given period and given its cost realization c, a
supplier has an expected payoff from collusion of

Π (c) ≡ πm (c) + πn (c) +
δ

1− δ
(πm + πn).

Obviously, a supplier cannot gain from deviating when its cost exceeds the reserve. When
instead the supplier’s cost c lies below r, the optimal deviation consists of slightly under-
cutting the designated supplier’s target price, and it yields an expected profit (almost)
equal to the monopoly profit, πm(c). As the deviation triggers reversion to competitive
bidding in both markets thereafter, the deviation yields a total expected payoff of

Π̃ (c) ≡ 2πm(c) +
δ

1− δ
2πc.

Collusion is sustainable when suppliers have no incentives to deviate, that is, Π (c) ≥ Π̃ (c)

for every cost realization c. These conditions are satisfied when the loss from reverting to
competition in the future (which thus does not depend on the current cost c) offsets the
short-term gain from a deviation, πm (c) − πn (c). Because this gain decreases with the
supplier’s cost,18 the most stringent sustainability condition can be expressed as

L (δ) ≥ S,

where
S ≡ πm (c)− πn (c) = G (r) (r − c) (4)

represents the short-term stake, namely, the gain from a deviation for a supplier that has
the lowest possible cost, c, whereas

L (δ) ≡ δ

1− δ
(πm + πn − 2πc) , (5)

represents the long-term stake, which is positive and increases from 0 to infinity as δ
increases from 0 to 1. Hence, collusion is sustainable if and only if the discount factor is
high enough, namely, δ ≥ δ̂ ≡ L−1 (S). From (4) and (5), the threshold δ̂ is characterized
by

δ̂

1− δ̂
=
πm (c)− πn (c)

πm + πn − 2πc
. (6)

We now turn to the incentives to initiate a market allocation through a unilateral
decision to stop competing for one of the buyers. A complete withdrawal fails to signal the

18For c < r, the derivative of πm(c)− πn(c) with respect to c is equal to −G(r) < 0.
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seller’s willingness to initiate a market allocation because it is consistent with competitive
bidding in the event that the supplier, facing a cost exceeding the reserve, cannot be
profitably active anyway. By contrast, when its cost lies below the reserve, the initiator
can credibly signal its intention by bidding the reserve. In this way, the initiator signals
that it is prepared to supply at that price if the other supplier’s cost happens to exceed
the reserve, implying that it could have chosen to compete, but decided instead to confer
market power to the other supplier.

Assuming that collusion is sustainable, bidding the reserve to initiate it involves a
short-term sacrifice but increases future profits. The long-term stake amounts to switching
from competition to collusion in future tenders, and is therefore again given by (5). The
short-term sacrifice amounts to forgoing the competitive profit and instead obtaining the
profit expected from bidding the reserve when the other supplier bids competitively; this
sacrifice is therefore equal to πc(c) − πn(c), which decreases with the initiator’s cost. It
follows that initiation is profitable whenever it is so for the lowest possible cost, which
amounts to

L(δ) ≥ Ŝ,

where
Ŝ ≡ πc(c)− πn(c)

represents the short-term stake for initiation, namely, the initial profit sacrifice for a
supplier that has the lowest possible cost, c. Because πc(c) < πm(c), the short-term stake
is lower for initiation:19

Ŝ < S.

This establishes the following proposition:

Proposition 1. Initiating collusion (by bidding the reserve in one market) is strictly
profitable whenever it is sustainable, which is the case if and only if δ ≥ δ̂, given by (6).

The intuition is as follows. A supplier faces a similar tradeoff when deciding whether
to initiate a market allocation, or whether to stick to it: in both cases, the tradeoff in-
volves higher future profits and a short-term sacrifice. The long-term stake corresponds
to the difference between collusive and competitive profits and is thus the same for the
two decisions. By contrast, the short-term sacrifice is lower for initiating collusion, where
the supplier faces a competitive rival, than for sticking to collusion, where it faces a desig-
nated supplier that bids close to the reserve. Specifically, initiating or sticking to collusion

19Sustainability conditions must hold for every cost realization, including the lowest one. By contrast,
collusion could be initiated for some cost realizations even if it could not be initiated for the lowest cost
realization; insisting that initiation must be profitable for every cost realization is thus conservative and
may overstate its difficulty.
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yields the same payoff, πn(c), but not initiating collusion only yields the competitive profit,
πn(c), whereas deviating from collusion yields the monopoly profit, πm(c). It follows that
initiating collusion is profitable whenever it is possible to sustain it. Proposition 1 implies
that, even when accounting for the need to initiate collusion, the key conditions deter-
mining the feasibility of collusion remain those driving sustainability; that is, collusion
can both be profitably initiated and sustained if and only if δ ≥ δ̂.

2.4 Effects of collusion

When the suppliers bid competitively and face a reserve r ∈ [c, c], a buyer’s payoff is

UComp(v, r) ≡ 2(v − r)[1−G(r)]G(r) + 2

∫ r

c

(v − c)G(c)g(c)dc, (7)

where 2[1−G(r)]G(r) is the probability that exactly one cost draw is above and one below
the reserve, and 2G(c)g(c) is the probability density function of the higher cost (with
cumulative distribution function G2(c)). Under collusive bidding, the buyer’s expected
payoff is instead

UColl(v, r) ≡ (v − r)Ĝ(r), (8)

where Ĝ(c) ≡ 1− [1−G(c)]2 is the cumulative distribution function of the lower cost.
The buyer is strictly better off with competitive rather than collusive bidding: in both

cases, trade takes place under the same condition (namely, whenever at least one supplier’s
cost lies below the reserve); however, when it does take place, the buyer always pays the
reserve in case of collusion, whereas it benefits from a lower price under competitive
bidding. Integrating (7) by parts, the “competition benefit” can be expressed as:

UComp(v, r)− UColl(v, r) =

∫ r

c

G2(c)dc = B. (9)

That is, the harm to the buyer coincides with the benefit for the designated supplier,
defined by (1). The reason is that the designated supplier benefits from collusion if and
only if both costs are below the reserve, which are precisely the instances in which the
buyer benefits from competitive bidding. In other words, from the perspective of the
designated supplier and the buyer, the market allocation scheme is merely a transfer.
Because the market allocation scheme is inefficient, it follows that the reduction in social
welfare that it causes is entirely borne by the non-designated supplier.20

20Formally, the cost of collusion for the non-designated supplier is C. The change in social welfare is
equal to the change in the cost of production, which is

∫ r
c
cdG(c) + [1−G(r)]

∫ r
c
cdG(c) under collusion

and
∫ r
c
cdĜ(c) under competition. Integrating by parts and simplifying confirms that the difference in
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Proposition 2. A market allocation by suppliers harms the buyer and reduces social
welfare.

3 How to fight collusion

Market allocation schemes can be difficult to detect, especially given colluding agents’
incentives to disguise their conduct. However, suspicions may be aroused by certain
bidding patterns, such as bids that are consistently close to the reserve, or a supplier
withdrawing from a market. This leads us consider now the various tools that a buyer
can use to “fight back” when suspecting collusion—buyers may differ in their ability to use
these tools based, for example, on their sophistication, commitment ability, and purchase
volumes.

Three key tools for fighting collusion identified by the literature are auction format,
timing of purchasing, and reserves.21 With regard to auction format, the literature rec-
ognizes that first-price sealed-bid auctions are more robust to collusion than second-price
or ascending-bid auctions, because in the latter cases, the designated supplier can bid
at cost (and yet obtain the monopoly price), which reduces the gain from deviations.
This continues to be true in our setup. To see this, suppose that buyers rely instead
on second-price sealed-bid auctions and consider the same market allocation as before,
except that the designated supplier now bids at cost. This limits the other supplier’s gain
from a deviation and reduces the short-term stake, from S to Ŝ; as a result, collusion is
sustainable whenever it is profitable to initiate it, leading to:

Proposition 3. Compared with first-price auctions, second-price auctions make it easier
for suppliers to sustain a market allocation.

Proof. See Appendix A.2.

Consequently, our focus on first-price sealed-bid procurements, in addition to being
motivated by common practice, is consistent with the buyer adopting the most effective
auction format in the fight against collusion.

With regard to the timing of purchases, the literature recognizes that simultaneous
procurements are less prone to collusion than sequential procurements, as deviations can
be punished sooner in the latter case. Thus, our analysis focuses on the case in which the
two buyers synchronize their procurements. To see that buyers indeed have an incentive
to do so, suppose that in the second market tenders take place with a lag τ ∈ [0, 1); that

costs is indeed C.
21For a wider ranging discussion of tools for fighting bid rigging, see, e.g., Cassady (1967); Graham

et al. (1996); Thomas (2005); Kovacic et al. (2006); Albano et al. (2006).
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is, tenders take place at t = 0, 1, ... in market 1 and at t = τ , τ + 1, ... in market 2. The
case of perfectly synchronous purchasing thus corresponds to τ = 0, whereas the case of
perfectly staggered purchasing corresponds to τ = 1/2. Then we have:

Proposition 4. A market allocation is most difficult to sustain with perfectly synchronous
purchasing and easiest to sustain with perfectly staggered purchasing.

Proof. See Appendix A.3.

The intuition for Proposition 4 is that maximizing the gap between successive tenders
helps to fight collusion because it delays punishment in case of a deviation, and this is
best achieved with synchronous purchases. Therefore, in what follows we maintain our
focus on simultaneous procurement.

Turning to the tool of reserves, we first establish that optimal reserves in the face of
collusion are more aggressive than optimal reserves under competition. To this end, we
characterize the optimal reserve for a setting in which the buyers take suppliers’ conduct
as given. That is, the suppliers either collude or compete in every period, and anticipating
the suppliers’ conduct, the buyers optimally set their reserves. In either case, the buyers
face a stationary context and their optimal policy is therefore also stationary.

Let rC(v) denote the optimal reserve in the absence of collusion and rA(v) denote the
optimal reserve in the presence of collusion, which we refer to as the competitive reserve
and accommodation reserve, respectively. The reserve rC(v) maximizes UComp(v, r) and
corresponds to the monopsony price that a buyer would charge, given its valuation v, if it
were to face a single supplier with cost distribution G.22 Perhaps more surprisingly, rA(v),
which maximizes UColl(v, r), is the reserve that would be optimal if the two suppliers had
merged (Loertscher and Marx, 2019), a situation equivalent to perfect collusion. The
market allocation scheme does not achieve perfect collusion because production does not
necessarily occur at the lowest cost; however, this is immaterial for the buyer: what
matters is whether production occurs, in which case the buyer pays the reserve, and it
occurs in exactly the same instances as under perfect collusion, namely, when at least one
supplier has a cost below the reserve. It follows that rA(v) is the monopsony price that a
buyer would charge when facing a single supplier with the enhanced cost distribution Ĝ,
which corresponds to the lower of two draws. This distribution has a lower reverse hazard
rate than the original distribution G, which makes the supply less elastic and leads to a
more aggressive reserve.

The fact that the buyer always pays the reserve when it faces collusion suggests that it
should set a more aggressive reserve in that case. A simple revealed preference argument

22As is well known, the optimal reserve does not depend on the number of suppliers; hence, it maximizes
the monopsony payoff G(r)(v − r).
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confirms that intuition, by establishing that the competition benefit B must be greater for
rC(v) than for rA(v) (see Appendix A.5 for a formal derivation). Because B increases with
r, it follows that rC(v) ≥ rA(v). Inspection of the payoffs under collusion and competition
shows that this ranking is strict:23

Proposition 5. A buyer’s optimal reserve is strictly more aggressive when facing collud-
ing rather than competing suppliers: rA(v) < rC(v).

Proof. See Appendix A.5.

Proposition 5 implies that a buyer with concerns that its suppliers might engage in
a market allocation may have an incentive to use a more aggressive reserve.24 This is
consistent with the advice given to practitioners that “[w]hen collusion among suppliers is
suspected, the reserve price should be set at a lower value than in the absence of collusion.
This simple policy forces the bidding ring to submit a lower bid” (Albano et al., 2006,
p. 282). The optimality of more aggressive reserves in the face of collusion suggests that
the inefficiency associated with collusive conduct includes not only possible inefficient
allocation among ring members, but also the possibility that collusion induces buyers to
modify their procurement practices to be less efficient.

Remark: on the nature of collusion. The collusive scheme that we consider enables the
non-designated supplier to step in when trade would otherwise not occur. An alternative
collusive scheme that requires the non-designated supplier to withdraw regardless of its
realized costs amounts instead to a reduction in the number of suppliers. Because the
optimal reserve is independent of the number of bidders, buyers’ optimal reserves are then
the same as under competition. Hence, the optimal reserve depends not only on whether
suppliers collude, but also on the nature of the collusive scheme; it may, moreover, decrease
as collusion becomes more efficient.

More aggressive reserves can also serve a buyer faced with the threat of collusion by
making collusion less profitable for the suppliers and thereby unsustainable. Adding the
reserve as an explicit argument to δ̂, B, C, and S, the discount factor threshold above

23It is interesting to note the similarity and subtle difference relative to Blume and Heidhues (2004).
Their analysis implies that in a one-shot, second-price auction, any reserve below c eliminates supra-
competitive Bayes Nash equilibria, whereas with r ≥ c, there are a continuum of noncooperative Bayes
Nash equilibria. In our setting, the optimal reserve in the face of collusion is more aggressive than with
competitive bidding—and always strictly lower than the reserve.

24Proposition 6 shows that for a range of reserves, the critical discount factor is decreasing in the
reserve; however, that monotonicity need not hold for all reserves. For example, the Beta distribution
with parameters (1/2, 1/2) generates a critical discount factor that is increasing in r for r close to c.
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which collusion is profitable, δ̂ (r), is such that

δ̂ (r)

1− δ̂ (r)
=

S (r)

B (r)− C (r)
. (10)

While decreasing the reserve reduces suppliers’ profits under both collusion and competi-
tion, for low enough reserves, the expected profitability of collusion, B(r)−C(r), decreases
at a faster rate than the deviation gain for an efficient supplier, S(r); this is because the
reserve is likely to prevent future trade, whereas an efficient supplier always trades. It
follows that, for sufficiently low reserves, the threshold discount factors are decreasing
in the reserve, and a sufficiently aggressive reserve can prevent a market allocation from
being sustainable.25

Proposition 6. Assuming g(c) > 0, there exists r ∈ (c, c] such that in the range r ∈ [c, r],
the critical discount factor δ̂(r) is decreasing in the reserve; furthermore, this threshold
tends to 1 as r tends to c.

Proof. See Appendix A.4.

The result of Proposition 6 that sufficiently aggressive reserves can deter collusion
by reducing its profitability resonates with the advice to practitioners in a sales auction
context that: “In some auctions, the most effective way of overcoming a buyers’ ring is
to set a reserve price, prohibiting sale of the item below its estimated value and thus
impairing the profitability of a collusive operation” (Cassady, 1967, p. 191).

4 To accommodate or fight collusion?

In the previous section, we have considered various tools that buyers can use to “fight back”
when they suspect collusion. The costs of these fighting measures raise the question of
whether it is worth using them to deter collusion. In particular, the tool of using a more
aggressive reserve to respond to and potentially deter collusion clearly comes at a cost to
the buyer because the reserve affects the probability of trade.

While the literature has recognized the role of reserves to mitigate the effects of col-
lusion and potentially deter collusion, little attention has been paid to the optimal deter-
rence reserves or the possibility that buyers aware of collusion may optimally choose not
to deter it. To address this issue, we now study the optimal reserve policy, taking into

25Indeed, for r = c we have S′(c) = B′(c) = C ′(c) = 0 but S′′(c) = g(c) > 0 = B′′(c) = C ′′(c). The
assumption that g(c) > 0 can be dropped at the cost of an extended proof—because we assume that g(c)
is positive for c ∈ (c, c), there is some finite integer k such that the k-th derivative of g(c) is positive.
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account its impact on the scope for collusion. For the sake of exposition, we adopt the
tie-breaking rule that collusion occurs whenever it is sustainable.

We begin in Section 4.1 by considering the case of an integrated buyer setting the
same reserve in both markets. Then in Section 4.2, we allow that buyer to set different
reserves across the two markets and show that optimal deterrence reserves are indeed
asymmetric. Finally, in Section 4.3, we expand the analysis to allow for independent
buyers and consider the Nash equilibrium of a simultaneous reserve-setting game.

4.1 Symmetric reserves

We begin by assuming that a single integrated buyer sets a common, stationary reserve
across the two markets.26

From now on, we assume that a buyer’s payoff is strictly quasiconcave in r for any v.
A sufficient condition is that virtual costs are strictly increasing in c, where the virtual
costs associated with the distributions G and Ĝ are

Γ(c) ≡ c+
G(c)

g(c)
and Γ̂(c) ≡ c+

Ĝ(c)

ĝ(c)
= c+

G(c)

g(c)

2−G(c)

2[1−G(c)]
,

where ĝ is the density associated with Ĝ. By construction, Γ̂(c) = Γ(c) = c and Γ̂(c) >

Γ(c) > c for c > c. Because

∂U

∂r

Comp

(v, r) = ĝ(r) [v − Γ(r)] and
∂U

∂r

Coll

(v, r) = ĝ(r)[v − Γ̂(r)],

the optimal reserves are then given by

rC(v) ≡ min
{

Γ−1(v), c
}

and rA(v) ≡ Γ̂−1(v) < c,

where the last inequality follows from Γ̂(c) =∞.
The maximal value from competition or from accommodating collusion, respectively,

is given by:
UC(v) ≡ UComp(v, rC(v)) and UA(v) ≡ UColl(v, rA(v)).

By construction, UC(v) > UA(v); it is therefore optimal to deter collusion using symmetric
reserves if this can be achieved with a reserve that is close enough to rC(v).

26The assumption that the reserve, once set, is fixed forever is arguably restrictive. Applying the
insights of Frezal (2006) to our setting, collusion can be deterred almost without cost if the buyer can
commit to the nonstationary policy of setting the reserve rC(v) for a predetermined, large number of
periods, and preventing trade subsequently for a sufficiently large number of periods. By choosing both
numbers large enough, the discounted cost of no trade will be negligible. This nonstationary policy would,
however, require a particularly strong form of commitment.
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For the purpose of this analysis, we assume that the threshold δ̂(r) is decreasing in
the reserve.27 Obviously, as long as:28

δ < δC(v) ≡ δ̂(rC(v)) ∈ (0, 1), (11)

it is optimal for the buyer to set the competitive reserve. Using terminology from the lit-
erature on entry deterrence, collusion can be said to be blockaded because under condition
(11), the optimal reserve absent collusion, rC(v), is sufficiently low to deter collusion.

When instead δ ≥ δC(v), deterring collusion requires a lower reserve than rC(v).29

Because the competitive payoff UComp(v, r) is strictly quasi-concave in the reserve r, the
optimal deterrence strategy then consists of setting the reserve (slightly below) the sym-
metric deterrence reserve rDS (δ) ≡ δ̂

−1
(δ).30 Deterring collusion remains optimal in the

range
δC(v) ≤ δ ≤ δ̂(rA(v)),

where rDS (δ) lies between rA(v) and rC(v), implying that the symmetric deterrence payoff,
UD
S (v, δ), satisfies:

UA(v) = UColl(v, rA(v)) < UComp(v, rA(v)) ≤ UComp(v, rDS (δ)) ≡ UD
S (v, δ),

where the first inequality stems from the benefit of competition and the last one from the
quasi-concavity of the buyer’s competitive payoff.

When instead δ > δ̂(rA(v)) the symmetric deterrence reserve rDS (δ) sacrifices a sub-
stantial amount of trade and may not be in the buyer’s interest. A buyer using symmetric
reserves then faces a non-trivial tradeoff between accommodating collusion with rA(v) and
deterring it with rDS (δ). By continuity, deterrence remains optimal as long as δ remains
close to δ̂(rA(v)); however, as δ further increases, deterring collusion eventually becomes
too costly—in particular, as δ tends to 1, rDS (δ) tends to c and the deterrence payoff thus
tends to vanish. It follows that for δ high enough, namely:

δ ≥ δAS (v) ≡ inf{δ | UD
S (v, δ) ≤ UA(v)} ∈ (δ̂(rA(v)), 1), (12)

27This holds if, for example, G(c) = cx for some x > 0; furthermore, by Proposition 6 it always holds
for sufficiently low reserves.

28Recall that δ̂(r) ∈ (0, 1) for any r ∈ (c, c].
29As always with deterrence, maintaining a threat begs the question of credibility; although we do not

model this explicitly, the repeated-interaction setting under scrutiny may help the buyer to maintain a
credible threat.

30When the reserve is set to the deterrence threshold, collusion is “barely” sustainable; to prevent it
for sure, buyers should thus set a reserve below (but arbitrarily close to) the threshold. For the sake of
exposition, we will simply say “set the symmetric deterrence reserve” when referring to this strategy.
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the buyer will swallow the bitter pill of collusion and set the optimal reserve in the face
of collusion. Summing up, we have:31

Proposition 7. There exists δAS (v) > δ̂(rA(v))—implying that δAS (v) > δC(v)—such that
an integrated buyer setting symmetric reserves optimally sets competitive reserves if δ <
δC(v), deterrence reserves if δC(v) ≤ δ < δAS (v), and accommodation reserves if δAS (v) ≤ δ.

Proposition 7 implies that the buyer’s optimal reserve is neither monotone nor con-
tinuous in the discount factor. As the discount factor increases from zero, the optimal
reserve is initially constant at the competitive reserve, rC(v). When the discount factor
becomes large enough (namely, when δ ≥ δC(v)), collusion is no longer blockaded; it then
becomes optimal to deter collusion by setting the reserve rDS (δ), which is decreasing in the
discount factor. As the discount factor increases further, eventually deterring collusion
becomes too costly (namely, when δ = δAS (v), where UD

S (v, δ) = UColl(v, rA(v))), at which
point the optimal reserve jumps up to the optimal collusive reserve. Figure 2 illustrates
this for the case of costs uniformly distributed over [0, 1] and a value v = 1.

0.9 0.96 0.98 1δC(v) δS
A(v)

δ

rC(v)

rA(v)

blockaded deterred accommodated

rS
D(δ)

Figure 2: Optimal symmetric reserve as a function of the discount factor under synchronized purchasing
and first-price auctions. Assumes that costs are uniformly distributed over [0, 1] and that v = 1, implying
that δC(v) = 0.9231 and δAS (v) = 0.9466.

Remark: on second-price auctions. As already noted, collusion is easier to sustain under
second-price auctions than under first-price auctions. Specifically, the long-term stake
does not depend on the auction format but the short-term stake does, and is lower for
second-price auctions. Because the long-term and short-term stakes are continuous in

31In principle, the buyer could also contemplate contingent strategies, such as setting the optimal
reserve rC(v) in case of competitive bidding and using a “grim trigger” strategy of reverting to rDS (δ)
forever if the suppliers are caught (or believed to be) colluding. If the suppliers were to consider this
strategy as credible, they would refrain from colluding, which would yield the first-best outcome for the
buyer.
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the reserve, it follows that the symmetric deterrence reserve rDS (δ), which is the largest
reserve below which the short-term stake exceeds the long-term one, is lower for a second-
price auction than for a first-price auction.32 In other words, not only are second-price
auctions more susceptible to collusion than first-price auctions, in the sense that collusion
is sustainable for a larger range of discount factors, but they also require a more aggressive
reserve to deter collusion and, thus, a greater distortion of trade away from the efficient
level. As a result, a buyer using second-price auctions is more likely to accommodate
collusion than one using first-price auctions.

Remark: on secret reserves. Li and Perrigne (2003, p. 189) note that “The theoretic
auction literature is still unclear on the rationale for using a random reserve price.”33

However, in our setup, opting for a secret, random reserve creates challenges for initiating
and sustaining a market allocation. First, secret, random reserves prevent suppliers from
signaling their wish to initiate collusion through a bid equal to the reserve, because they
do not know what that reserve is. That said, if the reserve is drawn from a distribution
with upper bound of the support r < c, then there remains the possibility of signaling
initiation with a bid of r. Second, secret, random reserves inhibit the ability of suppliers
to maintain a market allocation while still having positive expected payoffs in their non-
designated markets. To see this, note that with a secret, random reserve drawn from a
distribution with upper bound of support r, the only way for the non-designated supplier
to ensure that it does not provide meaningful competition for the designated supplier is
to bid r or above. But in this case, unless it bids exactly r and there is an atom in the
distribution at that point, it wins with probability zero, and so it has an expected payoff
of zero in its non-designated market. As these points suggest, secret, random reserves
create challenges for colluding suppliers, and more so if those reserves are drawn from
a distribution whose upper support is r = c. Further, the possibility of using secret,
random reserves implies that when rDS (δ) < rC(v) (which, as discussed above, holds for
v sufficiently large), a buyer could deter collusion, and obtain a higher expected payoff
than with a fixed reserve of rDS (δ), by using a secret reserve that is randomly chosen from
[rDS (δ), rC(v)]. By increasing the profitability of deterrence, such a strategy can expand
the range of values for which a buyer prefers to deter rather than accommodate collusion.

32For example, when costs are uniformly distributed on [0, 1], symmetric reserves must be divided by
two to maintain deterrence, from rDS (δ) = 6(1− δ)/δ to rDS,SPA(δ) = 3(1− δ)/δ.

33Li and Perrigne (2003) estimate that the French forest service had lower profits as a result of using
secret, random reserve prices at timber auctions; however, they assume noncooperative bidding. Given
evidence of collusion at U.S. timber auctions (see, e.g., Baldwin et al., 1997; Athey and Levin, 2001),
the secret, random reserve may have provided benefits in terms of deterring collusion not captured in an
analysis based on noncooperative bidding.
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4.2 Allowing asymmetric reserves

Although the optimal competitive and accommodation reserves are symmetric, we now
show that the optimal deterrence reserves are not—asymmetric reserves provide a more
effective way of deterring collusion than do symmetric reserves. If a supplier faces the
reserve ri in its designated market and rj in the other market, then its short-term stake
is given by S(rj), whereas its long-term stake becomes

L(δ, ri, rj) ≡
δ

1− δ
[B(ri)− C(rj)] . (13)

A market allocation is sustainable if and only if

L(δ, r1, r2) ≥ S(r2) and L(δ, r2, r1) ≥ S(r1).

Starting from optimal symmetric deterrence reserves, increasing r2 while holding r1 con-
stant increases the short-term stake S(r2) as well as the cost of collusion C(r2).34 This
increases buyer’s surplus and makes the first of the above conditions more stringent (and,
so, the relevant one) and thus still deters the market allocation. It follows that, con-
ditional on deterring a market allocation, it is optimal for an integrated buyer to use
asymmetric reserves (see Proposition 9 below for a formal statement).

Of course, once asymmetric reserves are introduced, additional collusive strategies
potentially become relevant. In particular, the suppliers may want to avoid having the
same one systematically facing the lower reserve over time. A relevant and natural variant
on the collusive strategy discussed so far involves rotation, whereby the suppliers switch
markets in each round of purchasing.35 As before, we assume that any deviation in either
market triggers a reversal to competition in both markets. The long-term stake for the
supplier designated for market i, who will rotate to market j in the next period and then
back to market i in two periods, where i 6= j ∈ {1, 2}, is

LR(δ, ri, rj) ≡
δ

1− δ2 {B(rj)− C(ri) + δ [B(ri)− C(rj)]} . (14)

A rotation is sustainable if and only if:

LR(δ, r1, r2) ≥ S(r2) and LR(δ, r2, r1) ≥ S(r1). (15)

34Indeed, we have S′(r) = G(r) + g(r)(r − c) > 0 and C ′ (r) =
∫ r
c
G(c)g (r) dc > 0.

35Alternatively, the suppliers could randomize over the market assignment. It is however straightfor-
ward to check that a deterministic rotation is easier to sustain because the supplier currently assigned to
the market with the lower reserve—and, thus, more prone to deviate—is then sure to be assigned to the
more profitable market in the next tender.
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If r1 < r2 (resp., r1 > r2), then the more stringent condition in (15) is the first (resp.,
second) one.36 The set of deterrence reserves can therefore be described as

D (δ) ≡ D1 (δ) ∪ D2 (δ) ,

where

Di (δ) ≡ {(r1, r2) ∈ [c,min {v, c̄}]2 | ri ≥ rj and S(ri) > LR(δ, rj, ri)}.

As δ increases, the long-term stake increases as well and deterrence thus becomes
more difficult—that is, D(δ) shrinks. For the sake of exposition, we assume further that
LR(δ, ri, rj) is increasing in ri, which holds for δ sufficiently close to 1.37 It follows that
the boundary of D (δ) is given by

B(δ) ≡ B1(δ) ∪ B2(δ),

where

Bi (δ) ≡ {(r1, r2) ∈ [c,min {v, c̄}]2 | ri ≥ rj and S(ri) = LR(δ, rj, ri)}.

The monotonicity assumption on the virtual cost function Γ(·) ensures that the buyer’s
average per-market payoff under competition,

ŪComp (v, r1, r2) ≡ 1

2

[
UComp(v, r1) + UComp(v, r2)

]
,

is strictly quasi-concave. It follows that, whenever collusion is not blockaded, that is,
rC(v) ≡ (rC(v), rC(v)) /∈ D, the optimal deterrence reserves lie on the boundary B (δ).38

Thus, conditional on deterring collusion in the region with r2 ≥ r1, it is optimal for the
buyer to set the reserves arbitrarily close to the deterrence reserves defined by:

rD (v, δ) =
(
rD1 (v, δ) , rD2 (v, δ)

)
≡ argmax

(r1,r2)∈B2(δ)

ŪComp (v, r1, r2) .

36See Appendix A.6.
37More precisely, it holds for δ > C ′(r)/B′(r) = g(r)

∫ r
c
G(c)dc/G2(r). For example, with uniformly

distributed costs, this condition is δ > 1/2, which is satisfied for the entire relevant range of discount
factors, i.e., discount factors such that collusion is not blockaded, LR(δ, rC(v), rC(v)) ≥ S(rC(v)); for
v = 1 and uniform [0,1] costs, the relevant range is δ > 12/13.

38Moving closer to the boundary of D(δ) indeed enables the buyer to increase its payoff: for any
r = (r1, r2) ∈ D(δ), there exists λ ∈ (0, 1) such that rλ ≡ λr + (1 − λ)rC(v) ∈ D(δ); because rC(v)
maximizes the buyer’s payoff, the strict quasi-concavity of the buyer’s payoff ensures that ŪComp (v, rλ) >
ŪComp (v, r).
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For comparison, suppose that there is a unique market in which the suppliers try to
collude by rotating. As in the case of multiple markets, assume further that such collusion
is sustainable if and only if the reserve lies above a unique-market deterrence threshold,
denoted by rDU (δ). As we show in the proof of Lemma 2, collusion is easier when the
suppliers interact in two markets rather than in only one.39 As a result, deterrence is
easier when there is a unique market and can be achieved with a less aggressive reserve.40

Lemma 2. All reserves in the deterrence set D(δ) are less than the unique-market de-
terrence reserve rDU (δ). Furthermore, as δ increases, the set D(δ) shrinks strictly and its
boundary B(δ) varies continuously.

Proof. See Appendix A.7.

We illustrate B1(δ) and B2(δ) and the deterrence reserves in Figure 3.
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Figure 3: Deterrence boundary and relevant reserves. Assumes that costs are uniformly distributed over
[0, 1], v = 1, and δ = 0.94.

While the joint profit of the suppliers and the payoff of the buyer are the same under
a rotation and a market allocation,41 as we now show, a rotation is easier to sustain when
reserves are asymmetric.

39Hence, in our procurement setting where the winner takes all, interacting in multiple symmetric
markets increases the scope for collusion. This contrasts with the result of Bernheim and Whinston
(1990) that multimarket contact does not facilitate collusion in this case when firms can share each
individual market.

40For the case of uniformly distributed costs and δ such that collusion is not blockaded, the unique-
market deterrence reserve is rDU (δ) = 6(1−δ2)

δ(2−δ) . For example, in Figure 3, we have rDU (0.94) = 0.7009.
41The suppliers can moreover share ex ante the expected profit from collusion by randomizing over

the initial market designation.
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Proposition 8. When r1 6= r2, a rotation is easier for suppliers to sustain than a market
allocation.

Proof. See Appendix A.8.

A rotation does not eliminate the asymmetry among the long-term stakes but changes
its direction, with the result that the supplier with the higher short-term stake (namely
the supplier currently assigned to the less profitable market) has also the higher long-
term stake (as it will be assigned to the more profitable market in the next period). By
contrast, that supplier would also have the lower long-term stake in case of a fixed market
allocation. Rotation therefore helps to render more symmetrical the incentives of suppliers
to deviate but does not completely restore symmetry.

As the next proposition shows, regardless of whether suppliers use a market allocation
or rotation, asymmetric reserves are optimal for deterring collusion.

Proposition 9. Conditional on having to deter collusion, either in the form of a market
allocation or a rotation, it is optimal for an integrated buyer to use asymmetric reserves.

Proof. See Appendix A.9.

Intuitively, starting from the symmetric deterrence reserve, slightly increasing the
reserve in one market while reducing the other reserve by the same amount has no impact
on the buyer’s expected payoff (as the effect of the two reserves offset each other), but
improves deterrence by creating asymmetry in the suppliers’ incentives to collude. It
follows that there is a nearby (asymmetric) modification of the reserves that improves
the buyer’s expected payoff while preserving deterrence. Hence, when collusion is not
blockaded, asymmetric reserves are more effective at deterring it:

Guided by Propositions 8 and 9, in what follows we focus on rotations and characterize
the optimal reserves, allowing for asymmetric deterrence reserves. Recalling that δC(v) is
the largest discount factor such that there is competition at reserves of r1 = r2 = rC(v),
then for δ < δC(v), setting both reserves equal to rC(v) is optimal. For δ ≥ δC(v), the
buyer can either alter the reserves away from rC(v) so as to continue deterring collusion,
or, alternatively, accommodate it. In the latter case, it is optimal for the buyer to set
both reserves equal to rA(v), which yields a per-market accommodation payoff

UA(v) ≡ UColl(v, rA(v)).

The buyer’s average per-market payoff under the (asymmetric) deterrence reserves is given
by

UD (v, δ) ≡ ŪComp
(
v, rD (v, δ)

)
.
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It follows from Lemma 2 that UD(v, δ) is decreasing in δ and goes to zero as δ goes to
one.42 Let

δA(v) ≡ inf
{
δ ∈ [0, 1] | UD(v, δ) ≤ UA(v)

}
(16)

denote the discount factor threshold above which accommodation is optimal. We then
have the following result:

Proposition 10. There exists δA(v) > δAS (v) such that an integrated buyer optimally sets
competitive reserves if δ < δC(v), asymmetric deterrence reserves if δC(v) ≤ δ < δA(v),
and accommodation reserves if δA(v) ≤ δ.

We illustrate the optimal reserves described in Proposition 10 in Figure 4. As high-
lighted by Figure 4(a), the optimal deterrence reserves are asymmetric and discontinuous
in the discount factor as it increases from the region of deterrence to the region of accom-
modation.

Further, as illustrated in panels (b) and (c) of Figure 4, asymmetric reserves make
deterrence less costly for the buyer, who therefore finds it optimal to deter collusion for
a greater range of discount factors. Thus, requiring the buyer to use symmetric reserves
may induce the buyer to switch from deterrence to accommodation.

42As the discount factor goes to 1, the long-term stakes go to infinity for any given positive reserves;
hence, to deter collusion, both reserves must go to zero.
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(a) Optimal reserves

0.9 0.98 1δC(v) δA(v)
δ

0.1

0.2

0.3

rA(v)

rC(v)

blockaded deterred accommodated

r1
D(v,δ)

r2
D(v,δ)

(b) Buyer payoff with symmetric and asymmetric
reserves
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(c) Social welfare with symmetric and asymmet-
ric reserves
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Figure 4: Optimal reserve, expected per-period buyer payoff, and expected per-period social welfare for
an integrated buyer as functions of the discount factor under synchronized purchasing and first-price
auctions. Dashed lines are for the case in which reserves are constrained to be the same in both markets.
Assumes that costs are uniformly distributed over [0, 1] and that v = 1, implying that δC(v) = 0.9231,
δAS (v) = 0.9466, and δA(v) = 0.9541.

Comparative statics. To assess the impact of demand and supply conditions on the optimal
reserve policy, we consider here the case in which the suppliers’ costs are distributed
according toG(c) = c1/s, where s > 0 parameterizes the “strength” of the cost distribution:
a larger s corresponds to a “better” cost distribution in the first-order stochastic dominance
sense.43 We study in this setting the effect of changes in the value v and in the strength
s of the cost distribution on the optimal policy of an integrated buyer.

Figure 5(a) shows that buyers with higher values, who have more to lose from a failure
to trade, are more likely to accommodate collusion; conversely, collusion is more likely to
be blockaded if the buyer’s value is low. In the range of buyer values where deterrence

43In this setup, rC(v) = v
1+s , whereas r

A(v) is the value of r that solves v = r+sr 2−r1/s
2−2r1/s , implying that

limv→∞ rA(v) = c = 1. For the uniform distribution, that is, for s = 1, rA(v) is given by 2+v−
√
v2−2v+4
3 .
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is optimal, the gap between the two asymmetric deterrence reserves increases with v.
Figure 5(b) shows instead that, as suppliers become stronger, implying that collusion is
more valuable to them, the reserves required to deter collusion decrease, until eventually
the buyer prefers to accommodate. Weaker suppliers are thus more likely to be blockaded,
whereas stronger suppliers are more likely to be accommodated.

(a) Reserves as a function of v with s = 1
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(b) Reserves as a function of s with v = 1
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Figure 5: Optimal reserves for an integrated buyer assuming G(c) = c1/s for s > 0. (As s increases the
cost distribution becomes “better”.) Both panels assume that δ = 0.94.

4.3 Independent buyers

The option of using asymmetric reserves raises the prospect of coordination issues when
there are two different buyers, one in each market. To analyze this, in what follows we
assume that two buyers simultaneously and independently set their reserves, which are
then fixed for all time. The possibility of dynamic adjustments, of course, raises additional
complexities.

To fix ideas, buyer 1 sets the reserve r1 in market 1, and buyer 2 sets the reserve r2

in market 2. Then the suppliers observe the reserves and engage in a collusive rotation
whenever that is sustainable, and otherwise competition occurs. Thus, we analyze the
Nash equilibrium reserves in the reserve-setting game with independent buyers in which
the buyers choose reserves and the payoff of buyer i given strategy profile r = (r1, r2) is

UComp(v, ri) · 1r∈D(δ) + UColl(v, ri) · 1r/∈D(δ).

Given any r2, the best response for buyer 1 is either rC(v) (if that deters collusion),
rA(v) (if accommodation is optimal), or a reserve arbitrarily close to r1 such that (r1, r2) ∈
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B(δ) (if deterrence is optimal, but rC(v) would allow collusion).44 Building on this, the
next proposition characterizes the equilibrium outcomes:

Proposition 11. In the reserve-setting game with independent buyers:

• if collusion is blockaded (i.e., δ < δC (v)), then setting the competitive reserve (i.e.,
r1 = r2 = rC (v)) is a Nash equilibrium;

• if instead an integrated buyer would optimally accommodate collusion (i.e., δ ≥
δA (v)), then accommodating collusion (i.e., r1 = r2 = rA (v)) is the unique Nash
equilibrium;

• finally, in the intermediate range where an integrated buyer would optimally deter
collusion (i.e., δC (v) ≤ δ < δA (v)), in equilibrium the buyers either accommodate
collusion (i.e., r1 = r2 = rA (v)) or set reserves on the deterrence boundary (i.e.,
(r1, r2) ∈ B (δ)).

Proof. See Appendix A.10.

Proposition 11 first shows that independent buyers do not face any coordination prob-
lem when accommodation is optimal. To see why, suppose that an integrated buyer
finds it optimal to accommodate collusion and set rA(v) in both markets—implying that,
by playing with the reserves, it cannot obtain more than UA(v) per market. Setting
r1 = r2 = rA(v) then constitutes the unique candidate equilibrium of the reserve-setting
game, as any other configuration would give less than UA(v) to at least one buyer, giv-
ing that buyer an incentive to deviate to the optimal accommodation reserve, so as to
obtain UA(v) if it induces collusion, and even more otherwise. Conversely, whenever an
integrated buyer finds it optimal to set symmetric reserves, an independent buyer finds
it optimal to stick to that reserve if it expects the other buyer to do so as well; hence,
r1 = r2 = rA(v) does constitutes a Nash equilibrium of the reserve-setting game.

Further, if collusion is blockaded, implying that an integrated buyer would set the
optimal competitive reserve in both markets and obtain the maximal possible payoff,
independent buyers can do so as well; the only scope for coordination failure lies in the
existence of additional equilibria. However, more serious coordination problems arise when
an integrated buyer would optimally deter collusion, in which case it would do so using
asymmetric reserves, with one market being more profitable than the other. Even when
focusing on Pareto-efficient Nash equilibria, independent buyers may adopt sub-optimal
deterrence reserves (i.e., rD (v, δ) may not be a Nash equilibrium of the reserve-setting

44In the latter case, any reserve lying in the interior of the deterrence region is dominated by another
reserve that remains in the interior but is closer to rC(v); buyer 1’s best response then consists in setting
r1 such that r lies slightly inside the boundary of D (δ).
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game) and even fail to deter collusion altogether (i.e., r1 = r2 = rA(v) may be the unique
equilibrium).

From Proposition 11, with independent buyers a coordination failure may arise when
(and only when) an integrated buyer would optimally deter collusion, in which case inde-
pendent buyers may either adopt sub-optimal deterrence reserves, or fail to deter collusion
altogether. Interestingly, in the latter case, coordination failure can potentially enhance
social welfare because deterrence involves a greater reduction in trade than accommoda-
tion (see the discussion at the end of Section 4.2).

To illustrate the range of possibilities, Figures 6 and 7 consider the example in which
costs are uniformly distributed over [0, 1] and v = 1. The panels depict the deterrence
boundary and the buyers’ best-responses for different values of the discount factor. Inter-
estingly, the scope for coordination failure is not monotonic in the discount factor.

As illustrated in Figure 6(a), when the discount is sufficiently high that an inte-
grated buyer accommodates collusion, δ > δA(v), then the unique Nash equilibrium of the
reserve-setting game also involves accommodation, as established by Proposition 11. At
the other extreme, as illustrated in Figure 6(b), when the discount factor is sufficiently low
that collusion is blockaded, δ < δC(v), the unique Nash equilibrium of the reserve-setting
game has independent buyers both setting a reserve of rC(v), just as an integrated buyer
would do.45

While Figure 6 focuses on cases in which there is no coordination failure as a result
of having independent buyers, Figure 7 turns attention to cases in which deterrence is
optimal for an integrated buyer, δ ∈ (δC(v), δA(v)) and shows that coordination failure
either necessarily arises or can arise because of multiplicity of Nash equilibria.

For instance, in panel (d), the optimal deterrence reserves constitute an Nash equi-
librium of the reserve-setting game, but there is also a continuum of suboptimal de-
terrence equilibria; hence, while independent buyers deter collusion, they need not use
the optimal deterrence reserves.46 Furthermore, there exists a threshold discount factor
δN(v) ∈ (δC(v), δA(v)) such that coordination failure arises for sure, that is, optimal de-
terrence does not constitute a Nash equilibrium in the range δ ∈ (δN(v), δA(v)).47 For

45For δ ≤ δC , consider whether there might be any other Nash equilibria besides rC in the setup of our
illustration. Letting r̂2 be defined by (rC , r̂2) ∈ B2(δ), then given any r2 < r̂2, it follows that (rC , r2) is in
the deterrence region and so rC is the best response to r2. Thus, for all r2 ≤ r̂2, BR1(r2) = rC , to which
buyer 2’s own best-response is also rC . Hence, in the range r2 < r̂2, there is a unique Nash equilibrium
in which both buyers set rC . For r2 ≥ r̂2, BR1(r2) is either on the deterrence boundary B2(δ) or equal to
rA. In both instances, BR1(r2) < rC , and so BR2(BR1(r2)) = rC < r̂2 ≤ r2, a contradiction. It follows
that the only possible Nash equilibrium is rC .

46The multiplicity of deterrence Nash equilibria raise nontrivial coordination problems because, for
any suboptimal deterrence Nash equilibrium, at least one buyer prefers those reserves to the optimal
ones.

47In the example of Figure 7, δC(v) = 0.9231, δN (v) = 0.9475, and δA(v) = 0.9540.
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(a) δ = 0.975
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(b) δ = 0.92
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Figure 6: No coordination failure: an integrated buyer’s optimal reserves, rA(v) in the case of panel
(a) and rC(v) in the case of panel (b), are the unique Nash equilibrium of the reserve-setting game.
The panels depict the deterrence boundaries and the buyers best-responses over the full relevant range
ri ∈ [0, 1]. Assumes that costs are uniformly distributed over [0, 1], v = 1, and δ is as indicated. In this
setup, δC(v) = 0.9231 and δA(v) = 0.9540, so an integrated buyer accommodates collusion in panel (a),
and collusion is blockaded in panel (b).

instance, in panel (a) the only Nash equilibrium involves accommodation; in panel (b)
there exists an accommodation equilibrium and a continuum of deterrence equilibria, all
of which are suboptimal; and in panel (c), there only exist deterrence equilibria, all of
which are suboptimal.48

48For sufficiently large δ in the range δ ∈ (δN (v), δA(v)), accommodation is also an equilibrium.
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(a) δ = 0.950
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Figure 7: Coordination failure. In all panels, an integrated buyer deters collusion with optimal deterrence
reserves rD(v, δ), but in the reserve-setting game with independent buyers, those optimal reserves are
either not a Nash equilibrium (panels (a), (b), and (c)) or not the only Nash equilibrium (panel (d)).
Panels (a) and (b) depict the deterrence boundaries, buyers’ best-responses, and the diagonal; but to
reduce clutter, panels (c) and (d) show only the best responses and diagonal. Panel (a) shows the full
range ri ∈ [0, 1], but the other panels “zoom in.” All panels assume that costs are uniformly distributed
over [0, 1] and v = 1. The discount factor δ is as indicated above the panels. In this setup, δC(v) = 0.9231
and δA(v) = 0.9540, so for all panels, we have δ ∈ (δC(v), δA(v)).
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Comparative statics. We now use the above setup to discuss how the scope for coordination
failure is affected by the buyers’ (common) value v and the strength s of the suppliers’
cost distribution.

As shown in Figure 8, the range of discount factors in which independent buyers deter
collusion only with suboptimal reserves, and the range of discount factors that fail to
deter collusion, are both expanding in v and in s. Thus, coordination failure appears to
be a greater concern when buyers have larger values and when suppliers draw their costs
from better distributions.

(a) Threshold discount factors varying v for s = 1
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(b) Threshold discount factors varying s for v = 1
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Figure 8: Effects of changes in the buyer’s value and the suppliers’ distributional strength on threshold
discount factors. Assumes that costs are distributed over [0, 1] with distribution G(c) = c1/s. Panel (a)
assumes s = 1 and varies v; panel (b) assumes v = 1 and varies s. In the region labeled “accommodated,”
both integrated and independent buyers accommodate collusion with the optimal collusive reserve rA(v).
In the regions labeled D1 and D2, an integrated buyer would deter collusion. In D1, the optimal deterrence
reserves are among the multiple Nash equilibria of the reserve-setting game with independent buyers, but
in D2 they are not. In the region labeled “blockaded,” both integrated and independent buyers deter
collusion with the optimal competitive reserve rC(v).

To see that δA and δC are decreasing in v, as shown in Figure 8(a), note that the
associated reserves, rA(v) and rC(v), increase with v, making collusion easier to sustain,
and are not affected by the discount factor. As collusion is also easier to sustain with
higher discount factors, it follows that as v increases, the threshold discount factors must
fall. For changes in s, illustrated in Figure 8(b), more complex tradeoffs are involved
because s also has a direct effect on the profitability of collusion.

Figure 8 shows that as v or s increases, collusion becomes easier—the range of discount
factors for which collusion is blockaded shrinks. While some of this is offset by expanded
deterrence (thereby increasing the scope for coordination failure), overall there is more
collusion—the range of discount factors for which collusion is accommodated expands.

30



5 Extension to more than two markets

In this section, we consider an extension to a setup with n markets. We continue to
assume that there are two suppliers and focus on the case with one integrated buyer.

5.1 Setting

Let N ≡ {1, . . . , n} denote the set of markets and r = (r1, . . . , rn) the vector of reserves
in these markets, with the convention that markets are labeled by decreasing order of the
reserves: that is, r1(n) ≥ · · · ≥ rn(n). As before, each market is characterized by the
same value v for the buyer and the same distribution G over [c, c] for the sellers’ constant
marginal costs, where cost draws are independent across suppliers and time.

Because symmetry facilitates collusion, for the sake of exposition we focus on market
allocations that are as balanced as possible. Hence, if n is even, then each supplier is the
designated winner in n/2 markets, alternating each period. For example, with n = 4, the
markets might be divided up as {1, 2} and {3, 4}, with supplier 1 designated for {1, 2} in
one period and for {3, 4} in the next period. If n is odd, then suppliers alternate being
the designated winner in (n + 1)/2 and in (n − 1)/2 markets. For example with n = 3,

the markets might be divided up as {1, 2} and {3}, with supplier 1 designated for {1, 2}
in one period and for {3} in the next period.49

Consider a supplier facing the lowest cost and designated for the markets other than
M ⊂ N . By deviating, the supplier can get the monopoly payoff rather than the non-
designated supplier payoff in all markets inM; the associated short-term stake is thus:

SM(r) ≡
∑
j∈M

S(rj).

Although SM(r) only depends on (rj)j∈M , it is notationally convenient to write it as a
function of the entire vector r.

The long-term stake for a supplier that would forever be designated for the markets
inM is instead given by

LM(δ, r) ≡ δ

1− δ

∑
i∈M

B(ri)−
∑

j∈N\M

C(rj)

 ,
where B(·) and C(·) denote the benefit and cost of collusion, given by (1) and (2). Then
the long-term stake for a supplier that is designated for the markets in M next period,

49It can be shown that these market allocations indeed maximize the scope for collusion for the optimal
accommodation and deterrence reserves.
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accounting for the rotation over the set of designated markets, is

LRM(δ, r) ≡ 1

1 + δ
LM(δ, r) +

δ

1 + δ
LN\M(δ, r).

Define k to be half the number of markets if there is an even number of markets and that
number rounded up if there is an odd number of markets:

k ≡

{
n/2 if n is even,

(n+ 1)/2 if n is odd.

Collusion is not incentive compatible if a supplier has an incentive to deviate in k markets
when it is designated for n−k markets. Thus, given reserves r, the suppliers are deterred
from collusion if and only if for allM∈ P(N , k), where P(N , k) is the set of permutations
of subsets ofN containing k elements, either LRM(δ, r) ≤ SM(r) or LRN\M(δ, r) ≤ SN\M(r).
For example, if n = 4, then a market allocation in which each supplier alternates between
markets {1, 2} and {3, 4} is deterred if either

LR{1,2}(δ, r) ≤ S{1,2}(r) or LR{3,4}(δ, r) ≤ S{3,4}(r).

5.2 Optimal reserves

The buyer’s optimal reserves conditional on deterrence satisfy:

max
r

∑
i∈N

UComp(ri)

subject to, for allM∈ P(N , k), either LRM(δ, r) ≤ SM(r) or LRN\M(δ, r) ≤ SN\M(r). The
buyer then compares this payoff to nUColl(rColl) to determine whether to accommodate
or deter collusion.

We first note that, as long as the number of markets remains even, asymmetric reserves
still help to reduce the cost of deterrence:

Proposition 12. If the number of markets is even and collusion is not blockaded, then
an integrated buyer’s optimal deterrence reserves are asymmetric.

Proof : See Appendix A.11.

To go further, we now focus on the case in which v = 1 and costs are uniformly
distributed over [0, 1]. Table 1 reports the buyer’s optimal reserve policy for different
numbers of markets (from n = 1 to n = 6) and a given value of the discount factor
(δ = 0.94).
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Table 1: Optimal deterrence reserves rD for δ = 0.94

n n even n odd
1 r1 = 0.5 (blockaded)
2 r1 = 0.4894, r2 = 0.3937

3 r1 = · · · = r3 = 0.4953

4 r1 = 0.4849, r2 = · · · = r4 = 0.3894

5 r1 = · · · = r5 = 0.4512

6 r1 = 0.4834, r2 = · · · = r6 = 0.3875

Note: Assumes v = 1 and uniformly distributed costs.

Several features can be noted. First, for even numbers of markets, the asymmetry
established by Proposition 12 takes a specific form, where a single reserve is set above
the others. Intuitively, treating n − 1 markets equally enhances the buyer’s expected
payoff because UComp(r) is concave in r, and also limits the suppliers’ ability to restore
symmetry by optimizing over the composition of designated packages.50 Second, for odd
numbers of markets, the optimal reserve policy is instead symmetric.51 This is because
the market allocation itself is necessarily imbalanced (with one supplier designated for
(n+ 1)/2 and the other for (n− 1)/2 markets), to an extent such that there is no need to
introduce further asymmetry.52 Third, for each type of situation, collusion becomes easier
as the number of markets increases, which in turn calls for more aggressive reserves. That
is, letting rD(n) = (rD1 (n), . . . , rDn (n)) denote the optimal deterrence reserves, we have
rD(n+ 2) < rD(n). To see why, consider first the case of even numbers of markets. If the
buyer were restricted to symmetric reserves, then increasing the number of markets would
raise proportionally the short-term and long-term stakes, and thus have no impact on the
scope for collusion.53 However, the buyer finds it optimal to introduce an asymmetry by
setting one reserve above the others and, given the optimal level of asymmetry, to adjust

50For instance, if n = 4 and r1 > r2 > r3 > r4, the suppliers can maintain some symmetry by
designating one supplier for markets 1 and 4 and the other for markets 2 and 3. By contrast, with
r1 > r2 = r3 = r4, one supplier necessarily ends up with a better designated packaged and the buyer
moreover perfectly controls the level of asymmetry.

51It could therefore be implemented as well by independent buyers, the symmetry of the optimal
reserves ensuring that the preference for accommodation versus deterrence is the same for all buyers,
integrated or not—and conditional on deterrence, the optimal reserves constitute a Nash equilibrium of
the reserve-setting game.

52As the number of markets increases, this imbalance however tends to become relatively small; asym-
metric reserves may thus become again optimal.

53The optimal symmetric reserve is δ̂
−1

(δ), where the condition determining the threshold δ̂(·) remains
given by (10), as increasing the number of markets from 2 to n = 2k leads to multiply both the numerator
and denominator of the right-hand side by k.
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the overall level of the reserves so as to ensure that the supplier not designated for that
market has an incentive to deviate. As the number of markets increases, however, the
long-term stake increases proportionally, which in turn calls for more aggressive reserves.

For odd numbers of markets, the optimal deterrence reserves are symmetric (at least
for up to six markets), as the market allocation is itself sufficiently asymmetric. However,
as the number of markets increases, the relative asymmetry of the market allocation is
reduced, which calls again for more aggressive reserves.

Table 2: Threshold discount factor between deterrence and accommodation (δA)

n n even n odd
1 0.9714

2 0.9541

3 0.9586

4 0.9501

5 0.9545

6 0.9489

Note: Assumes v = 1 and uniformly distributed costs.

It follows from the last observation that, for each type of situation (i.e., even or odd
number of markets), deterrence becomes more costly as the number of markets increases,
and is thus less likely to be optimal. This intuition is confirmed by Table 2, which
reports, for the same numbers of markets as before, the discount factor threshold δA(n)

above which accommodation dominates deterrence. We have:

δA(n+ 2) < δA(n).

Thus, as the number of markets increases, deterrence is optimal for a smaller range of
discount factors.

In contrast, increasing the number of markets from an even to an odd number in-
troduces an intrinsic asymmetry in the market allocation and can make collusion more
fragile, and thus easier to deter. Indeed, deterrence is optimal for a wider range of dis-
counts factors with n = 3 or even with n = 5 than with n = 2.

6 Discussion

Below we discuss the implications for social welfare, as well as for competition and pro-
curement policy.
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6.1 Social welfare analysis

We have so far considered buyers’ optimal strategies. However, as buyers do not internalize
the impact of their decisions on suppliers’ profits, their strategies may not be socially
optimal. For example, under competitive bidding, setting a reserve equal to r ∈ [c, c] in
a given market yields an expected welfare of

WComp(v, r) ≡ Ec[(v −min{c1, c2}) · 1min{c1,c2}≤r] =

∫ r

c

(v − c)ĝ(c)dc,

where ĝ(c) = 2 [1−G (c)] g (c) is the probability density function of the lower cost (with
cumulative distribution function Ĝ (c) = 1− [1−G(c)]2). It follows that social welfare is
maximized by setting a reserve equal to min{v, c}.54 Trade then occurs when and only
when it is socially desirable, and competition ensures that the most efficient supplier is
selected.

Likewise, under collusive bidding, expected welfare is equal to

WColl(v, r) ≡ Ec[(v − ci) · 1ci≤r + (v − cj) · 1cj≤r≤ci ] = [2−G (r)]

∫ r

c

(v − c) dG (c) ,

where, in the first expression, i and j refer to the designated and non-designated suppliers,
respectively, and the second expression follows from symmetry and integration by parts.
It is therefore optimal to set the reserve below min {v, c}—starting from r = min {v, c},
a slight decrease in the reserve involves only a second-order loss from reduced trade, but
a first-order gain of productive efficiency.55 Yet, the socially optimal reserve will exceed
the privately optimal one, rA (v), whenever suppliers’ profit increase with the reserve, as
one would expect.

For the same reason, a buyer’s decision to deter or accommodate collusion may it-
self diverge from the socially desirable one. To explore this, we first consider the case
of an integrated buyer, before studying the implications of coordination issues among
independent buyers.

6.1.1 Integrated buyer

Focusing in symmetric reserves to start, we say that there is over-deterrence if an in-
tegrated buyer deters collusion (using rDS (v)) when social welfare would be higher with
accommodation (using rA(v)), and that there is over-accommodation if instead an inte-
grated buyer accommodates collusion when social welfare would be higher with deterrence.

54If c < v, then any reserve in [c, v] is also socially optimal.
55Formally, using integration by parts, we have ∂WColl(v, r)

∂r

∣∣∣∣
r=min{w,c}

= −g (min {v, c})
∫ min{v,c}

c

G (c) dc < 0.
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As shown in Figure 2 in Section 4.1, deterrence is optimal in the range δ ∈ (δC(v), δAS (v)),
where the deterrence reserve is decreasing in δ and eventually falls below the accommo-
dation reserve. It follows that, in the higher end of this range of discount factors, social
welfare is greater when the buyer accommodates rather than deters collusion. To see this,
note that at a discount factor of δAS (v), where the buyer is indifferent between deterrence
and accommodation, the suppliers strictly prefer accommodation, which involves both a
larger reserve and a switch from competition to collusion. Thus, for discount factors close
to δAS (v), social welfare is greater when the buyer accommodates collusion than when the
buyer deters collusion.

Proposition 13. With an integrated buyer who uses symmetric reserves, there is never
over-accommodation, but there is over-deterrence for an open range of discount factors.

Proof. See Appendix A.12.

Loosely speaking, suppliers’ total profits are always greater when the buyer accom-
modates rather than deters collusion. Because the buyer does not internalize suppliers’
profits, it may deter collusion when social welfare would be larger if collusion were ac-
commodated. The opposite instead cannot hold: the buyer accommodates collusion when
fighting it would require excessively low reserves, but then the suppliers also prefer collu-
sion to be accommodated.

The possibility of over-deterrence extends to asymmetric reserves, as shown in Figure
4(c), where the integrated buyer finds it optimal to deter collusion even though social
welfare would be higher under accommodation for δ less than, but sufficiently close to,
δA(v).

Remark: social welfare effects of a requirement of symmetric reserves. Interestingly, be-
cause social welfare is greater under accommodation than deterrence when the optimal
deterrence reserves are particularly aggressive, a requirement that the buyer use sym-
metric reserves—e.g., a ban on price discrimination—can increase social welfare when it
avoids over-deterrence, inducing the buyer to accommodate rather than deter collusion.
In contrast, when a requirement that an integrated buyer use symmetric reserves does
not lead to accommodation, it can decrease social surplus by causing the buyer to use less
efficient deterrence reserves.56

56The first effect can be seen in Figure 4(c), where social welfare is greater under accommodation
than deterrence for δ ∈ [δAS (v) , δA (v)). In this range, deterrence (rather than accommodation) benefits
the buyer but harms social surplus, implying that suppliers are harmed by deterrence—even though, as
shown in Figure 4(a), one of the deterrence reserves is actually higher than the accommodation reserve
in most of the range. The second effect can also be seen in Figure 4(c), where for δ ∈ (δC(v), δAS (v)), the
buyer prefers deterrence even under a requirement of symmetric reserves, but social welfare is lower in
that case.
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6.1.2 Independent buyers

In the case of independent buyers, buyers’ individual decisions fail to internalize not only
suppliers’ profits but also the impact on the other buyer. As a result, equilibria of the
reserve-setting game may involve accommodation even though deterrence reserves exist
that would make the buyers jointly better off, and equilibria with deterrence may involve
reserves that differ from an integrated buyer’s optimal deterrence reserves. In terms of
social welfare, this can either generate an additional divergence between private and social
objectives, or reduce the scope for over-deterrence that arises with an integrated buyer:

Proposition 14. Relative to the outcome with an integrated buyer, an equilibrium of the
reserve-setting game with independent buyers can:
(i) increase social surplus by inducing a switch from deterrence to accommodation;
(ii) increase or decrease social surplus by inducing deterrence with different reserves.

Proof. See Appendix A.13.

6.2 Competition and procurement policy

The possibility that independent buyers accommodate collusion when an integrated buyer
would have deterred it provides a rationale for the popular view that large buyers are
less prone to be victims of collusion.57 To the best of our knowledge, this is the first
formalization of this notion. It apparently contrasts with Loertscher and Marx (2019),
who show that endowing a buyer with buyer power makes covert collusion more attractive
relative to a merger because the merger is a public event and causes the powerful buyer
to react in a way that is detrimental to the merging suppliers. The way to reconcile
these statements is that powerful and large buyers are distinct things. Our independent
buyers are as powerful as an integrated buyer insofar as they can as well commit to a
binding reserve forever. Yet, lacking size, they do not internalize the positive externality
of deterring collusion in the other market. Conversely, a buyer cannot use reserves to
fight collusion if it cannot credibly maintain them below min{v, c}. Hence, a buyer must
be both powerful and large to fight collusion in an effective manner.

Demand aggregation, or centralized procurement, is already widely used for making
purchases and awarding contracts, both in the public and in the private sector.58 The
existing policy and economic literature has however so far highlighted its potential benefit

57See, for example, Carlton and Israel (2011) for an expression of this view.
58For the public sector, examples of centralized units include the Government for Service Procurement

in the United States, the Crown Commercial Service in the UK, and Consip in Italy. For the private
sector, centralization is typically undertaken by creating a procurement department that purchases on
behalf of multiple divisions.
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in reducing the total cost of purchases via economies of scale, buyer power, profession-
alization, infrastructures (e-procurement tools), governance and transaction costs; the
potential costs are those typical of delegation.59 Our findings highlight the fighting of bid
rigging as an additional benefit of centralization.60

Yet, creating centralized procurement units is unlikely to fully address bid-rigging
problems. First, not all procurement can be centralized: for example, independent public
and private buyers need to manage directly urgent or non-standardized purchases. Second,
procurers, and especially centralized procurers, are not final users and their objective
may underestimate the benefit of competition for total consumer surplus, thus failing
to deter collusion even though doing so would be socially valuable. Third, as we have
seen, delegating deterrence to an integrated buyer is not sufficient when the concerns of
antitrust authorities is social welfare rather than consumer surplus. Over-deterrence may
then arise, which is an issue that has so far not been part of the economic debate.

These considerations suggest that the fight of bid-rigging cannot be fully delegated
to buyers: an effective antitrust enforcement remains desirable. In fact, our results re-
inforce the call for a close cooperation between public buyers and antitrust authorities,
as advocated by the most recent international principles on fighting bid-rigging in public
procurement (EC, 2021), and as recently implemented for example by the U.S. DOJ, with
the setup of the Procurement Collusion Strike Force.

7 Conclusion

Actions that deter collusion impose costs of their own, implying that it can be optimal
for buyers to accommodate collusion among their suppliers rather than deter it. We
analyze the tradeoff between accommodation and deterrence in a procurement context in
which bidders attempt to engage in market allocation. Although aggressive reserves can
deter collusion, the use of such reserves comes at the cost of reduced trade. Indeed, for
sufficiently high discount factors, collusion is so robust that excessively aggressive reserves
would be required to deter it; buyers are then better off setting the optimal reserve in the
face of colluding bidders. By contrast, for lower discount factors, buyers optimally adjust
reserves to achieve deterrence. Interestingly, a buyer operating two markets optimally sets
different reserves across the markets, so as to create an asymmetry that helps to impede
collusion. Independent buyers do not internalize the benefit of this asymmetry, and, as a
result, may fail to use the optimal deterrence reserves or even fail to deter collusion at all
when an integrated buyer would.

59See e.g., Dimitri et al. (2006); Bandiera et al. (2009); Castellani et al. (2021).
60Related to this, our findings also add to the antitrust analysis of joint purchasing agreements,

stressing the efficiency gain that they may generate in terms of fighting collusion among suppliers.
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We also revisit a variety of defensive measures that have been discussed in the litera-
ture, including using first-price rather than second-price auctions, withholding information
on bids and award prices, and avoiding supplier registration. We show in particular, that,
contrary to some prevailing beliefs, synchronized purchasing makes collusion more difficult
than staggered purchasing.61 In addition, while the bid-rigging literature often focuses on
sustainability, our focus on market allocations enables us to study initiation as well, and,
as we show, limiting the information about bids or award prices may make initiation the
key impediment to collusion.

The greater and more efficient deterrence of collusion by a multi-market buyer, as
compared to independent buyers, suggests a benefit of centralized procurement agencies
in terms of deterring collusion.62 However, because the aggressive reserves associated with
deterrence tend to limit trade, from a social welfare perspective, accommodation may be
preferable to deterrence, implying that independent buyers may offer benefits in terms of
social welfare even as they fail to deter collusion.

61In the context of the AT&T–Time Warner merger, the judge found that “the staggered, lengthy
industry contracts would make [coordination] extremely risky” (emphasis added) because one party would
have to “jump first” on the hope that the other would do the same later on, concluding that “putting such
blind faith in one’s chief competitor strikes this Court as exceedingly implausible!” (Leon, 2018, p. 163).

62In public procurement, this could be done by setting up national or regional procurement authorities
that operate on behalf of local offices. In private procurement, it could be achieved by managing some
purchases at a central rather than at a division level.
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A Proofs

A.1 Proof of Lemma 1

For any reserve r ∈ [c, c̄], the impact of collusion on total profit is equal to:

∆ (r) ≡ πm (r) + πn (r)− 2πc (r)

=

∫ r

c

[2G (c)−G (r)]G (c) dc.

The market is at risk (i.e., collusion is strictly profitable) if and only if ∆ (r) > 0. We
have:

∆′ (r) = G2 (r)−
∫ r

c

g (r)G (c) dc

= G (r)

∫ r

c

g (c) dc−
∫ r

c

g (r)G (c) dc

=

∫ r

c

G (r)G (c)

[
g (c)

G (c)
− g (r)

G (r)

]
dc

> 0,

where the inequality stems from the monotonicity of the hazard rate. Because ∆ (c) = 0,
it follows that ∆ (r) > 0 for any r ∈ (c, c̄]. �

A.2 Proof of Proposition 3

In a second-price auction the monopoly and competitive payoffs remain given by πm (c)

and πc (c), as in the baseline model, and the non-designated supplier’s payoff is thus still
given by πn (c) = [1−G(r)]πm (c). It follows that the long-term stake for initiation and
sustainability remains given by L (δ), defined in (5). By contrast, because the designated
supplier bids at cost as it would under competition, the non-designated supplier’s payoff
when deviating corresponds to the competitive payoff, πc (c). As a result, the short-term
stake for sustainability, which was S = πm (c)−πn (c) under a first-price auction, becomes
lower: SSPA ≡ πc(c) − πn(c). Because SSPA < S, a market allocation can be sustained
for a broader range of discount factors, namely, if and only if δ ≥ δ̂SPA, where

δ̂SPA ≡ L−1(SSPA) < L−1(S) = δ̂.

�
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A.3 Proof of Proposition 4

Fix τ ∈ [0, 1). If τ = 0, purchases are perfectly synchronous and the analysis is the same
as in the baseline model. The short-term stakes are thus given by S for sustainability
and by Ŝ for initiation, and in both cases the long-term stake is given by L(δ). For
asynchronous tenders (i.e., τ > 0), the short-term stake is the same, whereas the long-
term stake corresponds to the difference between collusive and competitive profits in all
future tenders, evaluated at the time of the initiation or deviation decision. If a supplier
deviates or initiates collusion in a tender for market 1, the next tender (for market 2,
where the stake for that supplier is thus equal to πm − πc) comes with a lag τ and the
following one (for market 1, where the stake for the supplier is thus equal to πn−πc) with
a total lag of one period; the long-term stake for that supplier is thus equal to:

L̂(δ; τ) = δτ (πm − πc) (1 + δ + ...) + δ (πn − πc) (1 + δ + ...)

=
δτ

1− δ
(πm − πc)− δ

1− δ
(πc − πn) .

If instead the supplier’s deviation or initiation takes place in market 2, the next tender
comes with a lag 1−τ , and the long-term stake is thus equal to L̂(δ; 1−τ). The condition
for sustainability thus becomes:

S ≤ min
{
L̂(δ; τ), L̂(δ; 1− τ)

}
= L̂(δ; max {τ , 1− τ}),

whereas the condition for initiation becomes Ŝ ≤ L̂(δ; max {τ , 1− τ}). Hence, collusion
is easiest—to sustain or initiate—for the value of τ that minimizes max {τ , 1− τ} in the
range τ ∈ [0, 1), which is obtained for τ = 1/2, that is, for perfectly staggered tenders.
By contrast, collusion is the most difficult to sustain or initiate for the value of τ that
minimizes max {τ , 1− τ} in the range τ ∈ [0, 1), which is τ = 0, that is, for perfectly
synchronous tenders. �

A.4 Proof of Proposition 6

It suffices to show that the right side of condition (6) is decreasing in r for r sufficiently
close to c. This right side can be written as

RHS (r) ≡ N(r)

D (r)
,

where
N (r) ≡ S = G(r)(r − c),
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and
D (r) ≡ πm − πc + δ (πn − πc) =

∫ r

c

[(1 + δ)G (c)− δG(r)]G(c)dc.

We thus have

RHS ′ (r) =
N̂(r)

D̂ (r)
,

where
N̂ (r) ≡ D (r)N ′a(r)−D′ (r)Na(r) and D̂ (r) ≡ D2 (r) .

Using

N ′ (r) = G(r) + g(r)(r − c),
N ′′ (r) = 2g(r) + g′(r)(r − c),

and

D′ (r) = G2(r)− δg(r)

∫ r

c

G(c)dc,

D′′ (r) = (2− δ)G(r)g(r)− δg′(r)
∫ r

c

G(c)dc,

D′′′ (r) = (2− δ) g2(r) + 2 (1− δ)G(r)g′(r)− δg′′(r)
∫ r

c

G(c)dc,

yields

N(c) = N ′a(c) = 0 < N ′′(c) and D (c) = D′ (c) = D′′ (c) = 0 < D′′′ (c) .

Building on this, we have:

N̂ ′ (r) = D (r)N ′′(r)−D′′ (r)N(r),

N̂ ′′ (r) = D (r)N ′′′(r) +D′ (r)N ′′(r)−D′′ (r)N ′(r)−D′′′ (r)N(r),

N̂ ′′′ (r) = D (r)N ′′′′′(r) + 3D′ (r)N ′′′′(r) + 2D′′ (r)N ′′′(r)− 2D′′′ (r)N ′′(r)

−3D′′′′ (r)N ′(r)−D′′′′′ (r)N(r),
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and

D̂′ (r) = 2D (r)D′ (r) ,

D̂′′ (r) = 2D (r)D′′ (r) + 2 [D′ (r)]
2
,

D̂′′′ (r) = 2D (r)D′′′ (r) + 6D′ (r)D′′ (r) ,

D̂′′′′ (r) = 2D (r)D′′′′ (r) + 8D′ (r)D′′′ (r) + 6 [D′′ (r)]
2
,

D̂′′′′′ (r) = 2D (r)D′′′′′ (r) + 10D′ (r)D′′′′ (r) + 20D′′ (r)D′′′ (r) ,

D̂′′′′′′ (r) = 2D (r)D′′′′′′ (r) + 12D′ (r)D′′′′′ (r) + 30D′′ (r)D′′′′ (r) + 20 [D′′′ (r)]
2
,

which yields:

N̂ (c) = N̂ ′ (c) = N̂ ′′ (c) = 0 > N̂ ′′′ (c) = −2D′′′ (c)N ′′(c),

D̂ (c) = D̂′ (c) = D̂′′ (c) = D̂′′′ (c) = D̂′′′′ (c) = D̂′′′′′ (c) = 0 < D̂′′′′′′ (c) = 20 [D′′′ (c)]
2
.

Using Taylor expansions then leads to:

lim
r→c

RHS ′ (r) = lim
r→c

N̂(r)

D̂ (r)
= lim

r→c

N̂ ′′′ (c) (r−c)3
3!

D̂′′′′′′ (c) (r−c)6
6!

=
6!

3!

N̂ ′′′ (c)

D̂′′′′′′ (c)
lim
r→c

1

(r − c)3
= −∞.

Because limr→cRHS
′ (r) = −∞, there exists r̂ > c such that RHS ′ (r) < 0 for r ≤ [c, r̂].

To show that the critical discount factor tends to 1 as r tends to c, we first recall that
this threshold is determined by solving (6) with equality, where the left-hand side increases
from 0 to +∞ as δ increases from 0 to 1, whereas the right-hand side is given by RHS(r).
Using again Taylor expansions and noting that D′′′ (c) = g2(c) = N ′′SPA (c) ≤ N ′′ (c), this
right-hand side satisfies:

lim
r→c

RHS (r) = lim
r→c

N(r)

D (r)
= lim

r→c

N ′′ (c) (r−c)2
2!

D′′′ (c) (r−c)3
3!

≥ 3 lim
r→c

1

r − c
= +∞.

It follows that the critical discount factor tends to 1 as r tends to c. �

A.5 Proof of Proposition 5

By virtue of the optimality of the reserves, we have

UComp(v, rC(v)) ≥ UColl(v, rC(v)) and UComp(v, rA(v)) ≤ UColl(v, rA(v)).
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Combining these with (9) yields∫ rA(v)

c

G2(x)dx ≤
∫ rC(v)

c

G2(x)dx,

which implies that
rA(v) ≤ rC(v).

Thus, a revealed preference argument shows that the optimal reserve is weakly more
aggressive when facing collusion. Furthermore, we have:

∂U

∂r

Comp

(v, r)

∣∣∣∣
r=rA(v)

=
∂U

∂r

Coll

(v, r)

∣∣∣∣
r=rA(v)

+G2(rA(v)) = G2(rA(v)) > 0.

It follows that rA(v) < rC(v). �

A.6 Asymmetric deterrence reserves

The following lemma showing that reserves have more impact on short-term stakes than
long-term stakes will be useful.

Lemma A.1. For any r > c:

S (r) > B (r) + C (r) > 0, (17)

and
S ′ (r) > B′ (r) + C ′ (r) > 0. (18)

Proof. We have:
B (r) + C (r) = πm(r)− πn(r) = G(r)πm (r) ,

where G(r) and πm (r) are both positive for r > c, and strictly increasing; it follows that
B (r) + C (r) is also positive and strictly increasing.

Likewise, using S (r) = πm (c)− πn (c) = G(r)πm (c; r), we have:

S (r)−B (r)− C (r) = G(r) [πm (c; r)− πm (r)] ,

where G(r) and

πm (c; r)− πm (r) = (r − c)−
∫ r

c

G(c)dc =

∫ r

c

[1−G(c)] dc

are both positive for r > c, and strictly increasing. The conclusion follows. �
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Building on this first lemma yields:

Lemma A.2. If r1 < r2 (resp., r1 > r2), the more stringent condition in (15) is the first
(resp., second) one.

Proof. Let

∆ (r1, r2) ≡
(
1− δ2

) {[
LR(δ, r1, r2)− S(r2)

]
−
[
LR(δ, r2, r1)− S(r1)

]}
.

Straightforward manipulations yield:

∆ (r1, r2) =
{
δ [B (r2)− C (r1)] + δ2 [B (r1)− C (r2)]−

(
1− δ2

)
S (r2)

}
−
{
δ [B (r1)− C (r2)] + δ2 [B (r2)− C (r1)]−

(
1− δ2

)
S (r1)

}
= (1− δ) {δ [B (r2) + C (r2)]− (1 + δ)S (r2)}
− (1− δ) {δ [B (r1) + C (r1)]− (1 + δ)S (r1)}

= (1− δ) [ψ (r2)− ψ (r1)] ,

where
ψ (r) ≡ δ [B (r) + C (r)]− (1 + δ)S (r)

is strictly decreasing in r:

ψ′ (r) = δ [B′ (r) + C ′ (r)]− (1 + δ)S ′ (r) < 0,

where the inequality follows from δ ≥ 0 and Lemma A.1 above. Therefore, if r1 < r2, then
∆ (r1, r2) < 0, implying that the first condition in (15) is strictly more stringent than the
second one. The opposite holds if r1 > r2. �

A.7 Proof of Lemma 2

Recall that we assume that LR(δ, rj, ri) is increasing in rj (which holds for δ sufficiently
close to 1 and for all relevant δ in some cases), and that there is a reserve threshold, rDU (δ),
such that collusion in a unique market is sustainable if and only if the reserve is below
rDU (δ). Because a reserve of c effectively eliminates a market, we can express the relevant
long-term stake for a unique market with reserve r as LR(δ, c, r) and the condition for the
sustainability of collusion as

LR(δ, c, r) ≥ S(r).

It follows from the monotonicity of LR(δ, rj, ri) in rj that collusion is therefore easier to
sustain with two markets than with one; specifically, whenever collusion is sustainable
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in one market with reserve r on a stand-alone basis, it is sustainable as well when the
suppliers interact in two markets with the same reserve r:

∀r ∈ [c,max{c, v}], LR(δ, c, r) ≥ S(r) =⇒ LR(δ, r, r) ≥ S(r).

Accordingly, more aggressive reserves are required to deter collusion when suppliers in-
teract in multiple markets. Indeed, any reserves (r1, r2) ∈ Di, for some i ∈ {1, 2}, satisfy
c ≤ rj ≤ ri and

LR(δ, c, ri) ≤ LR(δ, rj, ri) < S(ri),

where the first inequality stems from the monotonicity of the long-term stake and the
second one from the definition of Di. It then follows from the definition of the unique
market deterrence reserve that (rj ≤)ri < rDU (δ).

We now turn to the second part of the lemma. It follows from the monotonicity of
LR(δ, rj, ri) in rj that the boundary of Di (δ) is given by:

Bi (δ) ≡ {(r1, r2) | ri ≥ rj and φ (δ, ri, rj) = 0},

where

φ (δ, ri, rj) ≡
(
1− δ2

) [
S(ri)− LR(δ, rj, ri)

]
=

(
1− δ2

)
S(ri)− δ [B(ri)− C(rj)]− δ2 [B(rj)− C(ri)] .

We have:

∂φ

∂δ
(δ, ri, rj)

∣∣∣∣
(ri,rj)∈Bi

= −2δS(ri)− [B(ri)− C(rj)]− 2δ [B(rj)− C(ri)]|(ri,rj)∈Bi(δ)

=
−
(
1 + δ2

)
[B(ri)− C(rj)]− 2δ [B(rj)− C(ri)]

1− δ2

= −(1− δ)2 [B(ri)− C(rj)] + 2δ [B(ri)− C(ri) +B(rj)− C(rj)]

1− δ2

< 0,

where the second equality uses the definition of Bi(δ), which implies that

S(ri) =
δ

1− δ2 {B(ri)− C(rj) + δ [B(rj)− C(ri)]} ,

the third equality rearranges, and the inequality follows from the assumption that the
market is at risk, implying that B (ri) > C (ri) and (because B (·) is increasing and
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ri ≥ rj) that B (ri) ≥ B (rj) > C (rj). It follows that a slight increase in δ strictly reduces
the set of deterrence reserves, Di (δ); because φ(·) is continuous, the reduction in Di (δ)
is also continuous. �

A.8 Proof of Proposition 8

When r1 < r2, the relevant long-term stake for a rotation is LR(δ, r1, r2), defined in (14),
and for a market allocation is L(δ, r1, r2), defined in (13). Using the definitions of LR, L,
πm, and πn, we have:

LR(δ, r1, r2)− L(δ, r1, r2) =
δ

1− δ2 [B(r2) + C(r2)−B(r1)− C(r1)] > 0,

where the inequality stems from r1 < r2 and Lemma A.1 (in Appendix A.6). If follows
that a rotation is easier to sustain than a market allocation. �

A.9 Proof of Proposition 9

We show that, whenever collusion is not blockaded, asymmetric reserves are more effective
at deterring it. We first consider the case where suppliers would rely on a market allocation
when trying to collude. As discussed at the beginning of Section 4.2, such collusion is
sustainable if and only if

L(δ, r1, r2) ≥ S(r2) and L(δ, r2, r1) ≥ S(r1),

where the long-term stake is given by

L(δ, ri, rj) ≡
δ

1− δ
[B(ri)− C(rj)] .

If the buyer restricts attention to symmetric deterrence reserves, it finds it optimal to set
r1 = r2 = rD, where r = rD is the unique solution to L(δ, r, r) = S(r) and, by assumption,
lies strictly below the optimal competitive reserve rC(v). However, starting from these
reserves, increasing r2 while holding r1 constant still deters collusion (by increasing the
short-term stake S(r2) and decreasing the long-term stake L(δ, r1, r2)—see footnote 34)
and enhances the buyer’s payoff by bringing r2 closer to the optimal competitive reserve
rC(v) (recall that the buyer’s payoff is strictly quasi-concave in the reserves). It follows
that deterring a market allocation is optimally achieved with asymmetric reserves.

We now turn to rotations. For ri ≥ rj the relevant sustainability condition is φ(δ, rj, ri) ≥
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0, where:

φ(δ, rj, ri) ≡
(
1− δ2

) [
LR(δ, rj, ri)− S (ri)

]
= δ [B (ri)− C (rj)] + δ2 [B (rj)− C (ri)]−

(
1− δ2

)
S (ri) .

An increase in ri increases both the short-term stake S (ri) and the long-term stake
LR(δ, rj, ri); by contrast, an increase in rj only affects the long-term stake. It follows
from Lemma A.1 that, for symmetric reserves, the impact on short-term stakes prevails.
Specifically:

Lemma A.3. For any r > c:

∂φ(δ, rj, ri)

∂ri

∣∣∣∣
ri=rj=r

<
∂φ(δ, rj, ri)

∂rj

∣∣∣∣
ri=rj=r

.

Proof. We have:

∂φ(δ, rj, ri)

∂rj

∣∣∣∣
ri=rj=r

− ∂φ(δ, rj, ri)

∂ri

∣∣∣∣
ri=rj=r

=
[
−δC ′ (r) + δ2B′ (r)

]
−
[
δB′ (r)− δ2C ′ (r)−

(
1− δ2

)
S ′ (r)

]
=

(
1− δ2

)
S ′ (r)− δ (1− δ) [C ′ (r) +B′ (r)]

> 0,

where the inequality uses 1− δ2 > δ (1− δ) and Lemma A.1 (in Appendix A.6). �

Building on these insights, suppose that, starting from r1 = r2 = rD, the buyer
increases ri by ε > 0 and reduces rj by the same amount; the change has no first-order
effect on the buyer’s expected payoff (starting from symmetric reserves, the impact of the
two reserves offset each other), but strictly improves deterrence because

dφ =

(
∂φ(δ, rj, ri)

∂ri

∣∣∣∣
ri=rj=rD(δ)

− ∂φ(δ, rj, ri)

∂rj

∣∣∣∣
ri=rj=rD(δ)

)
ε < 0,

where the inequality uses Lemma A.3. It follows that there exists a nearby (asymmetric)
modification of the reserves that improves the buyer’s expected payoff while preserving
deterrence. �

48



A.10 Proof of Proposition 11

Assume that two buyers, 1 and 2, play the reserve-setting game described in Section 4.3.

Proof of Bullet 1: If collusion is blockaded (i.e., δ < δC (v)), implying that rC (v) =(
rC (v) , rC (v)

)
∈ D (δ), then setting the competitive reserve rC (v) clearly constitutes a

Nash equilibrium: if buyer i does so, then setting rj = rC (v) successfully deters collusion
and thus gives buyer j its maximal possible payoff, as:

UComp(rC (v)) = max
r∈[c,min{c̄,v}]

{
UComp (r)

}
= max

r∈[c,min{c̄,v}]

{
max

{
UColl (r) , UComp (r)

}}
.

Proof of Bullet 2: Suppose now that an integrated buyer would optimally accommodate
collusion (i.e., δ ≥ δA (v)), implying:

2UA(v) > UComp (v, r1) + UComp (v, r2) for any r = (r1, r2) ∈ D, (19)

where the strict inequality stems from the convention that suppliers collude whenever
they can, including in the limit case δ = δA(v) and r ∈ B(δ).

We first establish existence. Fix ri = rA(v) and consider buyer j’s best-response, for
i 6= j ∈ {1, 2}. For any rj satisfying

(
rA(v), rj

)
∈ D, we have:

UComp
(
v, rA(v)

)
+ UA(v) ≥ 2UA(v)

> UComp
(
v, rA(v)

)
+ UComp (v, rj) ,

where the first inequality stems from UComp (v, ·) ≥ UColl (v, ·) and the second one from
(19). Hence, UA(v) > UComp (v, rj) for any rj deterring collusion, implying that buyer j’s
best-response is to accommodate collusion and set rj = rA(v).

We now turn to uniqueness. Suppose that there exists a different Nash equilibrium,(
rN1 , r

N
2

)
6=
(
rA(v), rA(v)

)
. By deviating to rA(v), a buyer could obtain UA(v) if the

deviation induces collusion, and UComp
(
v, rA(v)

)
≥ UA(v) otherwise. Both buyers must

therefore obtain at least UA(v) = maxr U
Coll (v, r). It then follows from

(
rN1 , r

N
2

)
6=(

rA(v), rA(v)
)
, together with the strict quasi-concavity of UColl (v, r) in the reserve, that

competition must arise in equilibrium. Hence, we have
(
rN1 , r

N
2

)
∈ D and UComp

(
v, rNi

)
≥

UA(v) for i ∈ {1, 2}, contradicting (19).

Proof of Bullet 3: Finally, we turn to the case in which collusion is not blockaded
(i.e., δ ≥ δC (v) or rC (v) /∈ D (δ)), but would be deterred by an integrated buyer (i.e.,
δ < δA (v)). Let rN = (rN1 , r

N
2 ) be a Nash equilibrium. If rN ∈ D (δ), then each buyer

could slightly adjust its reserve and still deter collusion. But then first-order optimality
conditions imply rN1 = rN2 = rC (δ), a contradiction. Hence, it must the case that rN /∈

49



D (δ). Furthermore, if rN /∈ D (δ) ∪ B (δ), then collusion arises and each buyer iobtains
UColl

(
rNi
)
. But if ri 6= rA (v), then buyer i could profitably deviate to rA (v), as this

would give buyer i a payoff of UColl
(
rA (v)

)
if collusion is still sustainable, and an even

higher payoff UComp
(
rA (v)

)
otherwise. Hence, either rN = rA (v) ≡

(
rA (v) , rA (v)

)
,

which from the previous observation can occur only if rA (v) /∈ D (δ), or rN ∈ B (δ)

(interpreted as meaning “arbitrarily close to B (δ)”). Thus, in equilibrium, the buyers
either accommodate collusion (i.e., r1 = r2 = rA(v)) or set reserves on the deterrence
boundary (i.e., (r1, r2) ∈ B(δ)). �

A.11 Proof of Proposition 12

Suppose that there are n = 2k markets. We first show that, for symmetric reserves, the
scope for collusion is maximized when each supplier is designated for half of the markets.
Let r denote the symmetric reserve and suppose without loss of generality that a supplier
is currently designated for n − h markets, for some h ∈ N . The supplier’s short-term
stake from a deviation in the remaining h markets is then given by

S (r, h) ≡ hS (r) ,

whereas its long-term stake is:

LR (δ, r, h) ≡ δ [hB (r)− (n− h)C (r)] + δ2 [(n− h)B (r)− hC (r)]

1− δ2 .

Hence, the supplier has no incentive to deviate if φ(δ, r, h) ≥ 0, where

φ(δ, r, h) ≡
(
1− δ2

) [
LR(δ, r, h)− S (r, h)

]
= δ [hB (r)− (n− h)C (r)] + δ2 [(n− h)B (r)− hC (r)]−

(
1− δ2

)
hS (r) ,

which is decreasing in h, that is,

∂φ(δ, r, h)

∂h
= (1− δ) [δB (r) + δC (r)− (1 + δ)S (r)] < 0,

where the inequality stems from (17). Collusion is sustainable if no supplier has an
incentive to deviate, that is, if

min{φ(δ, r, h), φ(δ, r, n− h)} ≥ 0.

It follows that collusion is easiest to sustain when h = n − h = k(= n/2). In particular,
collusion is blockaded if φ

(
δ, rC (v) , k

)
≥ 0.
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Suppose now that collusion is not blockaded. Because the buyer’s payoff UComp (v, r)

is concave in r, the optimal symmetric deterrence reserve, rDS (δ), is then such that
φ
(
δ, rDS (δ) , k

)
= 0. Starting from rDS (δ) =

(
rDS (δ) , ..., rDS (δ)

)
, consider now a small

change in reserves in which r1 is slightly increased by dr1 = (n− 1) dr > 0, whereas all
other reserves are reduced by dr. By construction, this small change in the reserves has
no first-order effect on the buyer’s overall payoff, as the net impact is given by

∑
i∈N

∂U

∂ri

Comp

(v, ri)dri

∣∣∣∣
ri=rDS (δ)

=
∂U

∂r

Comp

(v, r)

∣∣∣∣
r=rDS (δ)

[dr1 − (n− 1) dr] = 0.

However, for the supplier currently not designated for market 1, the short-term stake
becomes (where r ≡ rDS (δ)− dr)

Ŝ (r) ≡ S (r1) + (k − 1)S (r) ,

whereas its long-term stake is

L̂R (δ, r) ≡ δ [B (r1) + (k − 1)B (r)− kC (r)] + δ2 [kB (r)− C (r1)− (k − 1)C (r)]

1− δ2 .

The supplier thus has an incentive to deviate if φ̂ (δ, r) ≡
(
1− δ2

) [
L̂R (δ, r)− Ŝ (r)

]
< 0.

A first-order approximation yields:

φ̂ (δ, r) ' φ̂
(
δ, rDS (δ)

)
+

δ
{
B′
(
rDS (δ)

)
[dr1 − (k − 1) dr]− kC ′

(
rDS (δ)

)
(−dr)

}
+δ2

{
kB′

(
rDS (δ)

)
(−dr)− C ′

(
rDS (δ)

)
[dr1 − (k − 1) dr]

}
−
(
1− δ2

)
S ′
(
rDS (δ)

)
[dr1 − (k − 1) dr]

= δ
[
B′
(
rDS (δ)

)
+ C ′

(
rDS (δ)

)]
kdr

−δ2
[
B′
(
rDS (δ)

)
+ C ′

(
rDS (δ)

)]
kdr

−
(
1− δ2

)
S ′
(
rDS (δ)

)
kdr

= (1− δ)
{
δ
[
B′
(
rDS (δ)

)
+ C ′

(
rDS (δ)

)
− (1 + δ)S ′ (r)

]}
kdr

< 0,

where the first equality follows from φ̂
(
δ, rDS (δ)

)
= φ

(
δ, rDS (δ) , k

)
= 0 and dr1 = (2k −

1)dr, whereas the inequality stems from δ ∈ (0, 1), dr > 0 and (18). It follows that the
change in reserves strictly deters collusion while maintaining the buyer’s total payoff. By
continuity, there exists a neighboring change in reserves that keeps deterring collusion
and enhances the buyer’s payoff. �
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A.12 Proof of Proposition 13

Recall that given r, UComp(v, r) and UColl(v, r) are the buyer’s expected payoff under
deterrence and accommodation, respectively, and, similarly, denote by ΠD(r) and ΠA(r)

the suppliers’ expected joint payoff under deterrence and accommodation, respectively.
Note that UColl(v, r) < UComp(v, r) and ΠD(r) < ΠA(r). Moreover, both ΠD(r) and
ΠA(r) are increasing in r.

Given r, social welfare under deterrence is UComp(v, r) + ΠD(r) and under accommo-
dation it is UColl(v, r) + ΠA(r). Social welfare under deterrence exceeding social welfare
under accommodation is equivalent to

UComp(v, rD(δ)) + ΠD(rD(δ)) > UColl(v, rA(δ)) + ΠA(rA(δ)).

For the buyer to prefer accommodation, UComp(v, rD(δ)) < UColl(v, rA(δ)) has to hold,
which requires that rA(δ) > rD(δ). This implies that ΠA(rA(δ)) > ΠD(rD(δ)) and thereby
that social welfare is higher under accommodation than under deterrence. That is, the
buyer preferring accommodation implies that the social planner prefers accommodation.

That it is possible for the buyer to prefer deterrence while the planner prefers accom-
modation has been shown in the arguments preceding the proposition. This completes
the proof. �

A.13 Proof of Proposition 14

Part (i) of the proposition is established by noting that for v = 1 and uniformly distributed
costs on [0, 1], a discount factor of δ = 0.950 is in the range of discount factors such that
an integrated buyer deters collusion (see Figure 4(c)), but as shown in Figure 7(a), the
only equilibrium of the reserve-setting game has accommodation, which increases social
surplus as shown in Figure 4(c).

To establish part (ii), we first show that social welfare can be improved even when
independent buyers continue to deter collusion, but with different reserves than rD(v, δ).
Take the case of v = 1, δ = 0.94, and uniformly distributed costs. As shown in Figure
7(d), an integrated buyer’s optimal deterrence reserves rD(v, δ) (where rD1 (v, δ) < rD2 (v, δ))
belong to a range of Nash equilibrium deterrence reserves. Compared with the integrated
buyer’s optimal reserves rD(v, δ), an equilibrium based on a slightly lower r1 involves a
comparatively large increase in r2 so as to stay on B2(δ), which increases the expected
volume of trade and thus enhances social welfare.63 A tweak to this example, in which

63As long as collusion is deterred, competition ensures that the more efficient supplier is selected;
social welfare thus only depends on the expected volume of trade. In this example, where costs are
uniformly distributed on [0, 1], v = 1 and δ = 0.94, (rD1 , r

D
2 ) = (0.393705, 0.489389) and, moving along
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one increases r1 and decreases r2 shows that social welfare can decrease. �

the deterrence boundary B2, reducing r1 by 1× 10−6 raises r2 by 11× 10−6 and increases the probability
of trade, Ĝ(rD1 ) + Ĝ(rD2 ), by 1× 10−6.
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