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Abstract

We study the design of mechanisms involving agents that have limited strategic

sophistication. We define a mechanism to be simple if—given the assumed level

of strategic sophistication—agents can determine their optimal strategy. We

examine whether it is optimal for the mechanism designer who faces strategically

unsophisticated agents to offer a simple mechanism. We show that when the

designer uses a mechanism that is not simple, while she loses the ability to predict

play, she may nevertheless be better off no matter how agents resolve their strategic
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1 Introduction

It is widely accepted that “real-life” economic agents are not as rational as their
counterparts in economic models. When agents have limited strategic sophistication,
economists lose confidence in the performance of mechanisms that force participants to
engage in complicated mental tasks. For example, achieving a Bayesian Nash equilibrium
requires each agent to know the distribution of other agents’ private information and
correctly forecast other agents’ strategies; this is why dominant-strategy (or strategy-
proof or SP) mechanisms are generally perceived as being superior for practical purposes.
Following the mounting evidence that even dominant strategies are difficult to identify
for real-life agents, several recent papers introduced classes of mechanisms in which
agents can determine their optimal strategies under even weaker assumptions about
strategic sophistication. Li (2017) proposes the notion of obviously strategy-proof
(OSP) mechanisms in which agents can determine their optimal strategy even if they
cannot engage in contingent reasoning. Pycia and Troyan (2021) strengthen the notion
of simplicity even further by relaxing the assumption that agents can predict their
own future moves, and define (among other intermediate concepts) strongly obviously
strategy-proof (SOSP) mechanisms.

For the purpose of this paper, we call a mechanism simple if, given the assumed level
of strategic sophistication, agents can determine their optimal strategy in the mechanism.
For example, if we are only comfortable assuming that agents avoid obviously dominated
strategies (Li (2017)), then an OSP mechanism is simple because an obviously dominant
strategy can be identified as the unique strategy (up to payoff equivalence) that is not
obviously dominated for such agents. If the designer instead offers a mechanism that is
not OSP, she can no longer predict how agents will behave. More generally, we call a
mechanism complex if it creates strategic confusion for the agents, understood as the
inability to determine their optimal strategy in the mechanism.

The key observation of this paper is that the inability of the designer to predict the
outcome of a complex mechanism need not be a sufficient reason for the use of simple
mechanisms. As long as the designer is ultimately concerned with maximizing her own
payoff —which is typically assumed in mechanism design—complex mechanisms may be
preferred by the designer to simple ones.

Since a complex mechanism, by definition, leads to more than one possible outcome,
we need to specify what we mean by the designer preferring a complex mechanism to a
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simple one. We take a robust approach, defining strong dominance to be a case in which
the complex mechanism generates a strictly higher expected payoff for the designer, no
matter how agents resolve their strategic confusion. That is, even if agents choose their
strategies to minimize the designer’s expected payoff whenever they were confused, the
complex mechanism would still be strictly preferred by the designer to the simple one.
We illustrate the possibility of strong dominance using an example.

Example 1. Consider the problem of designing a trading platform for two traders
with the goal of maximizing intermediation profits. Each trader can buy or (short) sell
one unit of the asset. The platform cannot hold inventory (ex-post market-clearing is
imposed). Trader A’s valuation for the asset is either 0 or 2/3. Trader B’s valuation
for the asset is either 1/3 or 1. The designer of the trading platform believes individual
types to be equally likely but correlated across traders: π((0, 1/3)) = π((2/3, 1)) = 2/5.1

Suppose that the traders are unable to predict each others’ strategies, and cannot
engage in contingent reasoning. Then, as formalized and shown by Li (2017), traders will
not play an obviously dominated strategy. Agents’ behavior is pinned down if and only
if the designer uses an OSP mechanism, which is thus the relevant notion of a simple
mechanism under this assumption about agents’ rationality.2

The optimal OSP mechanism yields an expected profit of 1/5 for the platform
and is implemented by the following extensive-form game, which can be viewed as an
ascending personal-clock auction:

1. Trader A is asked whether she would like to sell the asset at the price 0; if she says
“yes,” then that trade is implemented; if she says “no,” then:

2. Trader B is asked whether she would like to sell the asset at the price 1/3; if she
says “yes,” then that trade is implemented; if she says “no,” then there is no trade.

1Because each trader’s role as a buyer or a seller is endogenously determined, the binding incentive
constraints cannot be pinned down ex-ante. The correlation of types (and the specific value of 2/5) plays
no role in our analysis, except for ensuring that the type profile (0, 1) is relatively unlikely—leading to
a particular structure of binding IC and IR constraints in the optimal simple mechanism. For related
models, see Cramton et al. (1987), Lu and Robert (2001), Chen and Li (2018), and Loertscher and
Marx (2020).

2A strategy is obviously dominant if, for any deviation, at any information set where the two
strategies first diverge, the best outcome under the deviation is no better than the worst outcome under
the dominant strategy. A mechanism is OSP if it has an equilibrium in obviously dominant strategies.
See Section 2 for a formal definition.
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In all cases in which trade takes place, the platform charges a fee of 1/3 to the buyer,
that is, the buyer pays the trading price plus 1/3.3

It is obviously dominant for type 0 of trader A to accept the initial offer, and for
type 2/3 to reject it. It is obviously dominant for type 1/3 of trader B to accept the
final offer, and for type 1 to reject it. It follows that the platform’s profit is 1/3 except
when the type profile is (2/3, 1). Intuitively, the inefficient no-trade outcome at the type
profile (2/3, 1) is implemented so that type 0 has an obviously dominant strategy: If
trader B were buying the asset from trader A conditional on the profile (2/3, 1), then
the best possible outcome for type 0 from rejecting the initial offer would yield a strictly
positive payoff, while her equilibrium strategy yields a payoff of 0.

Consider now an alternative mechanism, which can be viewed as a descending
personal-clock auction:

1. Trader B is asked whether she would like to buy the asset at the price 1; if she
says “yes,” then that trade is implemented; if she says “no,” then:

2. Trader A is asked whether she would like to buy the asset at the price 2/3; if she
says “yes,” then that trade is implemented; if she says “no,” then:

3. Trader B is asked whether she would like to buy the asset at the price 1/3; if she
says “yes,” then that trade is implemented; if she says “no,” then there is no trade.

Conditional on trade, the platform charges a fee of 1/3 to the seller.
Both types of trader A and type 1/3 of trader B have obviously dominant strategies;

for example, it is obviously dominant for type 1/3 of trader B to reject the first offer
and to accept the second offer. But the mechanism is not OSP: Type 1 of trader B is
confused between accepting the initial offer (which gives her 0) and rejecting it while
accepting the second offer (which gives her −2/3 or 2/3, depending on the behavior of
trader A). The key observation is that, regardless of how trader B resolves this confusion,
trade always happens. Thus, the platform achieves a profit of 1/3 ex post, and hence also
in expectation. Finally, for each type, non-participation is obviously dominated.4 Thus,
as long as traders do not play obviously dominated strategies, by adopting a complex
mechanism, the platform is guaranteed to achieve a strictly higher revenue than in the
optimal OSP mechanism. �

3We show the optimality of this mechanism in Appendix A.1.
4The platform could ensure that non-participation is obviously strictly dominated by adjusting the

fee and the prices by an arbitrarily small ε > 0.
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While Example 1 focused on the solution concept of OSP, in the remainder of the
paper we study a range of solution concepts (SP, OSP and SOSP), and derive three
general results about strong dominance. First, we argue that simple mechanisms may
be overly restrictive by requiring that no type be strategically confused. Sometimes,
the designer may benefit by trading off better performance of simple mechanisms on a
subset of the type space against creating confusion for the remaining types. We formalize
this idea by defining a property called “accommodation of additional types (AAT).” We
show that when the AAT property is violated, strong dominance of the best simple
mechanism occurs for some objective function of the designer or some distribution of
agents’ types. The AAT property fails in many classical social choice environments.
As an application, we study a voting environment in which the designer attempts to
maximize Rawlsian welfare of two agents with privately observed preferences over three
alternatives. The best simple mechanism—serial dictatorship—is strongly dominated by
a complex mechanism in which both agents influence the final choice of the alternative.

Second, we show that strong dominance is possible even when there is a single
agent in the mechanism. In this case, the designer uses randomization to confuse the
agent.5 Concretely, we construct an example in which the only way to implement a
certain desirable random outcome is to create strategic confusion: After selecting a
binary lottery from a menu, the agent is additionally asked to choose the side of the coin
resulting in her preferred option—that choice makes the agent strategically confused.
Remarkably, any mechanism that predetermines the consequences of the coin flip (any
simple mechanism) leads to a strictly worse outcome for the designer. We extend the logic
of the example to provide a sufficient condition for strong dominance in the single-agent
environment.

Third, we identify environments in which simple mechanisms are not strongly
dominated. We show that the optimal simple mechanism is not strongly dominated
when the designer’s maximized objective function (under the chosen solution concept) is
the same as the value of a relaxed problem in which the incentives constraints are only
imposed along the edges of some directed tree in the type space. A notable instance of
such a setting is the single-unit auction in the regular case. In this and other settings,
the result establishes an optimality foundation for the use of simple mechanisms.

5Our results for a single agent rely on the assumption that the agent reasons about randomized
outcomes in the same way as she reasons about choices of other players, see Remark 1.
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The notion of strong dominance is quite demanding, as it requires that the superior
complex mechanism generate a strictly higher expected payoff to the designer, regardless
of how agents behave when they are confused. This property ensures robustness to how
agents choose among undominated strategies; if agents turn out to be more sophisticated
and rule out more strategies (than hypothesized by the designer), the performance
guarantee of a complex mechanism can only improve. However, in some applications,
the designer may be satisfied with a weaker property of a superior complex mechanism:
It never yields a lower payoff than the best simple mechanism, and sometimes yields a
strictly higher payoff. We call this property “weak dominance.”6

We argue that weak dominance of the best simple mechanism is a common
phenomenon. We prove a general result showing how to construct a weakly-dominating
complex mechanism from a given simple mechanism. Intuitively, the complex mechanism
is created by augmenting the simple mechanism with an additional option that—if
taken—benefits the designer. The additional option is made sufficiently attractive for the
agent so that choosing it cannot be ruled out given the assumed level of sophistication.
We show that this construction can be applied to a variety of settings, including revenue-
maximization problems, efficiency in bilateral trade, and voting. The following example
illustrates the logic behind the general result.

Example 2. Consider the problem of selling an item to one ofN bidders with independent
private values distributed according to a regular and symmetric distribution. Suppose
that, as in Example 1, the only assumption about agents is that they do not play
obviously dominated strategies. The best simple (OSP) mechanism is an ascending clock
auction with a distribution-dependent reserve price. In the ascending clock auction,
active bidders choose whether to exit as the clock price increases, and bidders who
exit remain inactive thereafter. The auction stops when all but one bidder exit. The
remaining bidder wins the object and pays the clock price.

The following modified mechanism, which we call the ascending clock auction with
jump bidding, weakly dominates the best simple mechanism: Each bidder is allowed
to speed up the clock by jump bidding, that is, to make a higher bid than the current

6It may be useful to draw an analogy to the notion of weak dominance between two strategies in
game theory. The arguments for and against playing weakly dominated strategies carry over to selecting
weakly dominated mechanisms. In particular, the designer could still perceive a weakly dominated
mechanism to be optimal if she believes with certainty that agents choose strategies that are worst
possible for her whenever they are confused, just as a weakly dominated strategy could be perceived to
be optimal as it could be a best response to a degenerate belief about her opponent’s strategies.
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clock price. This mechanism is not OSP because making a jump bid (to a bid b) is not
obviously dominated for a bidder with value v > b at the clock price p < b. Indeed,
making a jump bid to b yields the best-case payoff of v− b to the bidder, while following
the default strategy (of exiting when the clock price reaches v) yields a payoff of 0 in
the worst case.7 Agents are strategically confused as they now have multiple strategies
that are not obviously dominated—the mechanism is complex.

Given the assumed strategic sophistication of the bidders, the designer cannot
predict whether jump bidding will occur or not. Nonetheless, a revenue-maximizing
auctioneer might prefer the ascending clock auction with jump bidding to the ascending
clock auction: If none of the bidders jump bids, then the performance of the ascending
clock auction with jump bidding is the same as that of the ascending clock auction;
in the event that some bidder jump bids, the expected revenue of the ascending clock
auction with jump bidding is strictly higher than that of the ascending clock auction. �

We use a similar construction to show that the best simple mechanism is weakly
dominated for a revenue-maximizing designer in a variety of settings. However, we also
prove that, under some additional conditions, single-agent posted price mechanisms are
not weakly dominated for the notions of SP and OSP (interestingly, this is not true
under SOSP).

Overall, the paper proposes a systematic framework for thinking about the issues
of strategic simplicity and complexity in settings with agents that are strategically
unsophisticated. By offering results that both oppose and support the use of simple
mechanisms, we emphasize that whether simplicity is desirable or not is not merely
a function of agents’ sophistication. Instead, each environment in question must be
carefully analyzed before deciding whether a simple mechanism should be used.

1.1 Related literature

Simple mechanisms: This paper contributes to the design of mechanisms involving
strategically unsophisticated agents. While Li (2017), Börgers and Li (2019), and Pycia
and Troyan (2021) provide notions of simplicity and the characterizations of simple
mechanisms according to these notions, our focus is on the tradeoff between simplicity
and optimality, and we examine whether there is a foundation for the use of simple

7Of course, bidders would not jump bid if they could engage in contingent reasoning—jump bidding
is weakly dominated but not obviously dominated.
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mechanisms from an optimality perspective.8 Indeed, we show that in many cases, the
designer might prefer a mechanism that is not simple.

Robust mechanisms design: Traditional models in mechanism design make strong
assumptions about the detailed knowledge of the designer about the inputs to the
mechanism design model. The literature of robust mechanism design seeks to relax these
assumptions; see Carroll (2019) for a recent survey. While the leading interpretation of our
exercise is that agents have limited strategic sophistication, an alternative interpretation—
tying our work to the burgeoning literature of robust mechanism design—is that we
relax the assumption about the designer’s knowledge of the strategic reasoning process
of the agents (beyond some minimal rationality assumptions).

SP mechanisms: A number of papers have examined whether there is a foundation
for the use of dominant-strategy mechanisms when the designer does not have any
reliable information about the agents’ hierarchies of beliefs; see for example Bergemann
and Morris (2005), Chung and Ely (2007), Börgers (2017), Chen and Li (2018), and
Yamashita and Zhu (2020). In this approach, the agents can have arbitrary beliefs, while
they are still assumed to play a Bayesian equilibrium. Our approach is different. While
our analysis for the solution concept of SP also asks whether there is a foundation for
the use of dominant-strategy mechanisms, we are not motivated by the robustness to the
agents’ hierarchies of beliefs, but driven by simplicity concerns. We impose a minimal
rationality assumption that agents do not play weakly dominated strategies; agents are
not assumed to play a Bayesian equilibrium.9

Implementation in undominated strategies: Our analysis for the solution concept
of SP is closely related to the strand of the mechanism design literature that studies
implementation in undominated strategies; see, for example, Börgers (1991), Jackson
(1992), Börgers and Smith (2012), Carroll (2014), Yamashita (2015a), Mukherjee et al.
(2019), and Mukherjee et al. (2020). It is known from these papers that the optimal
SP mechanism could be weakly or strongly dominated by complex mechanisms; we
provide new examples and additional structural insights. For voting, Börgers (1991)
shows that there are non-dictatorial procedures which ensure that collective decisions
are Pareto efficient if all agents choose strategies that are not weakly dominated, and

8There are, of course, many dimensions of simplicity. Our paper and the papers cited here consider
the strategic dimension.

9The concepts of structural and strategic uncertainty are related, as shown by Yamashita (2015b);
the formal equivalence established by Yamashita (2015b) does not apply under our assumptions.
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Mukherjee et al. (2019) show that the Pareto correspondence can be implemented in
weakly undominated strategies by bounded mechanisms. Börgers and Smith (2012) show
that, for bilateral trade and voting, there exist mechanisms that weakly dominate the
optimal SP mechanism if all agents choose strategies that are not weakly dominated.
In an independent paper, Mukherjee et al. (2020) provide sufficient conditions for
a social choice correspondence to be implemented in weakly undominated strategies.
They apply their results to several economic environments; their results are broadly
consistent with and complementary to our Section 4 where we study the concept of weak
dominance. Yamashita (2015a) develops a methodology of establishing an upper bound
of the highest worst-case payoff for the designer, and applies the methodology to several
settings, including the private-value auction and bilateral trade, and interdependent-value
auction.10 Our results in Section 3.3 extend the insight of Yamashita (2015a) to a larger
class of environments and the solution concepts of OSP and SOSP.

Simple versus complex mechanisms: There is a large computer-science literature—
too vast to be surveyed here—that quantifies the worst-case loss from using certain simple
classes of mechanisms relative to the optimal mechanism; for example, see Hartline and
Roughgarden (2009). Pycia and Troyan (2021) ask whether restricting attention to
simple mechanisms entails any loss by studying how the set of allocations that are simply-
implementable depends on agents’ degree of strategic sophistication. The fundamental
difference to our work is that these papers compare the performance of mechanisms across
solution concepts and the corresponding classes of mechanisms. We fix the assumption
about agents’ rationality and compare the performance of simple mechanisms (in which
agents know what to do) with the performance of complex mechanisms (in which agents
are confused).

In terms of understanding complex mechanisms with cognitively limited agents,
Jakobsen (2020) is similar in spirit to our paper. He studies a mechanism design problem
involving a principal and a boundedly rational agent who has both imperfect memory
and limited deductive (computational) ability. Thus, the agent’s comprehension of a
game form—the mapping from strategy profiles to outcomes—is subject to complexity

10We are aware of two other papers that study questions different from ours but contain examples
that could be used to show instances of strong dominance of an SP mechanism: Bergemann and Morris
(2005)[Example 2] who study robust implementation of correspondences in settings in which the designer
does not have information about agents’ belief and Carroll (2014) who proves a complexity result for
undominated-strategy implementation. Also see Footnote 28 for the discussion of interdependent-value
settings.
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constraints. He shows that by expressing a mechanism as a complex contract, the principle
could manipulate the agent into believing that truthful reporting is optimal. This paper
differs from ours in that it imposes specific assumptions about how the agent resolves
uncertainty for any given complex contract, namely, the agent is a maxmin decision
maker. In contrast, we take a robust approach, and do not impose any assumptions on
how agents resolve their confusion in complex mechanisms. Moreover, the uncertainty
about the game form in Jakobsen (2020) stems from imperfect memory and limited
deductive (computational) ability, while we study uncertainty resulting from strategic
interactions.

Our paper is related to the growing literature that studies bounded rationality in
industrial organization and shows that firms might benefit from purposefully confusing
consumers in the presence of naive consumers; see Spiegler (2011) and references therein.
Glazer and Rubinstein (2012) and Glazer and Rubinstein (2014) study persuasion/
mechanism design models with boundedly rational agents and show that the listener
could benefit from using complex mechanisms that make it difficult for dishonest agents
to cheat. These papers impose specific assumptions about the reasoning procedures of
the speaker.

2 Preliminaries

Environment. There is a finite set of N agents, N = {1, 2, . . . , N}, and an arbitrary
(possibly infinite) set of alternatives X . Each agent i has payoff-relevant information
indexed by θi ∈ Θi, where Θi is finite. We refer to θi as agent i’s type. The set of
possible type profiles is Θ = ×i∈N Θi with representative element θ = (θ1, θ2, . . . , θN).
The type profile is distributed according to a prior probability distribution π ∈ ∆Θ. As
is standard, we write θ−i ∈ Θ−i = ×j 6=i Θj for a type profile of agents other than agent i.

Each agent i is endowed with a utility function ui : X × Θi → R (we assume
private values). The designer has a utility function v : X ×Θ→ R. That is, ui(x, θi)
and v(x, θ) denote type θi’s utility and the designer’s utility, respectively, when the type
profile is θ and the implemented alternative is x. We assume that the designer is an
expected utility maximizer with respect to the distribution π of types. We make no such
assumption about the agents because how they form beliefs about other agents’ types is
irrelevant given the solution concepts we consider.
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The designer may wish to use randomization in the mechanism. To incorporate
this possibility, we introduce a “dummy” agent i = 0 with no preferences, called Nature.
The game form is allowed to feature nodes at which Nature is called to play, and the
distribution over strategies is picked by the designer as part of the mechanism. We use
“bar” to denote the extended profiles that include Nature, for example, N̄ = N ∪ {0}.

Mechanisms. We consider finite mechanisms that are imperfect-information, extensive-
form games with perfect recall and consequences in X .11 The definition is standard; to
shorten the exposition, we only introduce notation associated with a generic game Γ
that we are going to use:

(1) H is the set of histories, with representative element h, and h∅ denoting the initial
(empty) history;

(2) ⊂ is the precedence relation over histories;

(3) Z is the set of terminal histories, with representative element z;

(4) g(z) ∈ X is the outcome resulting from z;

(5) Ii denotes an information set of agent i;

(6) A(Ii) is the set of actions available at information set Ii;

(7) A (pure) strategy Si chooses an action a ∈ A(Ii) at every information set Ii of
agent i ∈ N̄ , and Si is the collection of all (pure) strategies for player i;12

(8) A strategy profile S̄ = (S0, S1, ..., SN) specifies a strategy for each player;

(9) z(h, S̄) denotes the terminal history that results when we start at history h and
play proceeds according to the strategy profile S̄;

(10) π0 ∈ ∆(S0) is a full-support probability distribution over Nature’s strategies.

We say that the information set Ii is on the path of play of strategy Si if there exists
S̄−i and h ∈ Ii such that h ⊂ z(h∅, Si, S̄−i). Given two strategies Si and S ′i, we define
β(Si, S ′i) to be the set of information sets that are on the path of play of both Si and S ′i.
Under perfect recall, Ii ∈ β(Si, S ′i) implies that Si and S ′i choose the same actions at all

11Finiteness is an important assumption: Jackson (1992) shows that infinite mechanisms may
implement virtually any decision rule in undominated strategies, relying on an infinite hierarchy of
weakly dominated strategies with no dominant strategy “at the top.”

12We focus on pure strategies. This does not affect our negative results that simple mechanisms are
(weakly or strongly) dominated. Since a strategy that is not weakly dominated by a pure strategy could
nevertheless be dominated by a mixed strategy, allowing mixed strategies gives a weakly smaller set of
undominated strategies and thus makes it easier to show that simple mechanisms are dominated.
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information sets preceding Ii. If Ii ∈ β(Si, S ′i) but Si and S ′i choose different actions at
Ii, then we call Ii an earliest point of departure for these two strategies. Following Li
(2017), we let α(Si, S ′i) denote the set of all earliest points of departure for these two
strategies. Finally, we let Φ(Si, Ii) = {S ′i : Ii ∈ β(Si, S ′i), Si(Ii) = S ′i(Ii)} be the set of
player i’s strategies that agree with Si at Ii and all information sets that precede it.

Solution concepts. We define three solution concepts that we use in the paper.

Definition 1 (SP). Si is dominated (or SP-dominated) for type θi of agent i if there
exists another strategy S ′i such that for all S̄−i,

ui(g(z(h∅, Si, S̄−i)), θi) ≤ ui(g(z(h∅, S ′i, S̄−i)), θi),

with the inequality being strict for some S̄−i.

Definition 2 (OSP). Si is obviously dominated (or OSP-dominated) for type θi of agent
i if there exists another strategy S ′i such that for all Ii ∈ α(Si, S ′i),

max
h∈Ii, S̄−i

ui(g(z(h, Si, S̄−i)), θi) ≤ min
h∈Ii, S̄−i

ui(g(z(h, S ′i, S̄−i)), θi),

with the inequality being strict for some Ii ∈ α(Si, S ′i).

Definition 3 (SOSP). Si is strongly obviously dominated (or SOSP-dominated) for type
θi of player i if there exists another strategy S ′i such that for all Ii ∈ α(Si, S ′i),

max
h∈Ii, S̄−i, Ri∈Φ(Si, Ii)

ui(g(z(h,Ri, S̄−i)), θi) ≤ min
h∈Ii, S̄−i, R′i∈Φ(S′i, Ii)

ui(g(z(h,R′i, S̄−i)), θi),

with the inequality being strict for some Ii ∈ α(Si, S ′i).

In words, a strategy Si is dominated for type θi if there exists another strategy
S ′i that yields a higher payoff for type θi for any fixed strategy profile for other players
and Nature. A strategy Si is obviously dominated for type θi if there exists another
strategy S ′i such that, starting at any earliest point of departure, the worst possible
payoff under S ′i for type θi across all strategies of other players and Nature is higher
than the best possible payoff under Si for type θi across all strategies of other players
and Nature. Finally, a strategy Si is strongly obviously dominated for type θi if there
exists another strategy S ′i such that, starting at any earliest point of departure, the
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worst possible payoff under S ′i for type θi across all strategies of other players, Nature,
and moves of player i at future information sets is higher than the best possible payoff
under Si for type θi across all strategies of other players, Nature, and moves of player i
at future information sets. The three dominance concepts are nested: Strongly obviously
dominated strategies are obviously dominated, and obviously dominated strategies are
dominated. From now on, we fix a dominance concept K ∈ {SP, OSP, SOSP}; unless
explicitly stated otherwise, all statements should be understood as holding for any such
K.

Remark 1 (On randomization). Under the solution concepts analyzed in this paper,
one has to take a stance on how agents reason about randomization: When evaluating a
strategy, they could either (i) take expectations with respect to designer’s randomization
within the mechanism, or (ii) condition on each outcome of the randomization device.
Our definitions capture the second possibility. This implies that Definition 1 of dominance
for strategy-proof mechanisms is somewhat non-standard.13 However, this convention
keeps the three solution concepts more analogous, since in OSP (see the baseline model
of Li (2017)) and SOSP (see Pycia and Troyan (2021)), dominance is defined with
respect to Nature’s moves. Such approach seems natural given the focus on simplicity:
We effectively assume that—in the mind of a player—moves of Nature and moves of
a strategic player with a constant utility function are treated symmetrically. Since we
imposed no a priori restrictions on the space of primitive outcomes X , it is possible that
X already contains lotteries over deterministic decisions (and the utilities ui(x, θi) are
expected utilities derived from some primitive utility for deterministic decisions); in that
case, randomization via Nature’s moves is redundant and our definition of strategy-proof
mechanisms reduces to a standard one. Thus, our stronger notion of strategy-proofness
has bite only when we explicitly assume that X does not contain lotteries (e.g., in Section
3.2).

Fixing a game Γ and type θi of agent i ∈ N , we can think of the dominance
relation as defining a partial order ≺Kθi

on the set of player i’s strategies: Si ≺Kθi
S ′i if

Si is K-dominated by S ′i for θi. We call two strategies Si and S ′i payoff-equivalent for

13We are not first to consider this extension of the standard notion. A (randomized) mechanism is
called a universally-truthful mechanism—a common solution concept in the computer science literature,
see, for example, Nisan and Ronen (2001)—if every mechanism in the support of the randomized
mechanism is a dominant-strategy mechanism.
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type θi if ui(g(z(h∅, Si, S̄−i)), θi) = ui(g(z(h∅, S ′i, S̄−i)), θi) for all S̄−i. A strategy Si is
K-dominant if all non-payoff-equivalent strategies S ′i are K-dominated by it.

Strategic confusion, simple and complex mechanisms. Throughout, we adopt
the following assumption about the rationality of players.

Assumption 1 (Strategic sophistication). For any i ∈ N , no type θi of player i plays a
K-dominated strategy.

Assumption 1 is the same assumption that forms the basis for the various notions
of simplicity that we cover in this paper. For example, if one thinks that participants will
play obviously dominant strategies when they are available, then one seems also compelled
to reason that participants will avoid obviously dominated strategies (even when no
strategy is obviously dominant). From a practical perspective, we can think of the
mechanism designer as both designing the game and providing guidance to participants
on how they should behave. Assumption 1 sets a lower bound on what recommendations
from the designer the players will find persuasive; namely, any player can be persuaded
not to play any K-dominated strategy. This is a relatively weak assumption. For
example, we do not assume that the players will follow a recommendation whose validity
relies on iterative elimination of dominated strategies (from an epistemic perspective,
this would require some degree of knowledge of rationality among the players, which we
do not assume).

For mechanism Γ with the corresponding set of possible strategies Si of player i,
we define the set of strategies that type θi might play under Assumption 1:

UK
i (θi) = {Si ∈ Si : @S ′i ∈ Si, Si ≺Kθi

S ′i}.

That is, UK
i (θi) is the set of K-undominated strategies for type θi. Given the finiteness

of the mechanism, that set is non-empty.
If type θi has a K-dominant strategy, then the set UK

i (θi) is not necessarily a
singleton; however, all strategies in UK

i (θi) must be payoff-equivalent for θi. In this
case, the player is truly indifferent between these dominant strategies, and hence we
do not want to label this as “strategic confusion” (otherwise, no solution concept could
avoid strategic confusion). It is customary in mechanism design to let the designer select
which dominant strategy the player should play, and we follow the same convention
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here.14 Formally, we will treat UK
i (θi) as consisting of equivalence classes of strategies

that are payoff-equivalent for θi, and we let the designer pick the representative of each
equivalence class (we leave this description verbal in order not to further complicate our
notation).

Definition 4 (Strategic confusion and complex mechanism). Fixing a mechanism Γ,
type θi of player i ∈ N is said to be strategically confused (under solution concept K)
if UK

i (θi) contains at least two (not payoff-equivalent) strategies. In such case, we call
mechanism Γ complex (for type θi of agent i).

Strategic confusion means that at least one player has more than one K-
undominated strategy in the mechanism, and therefore, in the absence of further
assumptions on behavior or strategic reasoning, it is impossible to determine which
strategy she will select. Of course, a valid interpretation is that player i “knows” which
strategy to choose but the designer is not willing to make an assumption about that
choice.

The literature has identified classes of “simple” mechanisms that can be played even
if agents are strategically unsophisticated, in the sense of only satisfying Assumption 1.
When players cannot forecast their opponents’ play, they will nevertheless know how
to behave if they have a dominant strategy (a defining property of SP mechanisms).
If, moreover, players cannot engage in contingent reasoning, they should be offered an
obviously dominant strategy (leading to the notion of OSP mechanisms, see Li (2017)).
Finally, if players lack foresight and cannot predict their own future moves, they should
have a strongly obviously dominant strategy (leading to the notion of SOSP mechanisms,
see Pycia and Troyan (2021)). This motivates our definition of a simple mechanism.

Definition 5 (Simple mechanism). A mechanism Γ is simple if for any agent i ∈ N ,
no type θi is strategically confused.

Strong and weak dominance of mechanisms. An advantage of a simple mechanism
from the point of view of the designer is that she can predict how agents will behave. In
contrast, if any agent is strategically confused, the designer—based only on Assumption

14One justification for this assumption is that the mechanism is paired with “recommended” strategies
for the players, and the players follow the recommendation as long as it constitutes a dominant strategy.
In many settings the mechanism can be perturbed into a mechanism that is arbitrarily close in terms of
payoffs and such that the player is no longer indifferent between these dominant strategies. Finally, the
optimal mechanism would often fail to exist in the absence of this assumption.
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1—cannot determine the path of play. This seems to provide a strong argument in favor
of simple mechanisms. However, that benefit is diminished if the designer can achieve
better outcomes using a mechanism that confuses some types.

To formalize this idea, let Si denote a type-strategy for player i, that is, Si(θi) is
the strategy selected by type θi of player i ∈ N . We let Si ⊂ UK

i mean that Si is a
selection from the correspondence of K-undominated strategies, i.e., Si(θi) ∈ UK

i (θi) for
all θi ∈ Θi. We define a correspondence

V (Γ) = Conv.Hull
({

Eθ∼π, S0∼π0 [v(g(z(h∅, (S0, S1(θ1), ..., SN(θN)))), θ)] : {Si ⊂ UK
i }i∈N

})

to be the range of the designer’s expected payoffs over all possible ways in which confused
types can resolve their strategic confusion.15 By definition, V (Γ) is a singleton when Γ
is a simple mechanism but it may be a (closed) interval when Γ is complex.

Definition 6 (Strong dominance). A mechanism Γ is strongly dominated if there exists
a mechanism Γ′ such that

max V (Γ) < min V (Γ′).

Definition 7 (Weak dominance). A mechanism Γ is weakly dominated if there exists a
mechanism Γ′ such that

max V (Γ) ≤ min V (Γ′) and max V (Γ) < max V (Γ′).

In words, a mechanism Γ is strongly dominated by a mechanism Γ′ if the expected
payoff for the designer under Γ′ is strictly larger than the expected payoff under Γ,
regardless of how confused agents select their strategy. A mechanism Γ is weakly
dominated by a mechanism Γ′ if the expected payoff for the designer under Γ′ is at least
as large as the expected payoff under Γ, regardless of how confused agents select their
strategies; moreover, the expected payoff under Γ′ is strictly larger under some selection.
Throughout, we will primarily apply these definitions to the case in which Γ is an optimal
simple mechanism (that is, it maximizes the designer’s expected payoff among all simple
mechanisms), in which case it can only be weakly or strongly dominated by a complex
mechanism.

15Note that when computing the range of designer’s payoffs, we assume that which undominated
strategy a player selects cannot depend on the realization of other players’ types.
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Participation constraints. Even when simple mechanisms are dominated, a possible
argument in their favor is that agents may be discouraged from participation if they
face a complex mechanism. However, we also analyze the case in which participation
decisions are endogenous. In many settings (including the ones in which the designer’s
objective is to maximize her revenue), it is necessary to impose a participation constraint
for the problem to be well defined. For a simple mechanism, under the solution concepts
in question, it is natural to impose ex-post individual-rationality which requires that
for any player i and type θi ∈ Θi, the chosen strategy Si = Si(θi) yields a non-negative
payoff in all possible cases:

ui(g(z(h∅, Si, S̄−i)), θi) ≥ 0, ∀S̄−i.16 (1)

We introduce two extensions of this condition to complex mechanisms. We say that a
mechanism Γ provides partial incentives to participate if for all i ∈ N , all θi ∈ Θi, there
exists Si ∈ UK

i (θi) such that condition (1) holds. We say that a mechanism Γ provides
full incentives to participate if for all i ∈ N , all θi ∈ Θi, for all Si ∈ UK

i (θi) condition
(1) holds. The notion of partial incentives to participate is more appropriate when non-
participation is thought of as a strategy: The condition states that the non-participation
strategy is (obviously) dominated, and hence is not chosen by a rational player. The
notion of full incentives to participate is more appropriate if non-participation is thought
of as an option for each player to walk away from the mechanism at any point, including
after learning her final payoff.

3 Strong dominance

In this section, we study strong dominance of simple mechanisms. Section 3.1 discusses
a sufficient condition for the best simple mechanism to be strongly dominated. Section
3.2 shows that strong dominance is possible even in single-agent mechanisms. Section
3.3 provides a condition under which the optimal simple mechanism is not strongly
dominated.

16This implies that strategy Si obviously dominates non-participation, but not that it strongly
obviously dominates non-participation. For SOSP, one may wish to require this condition also for all
strategies Ri ∈ Φ(Si, Ii), where Ii is the first information set of player i, for each possible history (this
would not change our results in any substantial way).
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3.1 Simple mechanisms can be overly restrictive

A weakness of simple mechanisms is that they can be overly restrictive by requiring
that no type should be confused. In some settings, the presence of certain preference
types implies that the set of outcome functions implementable by simple mechanisms
is small. However, the behavior of some agents’ types could be insignificant for the
designer, either because (i) these types do not contribute to the designer’s payoff, or (ii)
they have low probability. In such cases, the designer may want to impose simplicity
only for a subset of types with the remaining types being potentially confused.

To formalize this idea, we introduce a property that we call the “accommodation
of additional types” (AAT). We show that if the AAT property is violated, then there
exists either a payoff function for the designer or a distribution of types such that the
best simple mechanism is strongly dominated.

Fixing the type space Θ and players’ preferences (the “implementation environ-
ment”), we say that an outcome function λ : Θ→ ∆(X ) is simply-implementable if there
exists a simple mechanism Γ whose equilibrium leads to the outcome λ(θ) whenever
the realized type profile is θ. We let Λ(Θ) denote the set of simply-implementable
outcome functions on the type space Θ. We denote by Θ \ {θi} the type space
Θ1 × . . .× (Θi \ {θi})× . . .×ΘN .

Definition 8. An implementation environment has the accommodation of additional
types (AAT) property if for any i, any θi ∈ Θi, and any outcome function λ ∈ Λ(Θ\{θi}),
there exists λ̄ ∈ Λ(Θ) such that λ̄|Θ\{θi} = λ.17

The AAT property says that given an arbitrary simple mechanism on the type
space Θ \ {θi}, we can always “accommodate” an additional type θi of agent i, that is,
assign a K-dominant strategy to θi while keeping the outcome of the mechanism for the
remaining types unchanged.

By pairing an implementation environment with the designer’s objective v (the
“design environment”), we can formulate a weaker version of AAT that only applies to
designer’s payoffs.

Definition 9. A design environment has the accommodation of additional types (AAT)
property if for any i, any θi ∈ Θi, the maximized value of v over Λ(Θ \ {θi}) and over
Λ(Θ) is the same under any distribution π supported on Θ \ {θi}.

17We write λ̄|Θ\{θi} for the outcome function λ̄ restricted to Θ \ {θi}.
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Clearly, when AAT fails in some design environment, then it must also fail in the
underlying implementation environment. The opposite is not true: failure of AAT in an
implementation environment only implies that certain outcome functions are no longer
simply-implementable when the incentive constraints of an additional type θi must be
satisfied, but if maximizing v does not require accessing these outcomes, then AAT will
still hold for the design environment.

Proposition 1. Suppose that the AAT property fails for some (i) implementation
environment or (ii) design environment. Then, respectively,

(i) for any full-support distribution of types, there exists a payoff function for the
designer such that the best simple mechanism is strongly dominated;

(ii) there exists a full-support distribution of types such that the best simple mechanism
is strongly dominated.

The intuition behind Proposition 1 is straightforward. Suppose that the AAT
property fails in an implementation environment when some type θi is “added” to the
type space Θi \ {θi}. Then, there exist objective functions for the designer that are
maximized at some outcome function that is simply-implementable on Θ \ {θi} but not
on Θ, and that do not depend “too much” on the outcome implemented for type θi.
Under such objective functions, the designer can do strictly better by effectively ignoring
type θi: She offers the same mechanism Γ that she would have offered if type θi were not
present. The mechanism is complex on Θ because θi is strategically confused. However,
when the designer’s payoff is not very sensitive to the outcome that occurs conditional
on θi, Γ will strongly dominate the optimal simple mechanism on Θ. When AAT fails in
a design environment, the insignificance of type θi for the designer’s overall payoff can be
achieved by choosing a distribution of types π under which θi is very improbable. The
proof of Proposition 1—which formalizes these arguments—can be found in Appendix
A.2.

Example 3. Consider a voting environment with two agents and three alternatives,
X = {a, b, c}. Each agent’s type can be represented as a ranking of the three alternatives.
More specifically, each agent gets utility 1 if her top choice is implemented, 1/2 if her
second choice is implemented, and 0 otherwise. The distribution of types π is i.i.d. uniform.
The designer would like to maximize welfare but is Rawlsian and risk-averse: If ui is the
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ex-post utility of agent i, then the designer’s payoff is v(min(u1, u2)) for some strictly
concave and increasing function v.

The best simple mechanism (for any K ∈ {SP, OSP, SOSP}) is dictatorship with
full range.18 The outcome function of that mechanism (with the row player being a
dictator) is illustrated in Table 1.

Table 1: The best simple mechanism

abc acb bac bca cab cba
abc a a a a a a
acb a a a a a a
bac b b b b b b
bca b b b b b b
cab c c c c c c
cba c c c c c c

Table 2: A complex mechanism

abc acb bac bca cab cba
abc a a a a a a
acb a a a a a a
bac b b b b b b
bca b b b b b b
cab a a a c c c
cba(1) a a a c c c
cba(2) b b b b b b

Consider instead a delegation mechanism in which the designer specifies a set
of menus from which the dictator chooses one, with the second player selecting an
alternative from the chosen menu. The dictator can choose menu {a}, menu {b}, or
menu {a, c}.

Types abc, acb, bac, bca of the row player retain their K-dominant strategies. Type
cab has a K-dominant strategy to choose the menu {a, c}. However, type cba does not
have a K-dominant strategy: Both menu {b} and menu {a, c} are not K-dominated—the
mechanism is complex. This is illustrated in Table 2.

However, whichever strategy type cba chooses, the expected payoff to the designer
is strictly higher than in the best simple mechanism. Indeed, consider first the case
in which type cba chooses menu {a, c}. Then, the difference in expected payoffs to
the designer between the complex mechanism and the best simple mechanism (which
can be calculated by comparing the cells of the two tables with different outcomes) is
1
36 ×

[
v
(

1
2

)
− v(0)

]
> 0. Now, consider the case in which type cba chooses menu b. The

difference in the expected payoffs of the designer is 1
36 × [−2v(1) + 4v(1/2)− 2v(0)] > 0,

by strict concavity of v. Thus, the complex mechanism is guaranteed to yield a strictly
higher expected payoff to the designer regardless of how type cba resolves her confusion.

Note that the AAT property is violated in the above implementation environment:
18It suffices to show this for the concept of SP since it is the most permissive one (and because

dictatorship is a simple mechanism under all notions). Due to our Definition 1 of SP, it is without loss
of optimality to look at deterministic mechanisms, and thus only ordinal preferences of players matter.
We can directly verify that dictatorship with full range is optimal for our objective function.
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The simple mechanism defined by the first 5 rows of Table 2 by excluding type cba cannot
be extended to a simple mechanism with type cba added back. To see that, note that
for type cba to have a K-dominant strategy, she must be able to secure c conditional
on θ2 = bca; she must also be able to secure b or c conditional on θ2 = bac. If type cba
gets c in any contingency conditional on θ2 = bac, then type cab of player 1 no longer
has a K-dominant strategy. Thus, type cba must get b conditional on θ2 = bac. But in
that case, type bca of player 2 no longer has a K-dominant strategy. While type cba
influences the designer’s payoff, the designer nevertheless prefers to “ignore” that type
by implementing a mechanism that is simple for the remaining types and that makes
cba strategically confused. �

More generally, the AAT property fails in many classical social choice environments.
It is well known that the only SP mechanisms whose range contains at least three
alternatives are dictatorships; however, there are nontrivial strategy-proof social choice
functions on restricted domains. Indeed, much of the research on strategy-proof social
choice can be seen as establishing possibility results for (various) restricted domains.19

Thus, the AAT property fails. Proposition 1 then implies that in the social choice
environment, it might be beneficial to “ignore” some types and employ a social choice
rule that is SP-implementable on a smaller domain, rather than using a SP mechanism
on a larger domain. In particular, this will hold if the “problematic” types occur with
sufficiently low probability. For example, it is known that a social choice function on
profiles of single-peaked preferences over a totally ordered set is strategy-proof if and
only if it is a generalized median voter scheme. If the designer finds the outcome function
of some generalized median voter scheme more desirable than that of a dictatorship,
and the probability that the true type profile is contained in the set of single-peaked
preferences is high enough, then the generalized median voter scheme strongly dominates
the best simple mechanism on the full domain. Similar examples can be found for OSP
and SOSP.20

Note that AAT holds in any environment with a single agent. The result is
immediate: A single agent in a simple mechanism effectively chooses her most preferred
outcome from some (potentially stochastic) menu.

19We refer interested readers to Barberà (2010) for a survey on strategy-proof social choice.
20See Arribillaga et al. (2020) and Bade and Gonczarowski (2017) who characterize the class of

OSP-implementable and unanimous social choice functions for single-peaked preferences, among other
applications.
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Claim 1. The AAT property holds in any environment with N = 1.

3.2 Strong dominance with a single agent

Claim 1 in the previous subsection showed that the best simple mechanism with a single
agent cannot be strongly dominated due to failure of the AAT property. Moreover, in
the absence of any opponents, it may seem that the agent’s strategic problem is trivial.
Nevertheless, we prove that strong dominance is possible even in that case.21

Claim 2. The best simple mechanism may be strongly dominated in the case N = 1.

Clearly, the conclusion of Claim 2 is only possible when the agent is not assumed
to be Bayesian. Instead, as captured by our definition of SP, OSP, and SOSP, the agent
compares different strategies by conditioning on every realization of the randomization
device used by the designer (see also Remark 1). Here, we prove the claim for the
solution concept of SP, since the example of strong dominance is particularly easy to
construct; in Appendix A.4, we construct a more complicated example that delivers the
conclusion for all three solution concepts.

Example 4 (Proof of Claim 2 for SP). The single agent has two possible types, u and
d. Let πu and πd = 1− πu denote the respective probabilities of these two types. There
are 4 alternatives; X = {U, U ′, D, D′}. The preferences of the types are given by any
cardinal utility with the following ordinal consequences:

1. type u: U ′ > D > U > D′;

2. type d: D′ > U ′ > D > U .

The designer receives a payoff of 1 if the type is j ∈ {u, d} and the outcome is J ; she
receives 1/2 when the type is j and the outcome is J ′; in all other cases, she receives 0.

Consider the following mechanism Γ in which the designer uses a randomization
device that has two equally likely outcomes “Heads” and “Tails”, with four possible
strategies (sHu , sTu , sHd , sTd ):

21Tillio et al. (2017) study the sale of an object to an ambiguity averse buyer, and show that the
seller can increase her profit by using an ambiguous mechanism. Their analysis—unlike ours—hinges on
the assumption that the buyer is ambiguity averse.
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“Heads” “Tails”

sHu U U ′

sTu U ′ U

sHd D D′

sTd D′ D

This mechanism has a simple interpretation: The player is asked to choose between
a 50 − 50 lottery over U and U ′, and a 50 − 50 lottery over D and D′. However, the
player must additionally choose the side of the coin leading to her preferred outcome.

The mechanism Γ is not SP according to Definition 1: type u is confused between
strategies sHu and sTu , and type d is confused between strategies sHd and sTd . Put differently,
the agent is is able to recognize the inferior lottery as dominated, but she is confused
about which side of the coin to “bet on.” From the perspective of the designer, however,
that confusion is irrelevant, since the choice of the side of the coin does not affect the
marginal probabilities of outcomes: The mechanism generates an expected payoff of 3/4
for the designer regardless of how the agent resolves her confusion, and regardless of the
prior distribution of types.

It is not possible to implement the same outcome (a 50− 50 lottery over U and U ′

conditional on u, and a 50− 50 lottery over D and D′ conditional on d) with a simple
mechanism. We prove this by showing that when πd = 2/3, the best SP mechanism is to
always implement D which yields an expected payoff of only 2/3. This will also prove
Claim 2 (for the case of SP).

We only have to prove that the designer cannot do better than 2/3 with a simple
mechanism when πd = 2/3. Note that randomization cannot increase the designer’s
payoff in the best simple mechanism. Indeed, for each SP mechanism in which the
designer uses a randomization device, the designer can do weakly better by always
selecting the same outcome of the randomization device; namely the one associated
with the highest conditional expected payoff. Thus, it is without loss of generality to
restrict attention to deterministic SP mechanisms. And since there is a single agent, any
deterministic SP mechanism is equivalent to a menu of deterministic outcomes for the
agent to choose from. To get an expected payoff of more than 2/3, the designer must
offer D in the mechanism, and D must be chosen by type d (indeed, in the opposite case,
the designer’s expected payoff is upper-bounded by 1/3 + 2/3 · 1/2 = 2/3). However, in
this case, neither D′ nor U ′ can be offered, as then d would not choose D. Hence, either
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only D is offered, in which case the designer gets an expected payoff of 2/3, or D and U
are offered, in which case type u also selects D, and the expected payoff to the designer
is again 2/3. �

Summarizing the example, the only way to implement a 50 − 50 lottery over U
and U ′ conditional on u, and a 50 − 50 lottery over D and D′ conditional on d is by
creating strategic confusion (through the agent’s choice of the side of the coin to bet on).
To understand the construction of the complex mechanism, note that the dominance
relationship forms a cycle: sTu dominates sHd for type u, sHd dominates sHu for type d,
sHu dominates sTd for type u, and sTd dominates sTu for type d. However, no other pair
of strategies are comparable, and thus no undominated strategy for any type can be
dispensed with. For example, suppose that the designer uses a mechanism that only
offers strategies sHu and sHd , that is, she predetermines the side of the coin leading to each
given outcome. Then, type u will be confused, and hence she might play sHd , leading to
the lottery over D and D′ being implemented for both types.

We now prove a general result that exposes the underlying logic of the complex
mechanism in Example 4, and provides a tractable way of constructing a superior
complex mechanism. We first define the notion of ordinal incentive compatibility. Let
Θ = {θ1, θ2, . . . , θn}, and suppose that there are m alternatives, X = {x1, x2, . . . , xm}.
An ordinal incentive-compatible allocation is a mapping from preference orderings
to stochastic outcomes f : Θ → ∆X such that for any θ, θ′ ∈ Θ, f(θ) first-order
stochastically dominates f(θ′) with respect to the preference ordering θ, that is, for all
x ∈ X , ∑

y∈X :u(y,θ)≥u(x,θ)
f(θ)(y) ≥

∑
y∈X :u(y,θ)≥u(x,θ)

f(θ′)(y),

where f(θ)(y) denotes the probability of outcome y under distribution f(θ).22

Proposition 2. Let N = 1 and K = SP. If there exists an ordinal incentive-compatible
allocation that yields a strictly higher expected payoff for the designer than the best
deterministic mechanism, then the best simple mechanism is strongly dominated.23

The proof of Proposition 2 is constructive (see Appendix A.5). We show that for
any ordinal incentive-compatible allocation, there exists a perturbation of that allocation

22Even though the definition refers to the cardinal representation assumed in Section 2, note that it
only uses ordinal information about preferences.

23It is natural to conjecture that the converse might also be true, but it is not. As this is orthogonal
to the message of the paper, we do not include the counterexample in this draft.
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that can be implemented by a complex mechanism. If the optimal ordinal incentive-
compatible allocation is strictly better for the designer than the best deterministic
mechanism, then the conclusions follows from the observation that there always exists
an optimal simple mechanism that is deterministic. Note that the random allocation
implemented by the complex mechanism in Example 4 indeed satisfies ordinal incentive
compatibility.

3.3 An optimality foundation for simple mechanisms

In this subsection, we show that in a class of environments that we define below, the
best simple mechanism is not strongly dominated. The key observation (extending an
insight from Yamashita (2015a)) is that for any finite mechanism Γ (simple or complex),
min V (Γ) is weakly less than the maximum expected payoff the designer could obtain in
a mechanism that only satisfies a subset of incentive constraints that correspond to the
edges of an arbitrary tree in the type space. Thus, if the designer’s expected payoff from
the best simple mechanism is the same as that in the relaxed problem with incentive
constraints that correspond to the edges of some tree in the type space, then the best
simple mechanism is not strongly dominated.

Let G = (V,E) be a directed graph with vertex set V and edge set E ⊆ V × V . A
graph is called a (rooted) tree if it has exactly one vertex with no outgoing edges (called
the “root”) and exactly one path from every vertex to the root. For each agent i, consider
a tree Ti = (Θi, Ei) where Ei ⊆ Θi ×Θi. Each directed edge (θi, θ′i) ∈ E, also denoted
θi → θ′i, corresponds to the incentive constraint that type θi does not want to adopt the
strategy of type θ′i. For each agent i, fix a tree Ti. The collection of trees {Ti}i∈N then
defines a relaxed optimization problem in which the only incentive constraints are the
ones that correspond to the edges on the trees. Formally, the IC-relaxed problem is to
find a mechanism Γ that assigns a strategy Si(θi) to each type θi of each player i ∈ N
and maximizes the designer’s objective functions among all such mechanisms with the
property that if θi → θ′i, then Si(θ′i) ≺Kθi

Si(θi). We ignore participation constraints for
now.

Proposition 3. Suppose that there exists a collection of trees {Ti}i∈N such that the
designer’s expected payoff from the IC-relaxed optimization problem corresponding to
{Ti}i∈N is the same as from using the optimal simple mechanism. Then, the optimal
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simple mechanism is not strongly dominated.

We now explain how to incorporate participation constraints. In the IR-non-relaxed
problem, the IR constraint (1) is imposed for every type of every player. In the IR-relaxed
problem, the IR constraint (1) is only imposed for the root of each tree Ti.

Proposition 3’. Suppose that there exists a collection of trees {Ti}i∈N such that the
designer’s expected payoff from the (i) IR-relaxed and IC-relaxed or (ii) IR-non-relaxed
and IC-relaxed optimization problem corresponding to {Ti}i∈N is the same as from using
the optimal simple mechanism with participation constraints. Then, the optimal simple
mechanism is not strongly dominated by any mechanism with, respectively, (i) partial or
(ii) full incentives to participate.

Proposition 3(3’) is relatively abstract and does not offer guidance on how to look
for the “right” tree in the type space. For illustration, we apply Proposition 3’ to show
that the optimal SP mechanism is not strongly dominated in many canonical settings
in which the designer maximizes revenue. Since for any mechanism, a strategy that is
not dominated is also not (S)OSP-dominated, whenever the optimal SP mechanism can
be implemented via an (S)OSP mechanism, our analysis below implies that also the
optimal (S)OSP mechanism is not strongly dominated.

We will show that the assumption (i) of Proposition 3’ is satisfied when the
uniform shortest-path tree condition holds and the distribution π is regular, as defined
by Chen and Li (2018). Loosely speaking, these conditions ensure that, in the optimal
SP mechanism, the set of binding constraints for agent i is independent of the types of
agents other than i. To be rigorous and self contained, we formally define these terms
in the Supplemental Material OA.1. Here, we note that the uniform shortest-path tree
condition is of interest because a number of resource allocation problems satisfy it. First,
it is satisfied in environments with one-dimensional types and single crossing. This fits
many classical applications of mechanism design, including single-unit auctions (e.g.,
Myerson (1981)), public goods (e.g., Mailath and Postlewaite (1990)), and standard
bilateral trade (e.g., Myerson and Satterthwaite (1983)). The uniform shortest-path tree
condition also holds in multi-unit auctions with homogeneous or heterogeneous goods, as
long as the agents’ private values are one-dimensional. Second, the uniform shortest-path
tree condition can also be satisfied in some multi-dimensional environments, such as the
auction for capacity constrained bidders (see Malakhov and Vohra (2009)).
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By the definition of the uniform shortest-path tree, for each agent, there exists a
tree Ti such that the designer’s expected payoff from using the best SP mechanism is the
same as the IC-relaxed and IR-relaxed optimization problem corresponding to {Ti}i∈N .
Thus, Proposition 3’ applies and we obtain the following corollary.

Corollary 1. In environments in which the uniform shortest-path tree condition holds
and π is regular, the optimal SP mechanism is not strongly dominated by any mechanism
with partial incentives to participate (hence, it is also not strongly dominated by any
mechanism with full incentives to participate).

Example 1 in the Introduction shows that when the uniform shortest-path tree
condition is violated, the conclusion of Corollary 1 can also fail.

Example 5 (Example 1 revisited). Recall that the best simple (OSP) mechanism gives
the designer an expected profit of 1/5. It can be directly verified (by considering all
possible trees for both players, see Appendix A.1) that the trees that yield the lowest value
of the relaxed problem are TA = {{0, 2/3}, 0 → 2/3} and TB = {{1/3, 1}, 1 → 1/3},
that is, for trader A we only impose the IC constraint that type 0 does not want to imitate
type 2/3, and for trader B that type 1 does not want to imitate type 1/3. The value of
the IC-relaxed and IR-non-relaxed problem is 1/5. Thus, the best simple mechanism
is not strongly dominated by any mechanism with full incentives to participate, by
Proposition 3’.

However, we already know from Example 1 that the best simple mechanism is
strongly dominated by a complex mechanism with partial incentives to participate.
Indeed, the value of the IC-relaxed and IR-relaxed problem is 2/3 (under the relaxation
that yields the minimal value). This is due to the failure of the uniform shortest-path
tree condition: For trader B, even when the low type’s IR constraint holds, and the high
type’s IC constraint against deviation to the low type holds, this does not guarantee
that the high type’s IR constraint will be satisfied in the optimal mechanism for the
relaxed problem.

The superior complex mechanism from Example 1 can be understood as partially
capturing the benefits of the relaxed IR constraint of type 1 of trader B. Indeed, if
we removed the first offer to trader B from the mechanism, type 1/3’s optimal choice
would be unaffected (since accepting the first offer was obviously dominated for that
type anyway), while type 1 would no longer be confused—she would follow the same
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strategy as type 1/3. However, type 1 would lose its (partial) incentives to participate
since following 1/3’s strategy sometimes results in a strictly negative payoff. This reveals
that the reason for making the first offer to trader B in the complex mechanism is to
ensure participation. By confusing type 1 of trader B, the designer extracts more surplus
with one undominated strategy (“reject the first offer but accept the next offer”) while
dominating non-participation with a second undominated strategy (“accept the first
offer”). �

More generally, failure of the premise of Proposition 3 or 3’ indicates that a strict
improvement could be made in the problem of finding the best simple mechanism if some
IC or IR constraint were relaxed. In a simple mechanism, however, a strategy assigned
to each type must satisfy all these constraints, and hence it is not possible to achieve
that potential improvement. In a complex mechanism, by contrast, each type may be
assigned multiple (undominated) strategies and, at least in principle, no single strategy
must satisfy all the constraints. This additional flexibility of complex mechanism may
sometimes allow the designer to achieve the improvement.

4 Weak dominance

In this section, we study the concept of weak dominance. We demonstrate that weak
dominance of simple mechanisms by complex ones is a common occurrence. We first
prove a result (Proposition 4) providing conditions under which a given simple mechanism
is weakly dominated. We then show how to apply the proposition in the context of
revenue maximization; we show that in a fairly large class of problems the best simple
mechanism is weakly dominated. We also provide one positive result: Under additional
conditions, the posted price mechanism is weakly undominated for the solution concepts
of SP and OSP (but not SOSP). We provide additional applications of Proposition 4 to
efficiency maximization in bilateral trade and a social choice problem without transfers
in Supplemental Materials OA.3 and OA.4, respectively.24

24The message of this section is reinforced by additional examples of weak dominance described in
the independent work of Mukherjee et al. (2020), as discussed in Section 1.
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4.1 Sufficient condition for weak dominance

We begin by formulating an abstract result providing sufficient conditions under which a
given simple mechanism Γ is weakly dominated by a complex mechanism. Let Y ⊆ X
and define

ΘYi =
{
θi ∈ Θi : max

x∈Y
ui(x, θi) > min

S̄−i

ui(g(z(h∅, Si(θi), S̄−i)), θi)
}
.

That is, ΘYi is the set of types of agent i that strictly prefer some outcome in Y to the
worst possible outcome in the simple mechanism Γ.

Proposition 4. Fix a simple mechanism Γ. Suppose that for any agent i ∈ N , there
exists Y ⊆ X and a simple mechanism ΓY−i played by agents −i with an outcome space
Y such that

1. Each outcome x ∈ Y occurs at some terminal node in ΓY−i;

2. For any θi ∈ ΘYi 6= ∅, the designer prefers (strictly for some θi ∈ ΘYi ) the
conditional expected payoff from the mechanism ΓY−i to the conditional expected
payoff from the mechanism Γ.

Then, the mechanism Γ is weakly dominated.

The proof can be found in Appendix A.7. The idea is straightforward: Given some
initial simple mechanism Γ, agent i is offered an additional option that guarantees herself
an outcome in Y . If this option is not chosen, play proceeds as in the original mechanism
Γ. The key difference between a player and the designer when evaluating the additional
option is that the player is only assumed to avoid K-dominated strategies while the
designer is an expected-payoff maximizer. The agent will not rule out a strategy that
gives her a high enough payoff in some scenario, no matter how improbable that scenario
is. The designer can structure the set Y and the mechanism ΓY−i in a way that gives
her a high payoff on average, while guaranteeing at least one contingency with a good
outcome for player i.

When K ∈ {SP, OSP}, the above argument implies that for the conclusion of
Proposition 4 to hold we only need the assumption to be satisfied for some player i
(this claim is formalized by the proof in Appendix A.7). However, for the solution
concept of SOSP, the construction might fail because agent i evaluates the payoffs from
the original game Γ differently when she has an additional node in the modified game
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(corresponding to being offered the additional option). Hence, to cover this case, we need
the prerequisite to hold for every agent i; this allows us to add the additional option to
the node of the player who moves first in the original game Γ.

The above construction bears some high-level resemblance to ideas first considered
by Börgers and Smith (2012) and Börgers (2017) in the context of specific design
environments. Given an optimal dominant-strategy mechanism, they introduce additional
options for players in such a way that the Bayes Nash equilibria of the resulting
new mechanism provide weakly higher payoffs to the designer regardless of players’
higher-order beliefs. The intuition behind Proposition 4 is indeed similar; however,
Proposition 4 applies to different solution concepts and does not rely on fixing any
particular environment or objective function.

4.2 Revenue maximization

To show how Proposition 4 can be applied, we analyze a standard revenue-maximization
problem with quasi-linear utilities (Supplemental Materials OA.3 and OA.4 contain
additional illustrations beyond revenue-maximization and beyond settings with monetary
transfers). LetX be the space of possible allocations (which could involve randomization),
and define X = X × RN , with (y, t1, ..., tN) ∈ X interpreted as an outcome in
which allocation y is implemented, and player i pays the designer ti. We have
ui((y, t1, ..., tN), θi) = ũi(y, θi)− ti, for some arbitrary ũi(y, θi) assumed non-negative
and non-constant in θi. The designer maximizes expected revenue. We will consider two
cases. In the first case, the designer is satisfied with a mechanism that provides partial
incentives to participate; we will show that this leads to the best simple mechanism
being weakly dominated in a particularly blatant way, with revenue that is unbounded
in the best case for the designer. In the second case, the superior mechanism will provide
full incentives to participate.

Claim 3. The revenue-maximizing simple mechanism is weakly dominated by a complex
mechanism with partial incentives to participate.

The superior complex mechanism that we construct in Appendix A.8 exploits—in
a very stark way—the possibility that agents lack strategic sophistication. The designer
approaches some agent i and proposes to her the following additional bet: Agent i gets a
large amount of money M if a coin is heads but pays the designer M if the coin is tails.
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The designer biases the coin so that tails has probability 1− ε for an arbitrarily small ε.
Under our assumed solution concepts, the agent finds accepting the bet K-undominated
because she evaluates her outcomes conditional on each realization of the randomization
device: When M is sufficiently large, taking the bet dominates all other strategies
conditional on the coin being heads. If the agent refuses to take the bet, the designer is
still guaranteed the same revenue as in the original simple mechanism; and if the agent
accepts the bet, the designer’s expected revenue is unbounded.

It is known (see, for example, Ashlagi and Gonczarowski (2018) and Pycia and
Troyan (2021)) that randomization cannot increase the designer’s payoff within the class
of simple mechanisms.25 Interestingly, the above example shows that this does not imply
that the designer should never randomize when facing unsophisticated agents. On the
contrary, randomization can be used to purposefully confuse the agents in order to obtain
a superior outcome, at least in some cases.

Even if agents were assumed to be Bayesian with respect to the designer’s
randomization, the designer could still achieve an unbounded revenue in the best case of
a complex mechanism when N ≥ 2. The additional option for agent i has the same two
outcomes for i, but the choice between them is made by some other agent j who is paid
ε > 0 to choose the outcome in which agent i pays M . Accepting this modified “bet” is
K-undominated for i because agent i is not assumed to believe that agent j will never
play a dominated strategy (agents do not engage in iterative elimination of dominated
strategies).

The above weakly-dominating mechanisms may seem unlikely to “work” in practice,
in the sense that the additional strategic option offered in the complex mechanism
is clearly “unattractive” for the agent. We offer two comments: First, similarly to
how many results are interpreted in mechanism design, we view the value of these
examples as illustrating the possibility that a simple mechanism may be dominated. Our
construction is optimized for making the mathematical argument concise; there may
exist more subtle ways to weakly dominate a simple mechanism. Second, anecdotally,
sellers frequently offer seemingly unattractive options to customers hoping to exploit
their potential inability to rank these options as inferior.26 And in any case, the designer
never loses by switching to a superior complex mechanism, so she may prefer the complex

25For SP mechanisms, this is a consequence of our Definition 1, see Remark 1.
26See, for example, Chernev et al. (2015) for a survey of results on choice overload.

31



mechanism even if she thinks that the agent is unlikely to choose the additional option.
A different criticism of the above complex mechanisms is that the agent will

sometimes walk away with a negative payoff. We thus turn attention to the case when
the complex mechanism is required to provide full incentives to participate. To simplify
exposition, we consider the classical problem of allocating a single object to one of N
ex-ante identical bidders.27

Claim 4. Suppose that N ≥ 2, and let ū be the highest possible valuation for the object.
If it is not a revenue-maximizing simple mechanism to sequentially offer the object at a
price of ū to all the players, then the best simple mechanism is weakly dominated by a
complex mechanism with full incentives to participate.

The proof (see Appendix A.9) is based on Proposition 4 and resembles the
mechanism we described previously for the case N ≥ 2. The main difference is that the
additional option is carefully constructed so that it always yields a non-negative payoff
to the types that may choose it.

The assumption of Claim 4 cannot be completely relaxed. For a simple example,
note that if all players have a value of ū for the object with probability one, then
sequentially offering the object at a price of ū to all the players is an optimal simple
mechanism that is not weakly dominated under full incentives to participate (for it to be
dominated, there would have to exist an on-path history in which some player is charged
more than ū but that would be incompatible with full incentives to participate). Next,
we prove a general positive result for the case of N = 1.

Claim 5. Suppose that the designer sells a single indivisible object to a single agent,
attempting to maximize revenue. Assume that there exists a unique optimal simple
mechanism (in which case it must be outcome-equivalent to a posted price mechanism).
Then, for K = SP and K = OSP, that mechanism is not weakly dominated by any
complex mechanism with full incentives to participate.

We emphasize that not being weakly dominated is a particularly strong optimality
foundation; it implies that any complex mechanism that sometimes leads to a higher
payoff for the designer must necessarily be strictly worse in some other case.

27Note that the ascending clock auction with jump-bidding in Example 2 in the introduction provides
full incentives to participate under OSP. This is because if type v ≥ b makes a jump bid to b at price
p < b (jump-bidding is dominated for all other types), then she gets a non-negative payoff after every
possible history. Obviously, her payoff is also non-negative if she does not jump-bid.
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The proof of Claim 5 is relatively involved (see Appendix A.10). Both assumptions
of Claim 5—that the optimal simple mechanism is unique (which holds generically) and
that the solution concept is SP or OSP—are needed. In the Supplemental Material OA.2,
we construct an example in which the optimal simple mechanism is not unique and we
show that it is weakly dominated. Here, we show that the posted price mechanism is
weakly dominated under SOSP, except in degenerate cases.

Let p? be the revenue-maximizing price under π in the optimal SOSP mechanism.
Suppose that p? is not equal to the highest possible type under π. Then, a one-person
descending clock auction with a minimum price p? weakly dominates the posted price
mechanism while providing full incentives to participate. This design is formally a
sequential posted price mechanism in which the designer starts from a price equal to the
highest type and drops the price by some sufficiently small ε in every round, with the last
price equal to p?. In each round, the agent accepts or rejects an offer; rejecting the final
offer p? leads to no trade. All types θ < p? have an SOSP-dominant strategy to never
buy (this strategy gives a non-negative payoff). For types θ ≥ p?, it is SOSP-dominant
to reject any price weakly above θ, and SOSP-undominated to buy at any price strictly
below θ (again, in all cases, the payoff is non-negative). What makes that last choice
undominated for the agent is that when she compares buying at a high price p ∈ (p?, θ)
to rejecting p and waiting for a lower offer, she considers the worst-case scenario over her
own future moves under SOSP; the worst case is that she will reject all offers and end
up without the good, which is strictly worse than buying at p. The designer can only
be better off, since trade prices are weakly above p?; she is strictly better off whenever
the highest type decides to buy at a price strictly between p? and her value. Thus, the
posted price mechanism is weakly dominated.

5 Conclusion

In mechanism design, it seems useful to distinguish (simple) mechanisms in which agents
face a straightforward choice problem from (complex) mechanisms that require agents
to engage in complex mental tasks to determine their optimal strategy. The literature
has made a great deal of progress in terms of formulating different notions of simplicity
and characterizing mechanisms that are simple according to these notions. However, the
understanding of the design of mechanisms with unsophisticated agents, as we argued
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in this paper, is far from complete. Indeed, in many cases, the designer might prefer
mechanisms that are not simple, even under the assumption that agents choose strategies
that are the worst possible for the designer whenever they are confused.

We suggest some directions for further research. An important avenue is the
optimal design of mechanisms when agents are strategically unsophisticated. Our
analysis indicates that the optimal design of mechanisms with unsophisticated agents
could be challenging: One should not simply optimize over the class of simple mechanisms,
at least not without first establishing their optimality. Searching over all mechanisms
present new challenges, as the designer cannot rely on any standard revelation principle
when mechanisms are evaluated by their worst-case performance.

Relatedly, while we focused primarily on negative results throughout the paper,
we expect that establishing optimality foundations for simple mechanisms—not being
weakly or strongly dominated—might be a particularly promising research direction.
This is because such a foundation can often be found by first solving an easier relaxed
problem, and then showing that the upper bound is achieved by a simple mechanism.

While we only considered the strategic dimension and worked with SP, OSP, and
SOSP mechanisms in the private-value setting, the same exercise could be done for other
notions of simplicity along the strategic dimension (such as the notion of “strategically
simple mechanisms” defined by Börgers and Li (2019)), other dimensions of simplicity
such as computational complexity, and interdependent-value settings.28

Finally, it would be interesting to conduct experimental tests of the best simple
mechanism against the complex mechanism that dominates it, such as the ascending-clock
auction and the ascending-clock auction with jump bidding. Real-life settings would
allow for factors not accounted for in our theoretical analysis, such as, for example, the
possibility that agents would refuse to participate in mechanisms requiring complicated
mental calculations. These findings could then be used to support or invalidate the
superiority of complex mechanisms.

28In the interdependent-value setting, Jehiel et al. (2006) and Yamashita and Zhu (2020) consider
a designer who does not have realizable information about the agents’ beliefs, while the agents are
still assumed to play a Bayesian equilibrium. While the focus of these papers differs from ours, we
note that Example 5.1 in Jehiel et al. (2006) and the analysis in Yamashita and Zhu (2020) could be
used to show that the designer might prefer a mechanism that is not ex post incentive compatible to
the optimal ex post incentive-compatible mechanism in the interdependent-value setting, under the
assumption that agents do not play weakly dominated strategies. Yamashita (2015a) shows that for
revenue maximization in an interdependent-value auction, under certain conditions, a version of a
second-price auction (which is neither dominant-strategy nor ex post incentive compatible) is optimal
for implementation in weakly undominated strategies.
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A Appendix

A.1 The optimal OSP mechanism for Example 1

We derive the optimal OSP mechanism in Example 1. It follows from Theorem 3.1 of Bade
and Gonczarowski (2017) that it is without loss of optimality for OSP implementation
to look at gradual revelation mechanisms (see Ashlagi and Gonczarowski (2018), Pycia
and Troyan (2021) and Mackenzie (2019) for related revelation principles for OSP
mechanisms). In our simple example with two players and two types, this means that
we can assume that in the best OSP mechanism, at the first decision node, one of
the players (“leader”) makes a binary decision (with the two types choosing different
actions—potentially leading to the same outcome—as part of their obviously dominant
strategies), and then in each of the two possible histories, having observed the choice of
the leader, the other player (“follower”) makes a binary decision.

Therefore, an upper bound on the profit in the optimal OSP mechanism can be
derived in the following way. When the follower chooses her optimal action, she already
knows the action chosen by the leader. OSP requires that for any choice of the leader,
each type of the follower must weakly prefer her equilibrium strategy (action) to choosing
the alternative action. Thus, each type of the follower must have a standard dominant
strategy in the normal-form representation of the game. In contrast, when the leader
chooses her action at the initial decision node, it must be that the worst possible payoff
from choosing her equilibrium action (over the two possible actions that can be selected
by the follower in the subgame) is weakly higher than the best possible payoff from
choosing the alternative action. In the normal-form representation of the game, this can
be captured by requiring that the payoff from the equilibrium strategy of each type of
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the leader under any choice of the strategy Sf for the follower is weakly higher than
the payoff from following the alternative strategy under any choice of the strategy S ′f
(where, importantly, Sf could be different from S ′f ).

Summarizing, an upper bound can be derived by using a normal-form game with
the usual strategy-proof constraints, except that for the leader the constraints are
strengthened in the way described above. Crucially, all these constraints are linear in
the allocation and transfers, and so is the objective function of the designer (intuitively,
we avoid taking the min and max in the definition of obvious dominance by iterating
over all possible pairs of strategies (Sf , S ′f) for the follower when comparing the two
strategies of the leader). Thus, we obtain a linear program that can be numerically
solved using a standard linear programming solver, yielding an upper bound of 1/5. This
upper bound is achieved by the OSP mechanism described in the example, proving its
optimality.

A.2 Proof of Proposition 1

Fix a solution concept K. If the AAT property fails in some implementation environment,
then there exists a type θi of agent i and an outcome function λ ∈ Λ(Θ \ {θi}) such
that for all λ̄ ∈ Λ(Θ), λ̄|Θ\{θi} 6= λ. We can assume without loss of generality that
there exists such λ that is deterministic for any θ, since if the AAT property holds for
all deterministic outcome functions, then it also must hold for all stochastic outcome
functions. Define an objective function v of the designer by

v(x, θ) = 1{x=λ(θ), θ∈Θ\{θi}}.

Clearly, the best simple mechanism on the type space Θ \ {θi} yields an expected payoff
of 1 to the designer.

Fix an arbitrary full-support distribution of types π. With the objective function
v on Θ, the best simple mechanism on the type space Θ must yield an optimal payoff
strictly lower than 1− p, where p is the unconditional probability of type θi under π,
since it is not possible, by assumption, to implement the outcome function λ on Θ \ {θi}.
We denote the optimal payoff by b < 1− p.

We will show that there exists a complex mechanism that generates a strictly
higher expected payoff on Θ than b, regardless of how agents behave when they are
confused. Let Γ be a mechanism that implements the outcome function λ on Θ \ {θi}.
Consider the same mechanism Γ on Θ. By assumption, Γ is not simple on Θ because
type θi is strategically confused. But because it is simple on Θ\{θi}, all types in Θ\{θi}
still play the same (K-dominant) strategy. Therefore, no matter how type θi behaves,

38



the designer gets an expected payoff of at least 1− p times 1, which is strictly higher
than b, thereby strongly dominating the optimal simple mechanism.

Now suppose that the AAT property fails in some design environment. Then, there
exists some distribution π′ supported on Θ \ {θi} such that the best simple mechanism Γ
on Θ \ {θi} gives an expected payoff b to the designer, while the best simple mechanism
on Θ (that is, with incentive constrains also imposed for type θi) gives some smaller
expected payoff b′ < b. Specify π on Θ to coincide with π′ conditional on θi not realizing,
and let θi have prior probability ε > 0 under π (it does not matter for our argument how
the types of remaining players are distributed conditional on θi). Then, the best simple
mechanism under π can yield a payoff of at most (1 − ε)b′ + εv̄, where v̄ is an upper
bound on the designer’s payoff when player i has type θi. If the designer instead uses
the same mechanism Γ that yields b on Θ \ {θi}, then her expected payoff is at least
(1− ε)b+ εv, where v is a lower bound on the designer’s payoff when player i has type
θi. Thus, when ε is small enough, Γ (complex on Θ) strongly dominates the best simple
mechanism on Θ.

A.3 Proof of Claim 1

We will explicitly construct a K-dominant strategy for the additional type θ (we drop
the subscript, since there is only one player) taking as given any simple mechanism Γ
on Θ \ {θ}. Under our definitions of all three solution concepts, it is immediate (see
Ashlagi and Gonczarowski (2018) and Pycia and Troyan (2021) for formal arguments)
that we can obtain a mechanism Γ′ that implements the same outcome function as Γ by
letting Nature move only once in the first node of the extensive form game. Moreover,
the move by Nature is observed, and the agent has a single decision node at which she
effectively selects an outcome x from some menu of choicesM⊂ X , where the menuM
may depend on Nature’s choice. For any realized menuM, specify that type θ chooses
her most preferred outcome from that menu. Clearly, this strategy is K-dominant for
type θ. At the same time, all remaining types preserve their K-dominant strategies since
the extensive-form game Γ′ has not been modified.

A.4 Proof of Claim 2

We explicitly construct an example in which the best simple mechanism is strongly
dominated for all K ∈ {SP, OSP, SOSP}. There is one player with three equally-likely
types, Θ = {u, m, d}, X = {U, U ′, M, M ′, D, D′}, with the following preferences:

1. type u: M > U > D′ > D > M ′ > U ′;
2. type m: D > M > U ′ > U > D′ > M ′;
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3. type d: U > D > M ′ > M > U ′ > D′.

The designer gets a utility of 1 if the type is j ∈ {u, m, d} and she implements outcome
J or J ′; she gets −1 otherwise.

Lemma 1. The best simple mechanism is to implement any fixed (possibly random)
outcome; the expected payoff for the designer is −1/3.

It suffices to argue that this is true with SP as the solution concept. Recall that
it is without loss of optimality for the designer to consider deterministic mechanisms
when optimizing in the class of simple mechanisms. A deterministic SP mechanism for
a single agent can be represented as a direct assignment of alternatives to types such
that no type strictly prefers another type’s assignment to her own. Suppose that there
exists such an assignment that gives the designer an expected payoff strictly above −1/3.
Then, at least two types j ∈ {u, m, d} must be assigned either J or J ′. If any type j is
assigned J ′, then no other alternative can be offered by the mechanism since j ranks
J ′ last. Thus, the mechanism must offer J to two distinct types j. However, that’s a
contradiction because at least one of these types would prefer the allocation of the other
one, no matter which two types j ∈ {u, m, d} we choose.

To finish the proof, we construct a superior complex mechanism Γ.

Lemma 2. There exists a complex mechanism Γ that guarantees the designer an expected
payoff of 0.

In the mechanism Γ, the designer uses a randomization device that has equally
likely outcomes H and T , and offers three possible strategies to the agent, as represented
by the following normal form:

H T

SU U D′

SM M U ′

SD D M ′

For any solution concept K ∈ {SP, OSP, SOSP}, type j ∈ {u, m, d} is confused
between the two strategies offering J and J ′, respectively, with the former one (denoted
SJ) leading to the 2nd or 3rd alternative, and the latter to the 1st or 6th alternative.
However, the remaining strategy is K-dominated for j by the strategy SJ as it leads to
the 4th or 5th alternative. Regardless of how j resolves her strategic confusion, either J
or J ′ is implemented with probability 1/2, and thus the designer obtains 0 in expectation.
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A.5 Proof of Proposition 2

We first show that if f is an ordinal incentive-compatible allocation where the coefficients
f(θi)(xj) for all i and j are rational numbers, then f can be implemented via a complex
mechanism. When all the coefficients are rational numbers, there exists some integer N̄
such that f(θi)(xj) · N̄ is an integer for all i and j. We explicitly construct a mechanism
that involves a randomization device with N̄ outcomes, all with equal probability of 1/N̄ .
For each θ ∈ Θ, let Sθ be the set of all possible mappings d : {1, 2, . . . , N̄} → X with
the property that |k : d(k) = xj| = f(θ)(xj) · N̄ for all j (the choice of N̄ guarantees
that there are exactly N ! such mappings for each θ). The mechanism is static: The
agent chooses one of the mappings from one of {Sθ}θ∈Θ, and then the realization of
the randomization device determines the final outcome. Since f is ordinal incentive-
compatible, for any s′ /∈ Sθ, by construction, there exists a strategy s ∈ Sθ such that
either (i) s and s′ are duplicate strategies or (ii) s SP-dominates s′ for θ. Therefore,
regardless of how type θ resolves her uncertainty, she chooses a strategy from Sθ, and
hence the outcome implemented conditional on θ has the distribution f(θ). Therefore,
this complex mechanism implements f .

Now suppose that there exists an ordinal incentive-compatible allocation that
yields a strictly higher expected payoff for the designer than the best deterministic
mechanism. Since the designer is an expected utility maximizer, there exists an ordinal
incentive-compatible allocation where all the coefficients are rational numbers that yields
a strictly higher expected payoff for the designer than the best deterministic mechanism.
This, coupled with the arguments in the previous paragraph and the observation that
there always exists an optimal simple mechanism that is deterministic, establishes the
desired result.

A.6 Proof of Proposition 3 and 3’

We prove Proposition 3 first, and then explain how to modify the steps to obtain
Proposition 3’. We start with a lemma that builds on the insight in Yamashita (2015a,
Theorem 1), and can be viewed as its generalization to a larger class of environments
and the solution concepts of OSP and SOSP.

Lemma 3. For any mechanism Γ, min V (Γ) is upper-bounded by the value of the IC-
relaxed problem corresponding to any fixed collection of trees {Ti}i∈N (as defined in
Section 3.3).

Proof. Fix an arbitrary finite mechanism Γ, an agent i, and a tree Ti. Let T+
i (θi) =

{θ′i : θ′i → θi} be the set of types who point towards type θi in the tree Ti. Consider the
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following procedure. Starting at the root of the tree Ti—which is some type θ0
i with no

edges coming out of it—select any K-undominated strategy for θ0
i , S0

i ∈ UK
i (θ0

i ). Next,
for any type θ′i ∈ T+

i (θ0
i ), we can find an undominated strategy S ′i ∈ UK

i (θ′i) that either
K-dominates S0

i or is equal to S0
i (this step uses finiteness of the mechanism; if S0

i is
not in UK

i (θ′i), then there must exist a strategy in UK
i (θ′i) that K-dominates it). We

proceed inductively. Once some type θi is assigned a strategy, we assign undominated
strategies to all types T+

i (θi) that either equal or K-dominate the strategy assigned to
θi. Because Ti is a finite tree, this procedure must stop at some point, with every type
being assigned a strategy. The same procedure is carried out for all other agents.

Because each type is assigned a strategy from UK
i (·) in the procedure, when all

types execute their assigned strategies, the expected payoff v̄ to the designer must weakly
exceed min V (Γ) (which is the outcome of the designer-adversarial selection from UK

i (·)).
Moreover, the procedure guarantees that the mechanism—along with the assignment
of strategies—is feasible for the IC-relaxed problem corresponding to the collection of
trees {Ti}i∈N . Therefore, v̄, and hence also min V (Γ), is weakly below the value of the
IC-relaxed problem.

Proposition 3 follows immediately: By assumption, there exists a collection of trees
{Ti}i∈N such that the value of the IC-relaxed problem corresponding to {Ti}i∈N is the
same as the designer’s expected payoff from the optimal simple mechanism. Hence, by
applying Lemma 3 for the collection {Ti}i∈N , we conclude that there cannot exist a
mechanism Γ with min V (Γ) strictly above the expected payoff of the optimal simple
mechanism, and hence the optimal simple mechanism is not strongly dominated.

We now explain how to incorporate participation constraints in the above procedure
to obtain Proposition 3’. Suppose that the superior complex mechanism is required
to provide partial incentives to participate. In that case, in the proof of Lemma 3, we
can select an undominated strategy for type θ0

i—the root of the tree Ti—that satisfies
the IR constraint (1) (such a strategy exits by the definition of partial incentives to
participate). Thus, we can obtain a version of Lemma 3 that assumes that Γ provides
partial incentives to participate and concludes that min V (Γ) is upper-bounded by the
value of the IC-relaxed and IR-relaxed problem. If the superior complex mechanism is
required to provide full incentives to participate, then we know that all undominated
strategies must satisfy (1). Thus, we can obtain a version of Lemma 3 which assumes that
Γ provides full incentives to participate and concludes that min V (Γ) is upper-bounded
by the value of the IC-relaxed and IR-non-relaxed problem.
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A.7 Proof of Proposition 4

For each solution concept K ∈ {SP, OSP, SOSP}, we show that the simple mechanism
is weakly dominated by explicitly constructing a complex mechanism that dominates it.
The mechanism we construct can be interpreted as a delegation mechanism in which
one agent is delegated to choose a simple mechanism (for the agents to play) from a
menu of two simple mechanisms specified by the designer.29 We present the proof for
each solution concept separately.

SP: Fix a player i. We add a new node for player i from which play begins. Player
i chooses from two options: “Choose Γ” or “Choose ΓY−i.” If she chooses Γ, the game
tree is the one associated with Γ. If she chooses ΓY−i, the game tree is the one associated
with the game ΓY−i. We call this new composite game Γ′.

First, we claim that all players other than i have a dominant strategy in Γ′. This
is immediate from the fact that each player −i has a dominant strategy in Γ and a
dominant strategy in ΓY−i. Second, all types of player i not in ΘYi also have a dominant
strategy which is to choose Γ, and then follow the same strategy Si(θi) that was dominant
for Γ. This is immediate from the fact that for these types, the best that can happen
after choosing ΓY−i cannot be better than the worst possible outcome in Γ when they
follow Si(θi). Third, we claim that for all types θi ∈ ΘYi , the option to choose ΓY−i is
SP-undominated. Indeed, fix the strategy profile S̄−i that yields the minimum in the
definition of ΘYi , and—using condition 1 in the proposition—let S̄Y−i be the profile that
leads to the outcome x? ∈ argmaxx∈Yui(x, θi) in the game ΓY−i. Then, if players −i
follow the strategy (S̄−i, S̄Y−i) in Γ′, by definition of ΘYi , the best response for type θi is
to choose the game ΓY−i at the first decision node.

Overall, it is an undominated strategy for types θi ∈ ΘYi to choose the game ΓY−i,
and when they do, play among players −i in that subgame proceeds as in the original
game ΓY−i. By condition 2 in the proposition, the designer receives a higher (sometimes
strictly) conditional expected payoff in that case, compared to the conditional expected
payoff she would have received in the game Γ. Therefore, the game Γ is weakly dominated
by Γ′.

OSP: The game Γ′ is defined just as in the SP case. It suffices to prove that the three
claims made in the second paragraph for the case of SP dominance continue to hold for
OSP dominance. The first claim extends trivially. As for the second claim, θi /∈ ΘYi is
equivalent to saying that choosing the game ΓY−i is obviously dominated by the strategy

29These complex mechanisms are “type 1 strategically simple” according to the notion in Börgers
and Li (2019).
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“choose Γ” and then play according to Si(θi), since the unique point of departure for
these two strategies is the first node for player i. Finally, the last claim follows from the
fact that if a strategy is not SP-dominated for a type, then it is also not OSP-dominated.

SOSP: For this case, we modify the construction of the game Γ′. Pycia and Troyan
(2021) prove that it is without loss of generality for the designer to choose a game
form in which each player only moves once in every history, in the sense that for any
SOSP mechanism, there exists a payoff equivalent SOSP mechanism (for all players
and the designer) with that property. Thus, we can replace both Γ and ΓY−i with their
payoff-equivalent versions in which each player moves at most once in every history.
Moreover, Pycia and Troyan (2021) show that, without loss of generality, Nature’s moves
take place at the beginning of each history, if at all.

Let i be the player that moves first in the game Γ (if Nature moves first, i can
depend on Nature’s choice, and we apply the argument case-by-case, for every realization
of Nature’s choice). For that player, add a new potential action from the initial node
which is to choose the game ΓY−i. If that action is taken by player i, play proceeds to the
game tree ΓY−i. This defines a new game Γ′.

Note that in Γ′ all players still move at most once in every history; player i has no
moves in the game ΓY−i, while players −i either play the game Γ (in which they have at
most one move) or the game ΓY−i (in which they have at most one move). Therefore, all
the conclusions from the OSP case exceed to this case (since OSP and SOSP coincide if
a player only moves once).

A.8 Proof of Claim 3

We first consider the construction for the case N = 2 without relying on randomization.
We then cover the case N = 1.

Fix a simple mechanism Γ, with some expected revenue R. Suppose that N ≥ 2.
For any i, define Y ⊂ X to contain two outcomes: (1) Player i pays M to the designer
while some player j receives ε > 0 from the designer, and (2) Player i receives M from
the designer while player j receives 0 from the designer. The mechanism ΓY−i is defined
as having just one information node for player j who chooses between the two options in
Y. This satisfies condition 1 of Proposition 4. Moreover, the mechanism ΓY−i is simple
because player j has a K-dominant strategy to select option (1)—player i pays M to
the designer while player j receives ε > 0 from the designer. When M is large enough,
ΘYi = Θi, and when additionally ε is small enough, condition 2 of Proposition 4 holds,
since the conditional expected payoff from the mechanism ΓY−i is unbounded in M . Thus,
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by Proposition 4, the simple mechanism Γ is weakly dominated. It remains to check that
the weakly-dominating complex mechanism provides partial incentives to participate.
This is immediate from the proof of Proposition 4 that explicitly constructs the weakly-
dominating complex mechanism Γ′: Intuitively, in Γ′, player i chooses between the games
Γ and ΓY−i; thus, since each type of player i had a K-dominant strategy satisfying (1) in
Γ, each type continues to have at least one K-undominated strategy satisfying (1) inΓ′.

Consider the case N = 1. Let Y ⊂ X contain two outcomes: (1) Player i pays
M to the designer, and (2) Player i receives M from the designer. The mechanism
ΓY−i is defined as having just one information node for Nature that chooses option (1)
with probability 1 − ε and option (2) with probability ε. For ε sufficiently small, by
Proposition 4 and the same arguments as before, the mechanism Γ is weakly dominated.
(Of course, this construction could also be used for general N .)

A.9 Proof of Claim 4

Fix Γ that is a revenue-maximizing simple mechanism. Because of symmetry, we can
assume without loss of optimality for the designer that Γ is symmetric as well, so we only
have to check the assumptions of Proposition 4 for some player i. Define Y to contain
two options: (1) Player i wins the object and pays ū while some player j receives ε > 0,
and (2) Player i wins the object and pays ū− δ while player j receives 0. In the game
ΓY−i, player j selects one option from Y . ΓY−i is thus simple, with player j always selecting
option (1). Take δ > 0 small enough so that Θi ∩ (ū− δ, ū) = ∅ (using finiteness of the
type space). Then, we have ΘYi = {ū}, because for all other types the payoff from Y is
strictly negative (while the original strategy in Γ guarantees a non-negative payoff).30

Moreover, type ū always gets a non-negative payoff in ΓY−i so she has a full incentive to
participate. Condition 1 of Proposition 4 holds, while condition 2 is satisfied as long as
the mechanism Γ extracts less than ū from type ū of player i. Thus, by Proposition 4, Γ
is weakly dominated as long as it is not a mechanism that offers a price ū to player i.
By symmetry, the only case not covered by the argument is when Γ is payoff-equivalent
to a mechanism that offers a price ū to all players in random order. However, such a
mechanism is suboptimal by assumption.

A.10 Proof of Claim 5

By assumption, the unique optimal simple mechanism is outcome-equivalent to offering
some price p?; let v̄ denote the corresponding optimal expected revenue. Note that, by

30ū ∈ ΘYi as long as there is positive probability that she does not receive the object in Γ—that is
guaranteed by the assumption that the players and Γ are symmetric.
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optimality, there must exist a type θ = p? in Θ.
Towards a contradiction, suppose that there exists a weakly dominating complex

mechanism Γ. By definition, min V (Γ) ≥ v̄; we will first show that min V (Γ) = v̄. We
claim that there exists a selection from the set of K-undominated strategies UK

i (·) in
Γ such that (i) if every type plays the assigned strategy, the expected revenue for the
designer is equal to at least min V (Γ), and (ii) local downward incentive constraints hold,
that is, the strategy assigned to type θi K-dominates (for θi) the strategy assigned to the
highest type lower than θi. This follows from Lemma 3 in Appendix A.6 that establishes
a more general result. Moreover, it is well known that for revenue maximization with a
single player under SP and OSP, only local downward incentive constraints bind in the
optimal mechanism; hence, the expected revenue under the selection of undominated
strategies described above is upper-bounded by v̄. Since v̄ ≤ min V (Γ), we conclude that
min V (Γ) = v̄ and there exists a selection from the set of undominated strategies which
satisfies local downward incentive constraints and yields an expected revenue of v̄.

By the assumption that the optimal simple mechanism is unique, the only way to
generate the expected revenue of v̄ while satisfying local downward incentive constraints
is for all types weakly above p? to buy for sure at the expected price of p?. By the full
incentive to participate, type p? must have a strategy under which she buys for sure at a
price of p? in every history. In particular, Γ must offer such a strategy. Moreover, again
by the full incentive to participate, this strategy must be K-dominant for type p?.

By the assumption that Γ weakly dominates the simple mechanism, there must
exist a strategy S1 that is K-undominated for some type θ, and a strategy for Nature S0

such that the agent pays q > p? in the outcome g(z(h∅, S0, S1)). Because the strategy
“buy for sure at a price of p?” is available, for S1 to be K-undominated, it must sometimes
(for some strategy of Nature) generate an outcome “buy with probability x at a price of r”
that is strictly preferred by θ to the outcome “buy for sure at a price of p?.” At the same
time, type p? cannot derive positive utility from the outcome “buy with probability x at
a price of r” as otherwise the strategy S1 would be undominated for type p?, violating
the full incentive to participate (since S1 sometimes leads to the agent paying q > p?).
Moreover, note that θ > p?, by the full incentive to participate. We are ready to obtain
a contradiction: By the above reasoning, we have θx− r > θ− p? and p?x− r ≤ 0. This
implies

θ − p? < θx− r ≤ θx− p?x = x(θ − p?) ≤ θ − p?,

a contradiction.
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Supplemental Material

OA.1 Supplemental Material for Subsection 3.3

In this appendix, we give a formal definition of the uniform shortest-path tree condition.
We work in a quasi-linear setting as defined in Subsection 4.2, with X being the set of
all (possibly random) physical allocations, and X = X × RN . We say that a decision
rule g : Θ→ X is strategy-proof if there exists a transfer scheme t = (t1, ..., tN) such
that (g, t) is an SP mechanism (treated as a direct mechanism). The following standard
lemma is due to Rochet (1987).

Lemma 4. A necessary and sufficient condition for a decision rule g to be strategy-proof
is the following cyclical monotonicity condition: ∀i ∈ N , ∀θ−i ∈ Θ−i, and for every
sequence of types (θi,1, θi,2, . . . , θi,m) with θi,m = θi,1, we have

m−1∑
n=1

[
ui(g(θi,n, θ−i), θi,n+1)− ui(g(θi,n, θ−i), θi,n)

]
≤ 0. (OA.2)

We first collect some graph-theoretic terminology in Definition 10. Instead of
imposing an IR constraint (1) for the root of each tree, we introduce a “dummy” type θ0

(which will be the new root) that corresponds to not participating in the mechanism.

Definition 10. Fix a strategy-proof decision rule g, agent i ∈ N , and θ−i.

(1) The set of nodes is Θi ∪ {θ0};
(2) For any θi ∈ Θi and θ′i ∈

{
Θi \ {θi}

}
∪ {θ0}, θi → θ′i is a directed edge with length

ui(g(θi, θ−i), θi)− ui(g(θ′i, θ−i), θi);

(3) A path from the dummy type θ0 to θi,m ∈ Θi is a sequence of nodes P =
(θ0, θi,1, θi,2, . . . , θi,m) where (i) θi,j ∈ Θi, ∀j = 1, 2, . . . ,m; and (ii) j 6= j′ =⇒
θi,j 6= θi,j′.

Definition 11. Fix a strategy-proof decision rule g, agent i ∈ N , and θ−i. A shortest-
path tree is the union of shortest paths from the root to all nodes such that if θ′i belongs
to the shortest path from the root θ0 to some θi ∈ Θi, then the truncation of the path
from θ0 to θ′i defines the shortest path from θ0 to θ′i.
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Definition 12. We say that the uniform shortest-path tree condition holds if, for each
agent i ∈ N , there is the same shortest-path tree for all strategy-proof decision rules g
and other agents’ reports θ−i.

When the uniform shortest-path tree condition is satisfied, we can drop the
dependence of the shortest-path tree on g and θ−i. Let Es denote the collection of the
directed edges in the uniform shortest-path tree.

Suppose that the uniform shortest-path tree condition holds. In the optimal SP
mechanism design problem, it suffices to consider constraints that correspond to the edges
on the uniform shortest-path tree, subject to the decision rule g satisfying the cyclical
monotonicity constraint (OA.2). As is standard in the mechanism design literature, we
first consider the following relaxed problem, in which we ignore the cyclical monotonicity
constraint. A regularity condition on π is then imposed to ensure that some optimal
decision rule g∗ that solves the relaxed maximization problem automatically satisfies the
cyclical monotonicity constraint.

max
g(·)∈X, ti(·)

∑
θ∈Θ

π(θ)
∑
i∈N

ti(θ) (SP-relaxed)

subject to ∀i ∈ N , ∀(θi, θ′i) ∈ Es, ∀θ−i ∈ Θ−i,

ui(g(θi, θ−i), θi)− ti(θi, θ−i) ≥ ui(g(θ′i, θ−i), θi)− ti(θ′i, θ−i).

Definition 13. We say that π is regular if the cyclical monotonicity constraint (OA.2) is
automatically satisfied for some g∗ that solves the optimization problem (SP-relaxed).31

OA.2 Supplemental Material for Subsection 4.2

In this appendix, we show that the uniqueness assumption in Claim 5 is needed. We
construct an example in which the optimal SP and OSP mechanisms are not unique,
and they are weakly dominated.

The agent has value 1 or 2, with equal probabilities. The optimal SP and OSP
mechanisms generate an expected revenue of 1 (which can be obtained by charging a
price of 1, or a price of 2). The weakly dominating mechanism features Nature that
plays H with some small probability ε > 0, and T otherwise. The mechanism offers
three strategies to the agent, where the first number in every cell is the probability of
trade, and the second number is the payment to the designer.

31To the best of our knowledge, there is no formal definition of regularity in general environments.
Our definition of regularity captures how it has been used in the literature; see, for example, Myerson
(1981) and Chung and Ely (2007). See Chen and Li (2018) for the primitive condition for the regularity
condition in a variety of settings.
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H T

S1 (1, 3/2) (1, 3/2)
S2 (1, 1) (1, 2)
S3 (1/2, 1/2) (1/2, 1/2)

For type 2, S1 and S2 are undominated (playing S3 can be ruled out under the
assumption that the designer can choose between strategies that are payoff equivalent,
in this case S1 and S3). Type 1 has a dominant strategy S3. Thus, Γ provides full
incentives to participate. In the worst case, type 2 plays S1, and the designer obtains an
expected revenue of 1. In the best case, type 2 plays S2, and the designer obtains an
expected revenue of 1/2 + 1/2 · (2− ε) which can be arbitrarily close to 3/2.

OA.3 Efficiency in bilateral trade

In this appendix, we consider the classical problem of designing an efficient mechanism
that allows a seller of an indivisible object to trade with one potential buyer. Both
agents have quasi-linear preferences and private information about their values (which
are drawn from a non-degenerate distribution). It is known from Hagerty and Rogerson
(1987) that the only SP mechanisms (and hence also OSP and SOSP mechanisms) that
satisfy ex-post budget balance and individual rationality are outcome-equivalent to
posted price mechanisms. In a posted price mechanism, the designer chooses a (possibly
random) price, without taking into account any of the agents’ private information. Trade
comes about only when both agents agree to trade at that price.

Claim 6. The best simple mechanism in the bilateral trade model is weakly dominated
by a complex mechanism (that is ex-post budget-balanced and provides full incentives to
participate).32

Proof. We will verify the assumptions of Proposition 4 with i being the seller (an
analogous argument works for the buyer). Fixing Γ, let p be the posted price.33 Let the
set Y contain two options: (1) No trade and (2) Trade at price p − ε for some ε > 0.
The mechanism ΓY−i consists in the buyer choosing one option from Y. Clearly, that
mechanism is simple for the buyer. Condition 1 in Proposition 4 is trivially satisfied.
ΘYi contains all types of the seller strictly below p− ε. Finally, the second condition in
Proposition 4 is satisfied as long as the buyer chooses option (2) with positive probability
which is when her type is above p− ε. Hence, as long as the type spaces for the buyer

32Börgers and Smith (2012) show this result for the solution concept of SP.
33If that price is random, then we fix p to be the realization that yields the highest conditional

expected payoff for the designer—this can only increase the expected surplus in the mechanism Γ.
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and the seller are not degenerate, we can find ε for which the simple mechanism Γ is
weakly dominated.

The superior complex mechanism (that we formally construct based on Proposition
4) can be viewed as a “price cap mechanism.” The designer sets a price cap of p but
gives the seller an additional strategic option to lower the price to some p′ < p. This
leads to strategic confusion of seller types below p′; indeed, these types may benefit from
lowering the price when the buyer’s value turns out to lie between p′ and p. At the same
time, no matter how these types behave, total surplus can only improve. Thus, this
mechanism weakly dominates the posted price mechanism with price p.

OA.4 Inequity aversion in voting

In this appendix, we consider an environment without transfers. There are two agents
and three alternatives: X = {a, b, c}. Each agent’s type can be represented as a ranking
of the three alternatives. The distribution of types π is i.i.d. uniform. The designer is
inequity averse in the following sense: The designer’s payoff is 0 if one agent gets her best
option and the other agent gets her worst option; it is 1 otherwise. By direct calculation,
among simple mechanisms, it is optimal to let the outcome be a without eliciting the
preferences of the agents. For this mechanism, there are 8 type profiles (where one agent
ranks a at the top and the other agent ranks a at the bottom) such that the designer
obtains utility 0; thus, the designer obtains 7/9 in expectation.

Claim 7. The best simple mechanism in the above voting setting is weakly dominated.34

We construct the superior mechanism below. Starting from the simple mechanism
of always implementing a, player i is given an additional option to let player −i choose
from the menu {b, c}. In this new mechanism, (1) if player i ranks a at the top, player i
will not choose the additional option; there are 4 type profiles (where agent i ranks a at
the top and agent −i ranks a at the bottom) such that the designer obtains utility 0; (2)
if agent i ranks a at the bottom, then agent i will take the additional option, in which
case the designer obtains 1 regardless of agent −i’s type; (3) if agent i’s preference is
bac, then agent i will be confused as to whether to take the additional option. If she
does not, then the designer obtains utility 1 regardless of agent −i’s type; if she does,
then the designer obtains utility 0 if agent −i ranks c at the top; (4) similarly, if agent
i’s preference is cab, then agent i will be confused as to whether to take the additional
option. If she does not, then the designer obtains utility 1 regardless of agent −i’s type;

34This claim is proven directly without relying on Proposition 4 but the underlying logic is analogous.

4



if she does, the designer obtains utility 0 if agent −i ranks b at the top. Overall, in the
worst-case scenario, there are 8 type profiles such that the designer obtains utility 0; if
types bac or type cab do not take the additional option, the designer does strictly better
than in the best simple mechanism.
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