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Abstract

Causal evidence from random assignment has been labeled “the most credible.”We argue it

is generally incomplete in finance/economics, omitting central parts of the true empirical causal

chain. Random assignment, in eliminating self-selection, simultaneously precludes signaling via

treatment choice. However, outside experiments, agents enjoy discretion to signal, thereby caus-

ing changes in beliefs and outcomes. Therefore, if the goal is informing discretionary decisions,

rather than predicting outcomes after forced/mistaken actions, randomization is problematic.

As shown, signaling can amplify, attenuate, or reverse signs of causal effects. Thus, traditional

methods of empirical finance, e.g. event studies, are often more credible/useful.

1 Introduction

It is hard to overstate the influence of Angrist and Pischke’s (2009) Mostly Harmless Econometrics

on modern-day empirical finance. Even the language of the profession has shifted, as evidenced

by frequent use of the terms “identification” and “causal effect.” As a lagging indicator, Bowen,

Frésard, and Taillard (2016) find that in the top-three finance journals, the share of empirical

corporate finance papers using what they term “identification technologies” rose from roughly 0

percent in the late 1980’s to over 50 percent by 2012. As an example of the converse, consider

that in 1986 the Journal of Financial Economics devoted one-half of a double issue to five event
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studies analyzing endogenous capital structure changes, an unlikely journal configuration given

contemporary methodological norms.

The crowding-out of such quasi-observational studies is understandable, and indeed a good thing

for the progress of finance as a science, if one accepts the initial premise put forward by Angrist

and Pischke (2009) that, “The goal of most empirical research is to overcome selection bias, and

therefore to have something to say about the causal effect of a variable.”That is, according to the

working definition of Angrist and Pischke (2009), selection effects are decidedly not an element of

causal effects. To the contrary, selection effects mask true causal effects. If this definition of causal

effect is accepted, then it must be agreed that, as they assert, “The most credible and influential

research designs use random assignment.”Moreover, as a corollary, Angrist and Pischke would have

financial economists treat event studies and other traditional forms of observational evidence as

being either less credible at best, or not credible at worst.

This methodological stance draws much of its inspiration from the notion that economists should

strive to utilize the same causal measures and methods as medical science, an appealing metaphor

at face value. For example, Duflo (2004) argues, “Creating a culture in which rigorous randomized

evaluations are promoted, encouraged, and financed has the potential to revolutionize social policy

during the 21st century, just as randomized trials revolutionized medicine during the 20th.”Indeed,

the two textbooks by Angrist and Pischke (2009, 2015) open with motivating examples of causal

effects of hospitalization and insurance on health outcomes. Similarly, the influential textbook of

Imbens and Rubin (2015) uses the same causal effect definition and methodological tool-kit across

biomedical and social sciences.

The objective of this paper is to explore the merits and limitations of the causal effect definition

and estimators as advocated by Angrist and Pischke (2009, 2015), amongst others, within the

specific context of finance and economics—as distinct from medicine. To begin, we note that. to the

best of our knowledge, absent from the methodological discussions and debates amongst financial

economists is the fact that medical outcome variables differ in-kind from most of the financial
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outcome variables we study. In particular, true objective health outcomes are not mediated by

the beliefs of other agents.1 In stark contrast, for the overwhelming majority of economic and

financial variables, equilibrium outcomes are profoundly shaped by the beliefs of other financial

market participants.

Should financial economists strive to attain the same type of evidence as medical scientists? Al-

ternatively, are the qualitative differences between health outcome variables and economic outcome

variables suffi ciently important for financial economists to reconsider how we define and measure

causal effect? In order to address these important questions, or at least initiate a more transparent

and constructive dialogue on these questions, this paper analyzes the meaning and utilization of

alternative causal effect measures in the types of settings commonplace in finance and economics,

those where individual agents have private information and outcome variables are mediated by the

beliefs of other agents in the economy.

As we show, the narrow causal effect definition utilized by Angrist and Pischke (2009, 2015),

while appropriate for health outcomes, is problematic from the perspective of financial economists.

This is because random assignment, in eliminating self-selection, simultaneously prevents signaling

via treatment choice. After all, if a treatment is randomly forced upon an agent, the act of taking

it cannot signal private information. In causal biomedical research, shutting down the signaling

channel through random assignment is of no concern since an individual cannot improve their true

objective health outcome by publicly and voluntarily taking a particular pill that signals something

to onlookers. In sharp contrast, in a wide range of markets, individuals and firms can and do improve

their objective economic and financial outcomes by publicly and voluntarily taking particular actions.

The fundamental differences between health outcomes versus economic and financial outcomes

can be phrased in terms of the potential outcomes framework of Rubin (1974), a key building-

block of modern causal inference. To begin, note that with objective health, it does not matter

whether a treatment is taken under forced randomization or under individual discretion. In stark
1Health may be mediated by own-beliefs. Philipson and Desimone (1997) and Chemla and Hennessy (2019) show

RCTs may deliver biased estimates of physiological effects.
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contrast, economic and financial outcomes often differ fundamentally according to whether an action

is forced or discretionary since discretion generates signaling effects. Further, for many financial and

economic variables, in contrast to health, actions that signal actually have the power to cause changes

in outcomes by changing other agents’ beliefs. Importantly, the signal component of the causal

mechanism would even be manifest after “counterfactual” actions off the equilibrium path. For

example, in a standard separating equilibrium, a CEO who knows she has low ability can nevertheless

cause her company’s share price to increase if she mimics high ability CEOs by purchasing a large

company stake. In reality, some low-ability CEOs do just this. In stark contrast, a person with

coronary disease cannot replicate the measured outcomes of the healthy simply by mimicking their

behavior and avoiding medical care—quite the contrary. These fundamental differences explain why

it would be foolish for an ill person to rely upon raw observational evidence whereas CEOs can, in

many instances, safely rely upon “endogeneity-plagued”event studies in making decisions.

If the goal is guiding discretionary decisions, rather than predicting outcomes after forced actions

or mistakes, random assignment is problematic precisely because it strips out the signal component

of the overall causal mechanism. As we show, taken in isolation, estimates derived from random

assignment are faulty guides regarding discretionary policies—the very types of policies that empir-

ical evidence is often intended to inform. In fact, as shown, causal effects derived from random

assignment can undershoot, overshoot, and even have signs opposite to causal effects cum signaling

effects.

Undoubtedly, our understanding of causal inference has become much more nuanced over the last

decade. Nevertheless, to make further progress, we suggest financial economists adopt and utilize

two distinct causal effect definitions, with each being more or less useful depending on the context

and decision-margin. Partial causal effects are to be understood as changes in the outcome variable

arising from changes in the forcing variable holding fixed the beliefs of other agents. This type of

causal effect is recovered by treatment-control differences under random assignment. As we show,

partial causal effects are, perhaps surprisingly, particularly informative about deep technological
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parameters typically associated with structural inference. Moreover, if the government does not

have private information, but firms do, then partial causal effects, and random assignment studies,

are informative about the desirability of government-mandated policies.

Total causal effects are changes in the outcome variable resulting from discretionary changes

in the forcing variable allowing for endogenous equilibrium changes in beliefs and payoffs. That

is, the total causal effect is the sum of the partial causal effect and signaling effect. This causal

effect measure is recovered by evidence such as announcement effects, as pioneered by Fama, Fisher,

Jensen and Roll (1969). As we show, the total causal effect is often a suffi cient statistic for optimal

discretionary corporate decisions. Nevertheless, in some cases it may be of operational utility, and

independent scientific interest, to estimate both partial and total causal effects. In fact, we illustrate

how the two estimators/estimates would need to be used sequentially in order to implement optimal

policy in some settings.

We clarify the issues by way of three examples. We begin with a simple yet stark example where

the total causal effect is actually opposite in sign to the partial causal effect. In particular, we

consider a CFO seeking to make optimal investment decisions. Here, a traditional corporate finance

event study would deliver a suffi cient statistic for optimality. In contrast, reliance on estimates

derived from random assignment would lead to excessive investment levels. The underlying message

here is that papers using some of the “outdated”methods of empirical corporate finance may well

have greater value to practitioners.

Next we consider a question from household finance, e.g. Becker (1993), Roussanov (2010), and

Athreya and Eberly (2020): “Are the net returns to educational investments positive?”Of course,

this is a topical question presently being posed by many prospective undergraduate and MBA stu-

dents. For this purpose, we extend the framework of Spence (1973) by incorporating competitive

tuition-setting universities in a quantitative example. Here we illustrate how the failure to incorpo-

rate signaling benefits might understate returns by an order of magnitude. More importantly, we

show this downward bias worsens as the costs of delivering education rise. This is because, as shown,
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with endogenous ability signaling, the education-wage schedule becomes steeper with higher costs of

education production. Thus, the “cleanest”empirical work on returns to education, that which ex-

ploits quasi-random assignment, will understate total returns by a wide margin, and most severely,

in times such as the present when rising educational production costs spur empirical enquiry.

In the final example, we consider a government with private information about economic fun-

damentals that is contemplating changing some policy, e.g. regulation or tax policy, in response

to this information. Here we show that evidence from random assignment can identify potentially

stimulative policies—in the sense of having positive partial causal effects. We then show how such

analysis can complement total causal effect estimates in order to ultimately arrive at optimal poli-

cies. Thus, we conclude that in many applied settings both forms of causal effect estimates have a

place in the decision-maker’s tool-kit.

Our paper is related to the literature on signaling, with Spence (1973) being the pioneering

paper. Ross (1977) and Leland and Pyle (1977) were early applications of signaling theory to cor-

porate finance. For surveys, see Riley (2001) and Löfgren, Persson, and Weibull (2002). Our paper

complements this literature by flushing out the implications of signaling for applied econometric

work that seeks to inform decision-making by individuals, firms, and governments.

The present paper shares with Gomes (2001), Alti (2003), and Moyen (2004) the idea of using

canonical models to shed light on the meaning and interpretation of empirical evidence. However,

none of these papers comments on random assignment, causal effect measures, or the signaling

channel. Keane (2010) and Rust (2010) argue for the need to isolate distinct causal channels and

identify deep technological parameters, recommending the use of structural models for this purpose.

Instead, our paper discusses how different forms of reduced-form evidence can be used to measure

partial and total causal effects. There is nothing in our argument that has direct bearing on the

structural versus reduced-form debate.

The central argument in our paper is most closely related to a recent paper by Fudenberg

and Levine (2020). They show that Bayesian learning by agents can drive a wedge between partial
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causal effects and causal estimates derived from regression discontinuity designs. This is because un-

informed agents on opposing sides of regression discontinuity boundaries endogenously form sharply

different beliefs about effort returns. The central difference between the papers concerns the method-

ological message. In particular, Fudenberg and Levine (2020) do not challenge the primacy of partial

causal effects, but rather show that standard methods may fail to recover them. In contrast, we

show that when a privately informed agent moves first, partial causal effects are often a faulty basis

for decision-making. Despite this difference, the papers share the notion of decomposing causal

effects into (our terminology) partial causal effects and information causal effects. In their model,

the information causal effect arises from the uninformed agent learning. In our model it arises from

privately-informed agents signaling.

The remainder of the paper proceeds as follows. Section 2 considers empirical evidence in

corporate finance. Section 3 considers household investments in human capital. Finally, Section

4 considers a more complex setting that illustrates the complementary roles the alternative causal

effect estimators can play in as a government seeks to set optimal policies.

2 Causal Effects in Corporate Finance

We begin first with a stark example from the field of corporate finance– a field in which quasi-

experimental papers have largely displaced the workhorse event-study methodology. Before begin-

ning, we note that a primary objective of empirical corporate finance work is to provide normative

advice to CFOs regarding optimal investment and financial policies. With this goal in mind, we

turn next to an examination of the role alternative causal effect estimates can play in this domain.

Consider then a CFO facing pressure from a set of investors to sharply increase his corporation’s

green investments. He is not unsympathetic to their position, with the firm’s internal estimates

being that the return to green projects is two dollars for each dollar invested. On the other hand,

some board members are skeptical.

For simplicity, consider an equity-financed firm with current shares outstanding normalized at
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1.2 Letting s denote shares issued and p the stock price, the corporation’s green investment will be:

i(s) ≡ sp(s). (1)

The CFO’s objective is to maximize the value of the claim held by current shareholders, subject to

the constraint that he no more than double shares outstanding, since this would risk transferring

corporate control. Letting α denote the value of assets in place, the CFO’s program can be written

as:

max
0≤s≤1

α+ 2i(s)

1 + s
=
α+ 2sp(s)

1 + s
. (2)

Unfortunately, the CEO does not know the price function p(·). Fortunately, last year the gov-

ernment implemented a green investment experiment intended to provide scientific evidence on the

returns to such projects. In particular, the government randomly determined the number of shares

that a set of comparable firms were to issue, mandating that all proceeds raised be used to fund

green investments.

The results of the government’s green natural experiment, as studied in a high-profile paper, are

represented by the upward sloping line in Figure 1. As shown, stock prices were higher for companies

that were randomly-assigned to issue more shares. In fact, the empirically-observed price reaction

function has been estimated as

p̃(s) =
1

1− s. (3)

When pushed by a theorist on the estimated price function, the econometrician studying the exper-

iment provided the following justification. The average value of α, denoted µα, has been estimated

at 1. Therefore, if each dollar invested yields a payoff of two dollars, the price function should satisfy

p̃(s) =
1 + 2sp̃(s)

1 + s
⇒ p̃(s) =

µα
1− s. (4)

Based upon the increasing price function, the researcher had concluded, “You can do well while

doing good, and the science shows this.”

2Alternatively, assume the firm’s debt covenant prohibits additional debt.
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Based upon the paper, the CEO plans to issue the maximum number of shares possible since,

in his estimation, this will deliver an unbounded payoff to current shareholders, with

lim
s↑1

α+ 2sp̃(s)

1 + s
=∞. (5)

Unfortunately, the CEO has fallen into the logical fallacy of assuming that a causal effect (of

share issuance on stock price) that obtains under forced random assignment will remain valid when

he exercises discretion. Of course, with private information, this is not generally the case.

To illustrate, we now pin down a securities market equilibrium in the spirit of Myers and Majluf

(1984) and Krasker (1986), albeit with somewhat different technological assumptions and a focus

on empirical implications. Suppose that α, the value of assets-in-place, is private information to

the CFO. In particular, assume α is uniformly distributed on [0, 2]. Indeed, under forced random

assignment of equity issuance, s contains no signal value regarding α and so the price function p̃

estimated in the natural experiment (equations (3) and (4)) was indeed correct for that specific en-

vironment. However, with discretionary decision-making under private information, the equilibrium

price function will change. To see this, note that the first-order condition for the CFO’s program

(2) is:

2i′(s) = (1 + s)−1[α+ 2i(s)]. (6)

Conjecturing an LCSE in which the amount of stock issued fully reveals α, market equilibrium

entails new equity investors provide funding just equal to their expected payoff, or

i(s) = s(1 + s)−1 [α+ 2i(s)] . (7)

Substituting the equity market equilibrium condition into the CFO’s first-order condition we obtain

the following differential equation

2si′(s) = i(s)⇒ i(s) = A
√
s. (8)

where A is a constant to be determined.

In the LCSE the worst type, with α = 0, should implement their perfect information allocation,

issuing the maximum amount of equity (s = 1) and funding the maximum technologically feasible
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amount of green investment, call it imax, a constant which can be assumed to be arbitrarily large.

We then have

imax = A
√

1⇒ i(s) = imax
√
s⇒ p(s) =

i(s)

s
=
imax√
s
. (9)

Empirical evidence from a standard corporate finance event study (a sample of observations of

equation (9)) is represented by the downward sloping line in Figure 1. Notice, the partial causal

effect of share issuance on stock price is positive but the total causal effect is negative. To understand

this, note that equations (4) and (7) allow us to write:

p(s) = p̃(s) +
α̂(s)− µα

1− s ⇒ p′(s) = p̃′(s) +
d

ds

α̂(s)− µα
1− s . (10)

The implication is that the total causal effect p′ is equal to the positive partial causal effect p̃′ plus

a negative signaling effect which apparently dominates here. Intuitively, with random assignment,

there is no negative signal conveyed with changes in s, so the stock price is increasing in s due to

the positive NPV of incremental investments. However, with endogenous discretionary policies, the

type our CFO will actually be choosing, the stock price falls with increases in stock issuance since,

as shown below, the market will revise down its inference (α̂) about the value of assets-in-place with

higher stock issuance.

With the equilibrium pricing schedule under discretionary CFO stock issuances (p) in mind, the

correct first-order condition (6) for pinning down the optimal discretionary choice of s is

imaxs−1/2 = (1 + s)−1[α+ 2imaxs1/2]. (11)

From the preceding equation it follows that companies with more valuable assets-in-place issue less

new shares. In particular:3

s∗(α) =

[
− α

2imax
+

1

2

√( α

imax

)2
+ 4

]2
. (12)

Thus, the experimentally-based recommendation that the optimum for all firm entails maximum

feasible share issuance (s∗ = 1) would be incorrect for all firms except the lowest type with α = 0.

3Let Ω = s1/2 and solve the quadratic in Ω, then compute s = Ω2.
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The point of this example is more general. While studies that somehow approximate random

assignment of corporate policies related to financing, investment, mergers, board composition, etc.

may be of some independent scientific interest, they are also likely to be grossly misleading from

the perspective of real-world CFOs making endogenous discretionary decisions in capital markets

rife with asymmetric information.

3 Returns on Educational Investments

This section considers the returns on educational investments. The first subsection considers the

causal effect of an elite university education. The second subsection considers the causal effect of

incremental education.

3.1 Causal Effect of Elite Universities

Suppose all high school graduates within the state that go on to college attend State University

(“State U”) or Ivy University (“Ivy U”). State U charges a nominal tuition of $5,000 per year, or

$20,000 for a four year degree. Ivy U carries a considerably higher price tag, with tuition amounting

to $50,000 per year, or $200,000 for a four year degree. Given the ten-fold tuition increase, a natural

question has arisen: “Is the $180,000 added expense of an elite Ivy U education really worth it?”

Conveniently, applied econometricians have recently focused their attention on precisely this

question. In particular, Figure 2 plots hypothetical probability distributions of average (capital-

ized) salary differences, Ivy U minus State U, from two competing studies relying upon two distinct

graduating classes, 2018 versus 2019. The 2018 college graduates come from the high school gradu-

ating class of 2014. This high school class is typical in the sense that, at the time of college entry,

the students were free to choose between colleges, as is the norm within the U.S. The 2019 college

graduates come from the high school graduating class of 2015. This high school class was very

special in that the government, in the interest of science, compelled graduates to participate in a

scheme whereby they were forcibly randomly assigned to State U or Ivy U.
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As shown in Figure 2, the causal conclusions of the two study types tend to differ dramatically. In

particular, the average salary difference in present value terms is $422,000 under random assignment,

but is $1,155,000 for the cohort not subjected to randomization. With these figures in mind, it is

worthwhile for the reader to consider a fundamental question: Which causal effect estimate is of

greater general interest?

We venture to argue that the answer to the prior question is not clear. Before elaborating on

this, consider the data generating process. Institutions competitively supply educational intensities

e ∈ [0,∞) at a per student cost φe.4 Prospective students have educational effort cost functions

e2/θ, where the latent ability parameter θ ∈ {θ, θ}, with 0 < θ < θ. Each type occurs with positive

probability and the expected value of θ is denoted µθ. There is a competitive labor market where

firms compete á la Bertrand and will offer an employee their expected productivity given the firms’

common beliefs. The productivity of a type θ college graduate is

θ (1 +me) (13)

where m > φ/θ, which implies even low types would get some education under perfect information.

Given discretion, prospective students play pure strategies and maximize their net utility u which

is the difference between their anticipated wage and the total costs of education, tuition plus effort

costs. If any two universities pool at a common educational intensity e, only then will students mix,

attending each with, say, equal probability.

Consider then a perfect Bayesian equilibrium (PBE) in which all students attend either Ivy U

or State U, which are configured to offer respective educational intensities {e, e}. To begin, note

any PBE sustainable is sustainable by imputing to type θ any e /∈ {e, e}. Next, define the following

type-contingent maximal payoff given worst-case beliefs:

uDθ ≡ max
e≥0

θ (1 +me)− φe− e2

θ
= θ +

1

4
θ(mθ − φ)2. (14)

4See Hara, Segal and Tadelis (1997) without tuition. However, their equilibrium characterization is incorrect.

Setting φ = 0 in our lemma corrects the error.
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In any separating equilibrium, low types get their full-information payoff uDθ since lower payoffs

would induce deviations and higher payoffs are inconsistent with competitive wage-setting. At the

minimal Ivy U educational intensity in a separating equilibrium, low types are just indifferent to

deviating, leaving high types strictly preferring not deviating. At the maximal Ivy U educational

intensity in a separating equilibrium, high types derive net utility uD
θ
and are just indifferent to

deviating, leaving low types strictly preferring not deviating. At the maximum educational intensity

amongst pooling equilibria, low types are just indifferent to deviating and high types strictly prefer

not deviating. Figure 3 illustrates these potential equilibrium configurations in tuition-salary space.

The indifference curves pin each type to their respective deviation utilities uDθ .

From the preceding indifference conditions, we have the following lemma.

LEMMA 1. In all separating equilibria, State University caters to low ability students, setting

e∗ = θ(mθ − φ)/2 and charging tuition φe∗. Ivy University caters to high ability students, charging

higher tuition φe∗, where

e∗ ∈

θ(mθ − φ) +
√
θ2(mθ − φ)2 + 4θ(θ − uDθ )

2
,
θ(mθ − φ) +

√
θ
2
(mθ − φ)2 + 4θ(θ − uD

θ
)

2

 .
The universities can instead pool charging a common tuition φe∗∗ where e∗∗ is not greater than

e∗∗ =
1

2

[
θ(mµθ − φ) +

√
θ2(mµθ − φ)2 + 4θ(µθ − uDθ )

]
.

With these potential equilibria in mind, consider again the question of the general interest of the

two competing studies. For starters, note that random assignment provides no additional benefit if

the universities are configured as in any of the pooling equilibria described in Lemma 1. After all, in

the event of pooling, employers will offer wage (1 +me∗∗)µθ to both Ivy U and State U graduates,

regardless of whether or not random assignment has taken place. Therefore, in the event of pooling,

studies with and without random assignment would generally find zero salary differential, consistent

with the reality of zero causal effect.
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Suppose instead that the two universities implement one of the separating equilibria described

in Lemma 1. This is precisely the situation depicted in Figure 2, which plotted the theoretical

distribution of the salary differentials for studies with and without random assignment, assuming

the least-cost separating equilibrium (LCSE) is implemented, with i.i.d. normally distributed salary

measurement errors. The figure assumes an educational productivity parameter m = .03, with θ =

56.5 and θ = 155, with 10% being high types. These parameters were chosen to generate a realistic

tuition differential, with Ivy charging tuition of $200,000 and State U charging tuition of $20,000,

as captured in the LCSE in Figure 3.

One could readily argue that the study without random assignment is of greater general interest.

After all, perhaps the most important consumers of such studies are the millions of prospective

college students who stand to make life-altering decisions based upon them. For the vast majority

of them, the relevant question is: Does the (present value) of the salary increase provided by

attending Ivy U exceed the incremental costs? For this purpose, the more relevant study would be

that relying on the 2018 cohort where students were, as usual, free to choose and free to signal, with

signal content reflected in wages.

This argument can be expressed more formally. Consider that, if the universities are configured

as in any of the separating equilibria, the respective wage differential, or causal effects, in studies

with and without random assignment are:

wR − wR = (1 +me∗)µθ − (1 +me∗)µθ = mµθ(e
∗ − e∗). (15)

w∗ − w∗ = θ(1 +me∗)− θ(1 +me∗) = (1 +me∗)(θ − θ) +mθ(e∗ − e∗).

If we then take the perspective of a prospective college student, participating in a normal educa-

tion/labor market, the notion of causal effect implicit under random assignment carries two sources

of error. First, it fails to reflect the ability signaling value, the first term in the final w∗ − w∗

expression above. Second, the causal productivity effect derived under random assignment reflects

average ability. However, selecting the elite university causes the labor market to infer high ability,

and this amplifies the productivity effect. In fact, the preceding equation allows us to rewrite the
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total causal effect as the partial causal effect plus terms capturing the increase in payoff arising from

imputation of high-type status:

w∗ − w∗ = wR − wR + (1 +me∗)(θ − θ) +m(θ − µθ)(e∗ − e∗). (16)

Returning to a student’s college decision, relying on the random assignment study would lead

high ability types to incorrectly attend State U. To see this, first note that high ability students are

strictly better off in the LCSE than under their next best alternative (not State U), with the net

utility gain being

θ(1 +me∗)− φe∗ − (e∗)2

θ
− uD

θ
= $609, 000. (17)

However, if a high ability type were to rely on the random assignment study they would incorrectly

opt for State U, calculating a negative Ivy U net utility gain:

wR − wR − φ(e∗ − e∗)− (e∗)2 − (e∗)2

θ
= −$113, 000. (18)

Having said all this, other potential readers will be more interested in, say, testing the null

hypothesis that elite universities serve no productive purpose (m = 0). To test that null hypothesis,

clearly the study with random assignment would be superior. After all, without random assignment,

the very signaling value of interest to prospective students serves to cloud measurement of the pure

productivity effect (on the treated). Nevertheless, the point remains that for some decision-makers

and margins, knowledge of the signal value of actions is necessary to choose optimal actions, and

random assignment shuts this down, by construction.

3.2 Causal Effect of Additional Education

The issues discussed above can be further refined by considering a slight variation on the setting.

In particular, suppose that instead of there being only two types, suppose θ ∈ [0,∞).5 And further,

suppose for simplicity that education serves no productive purpose, with m = 0. Finally, consider

5See Hara, Segal and Tadelis (1997) without tuition.
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once again the LCSE. In this case, agents solve:

max
ẽ

w(ẽ)− ẽ2/θ − φẽ⇒ w′(e)− 2e/θ − φ = 0. (19)

Competitive wage setting implies w(e) = θ. Combining the wage equation with the first-order

condition we obtain the following ODE:

w(e)w′(e)− φw(e)− 2e = 0. (20)

We conjecture a solution taking the linear form w(e) = κe for some constant κ > 0. Under this

conjecture, w(0) = 0, consistent with the lowest θ = 0 types getting zero education, as under perfect

information. Substituting the conjecture into the ODE and solving for κ we find the following LCSE

wage schedule:

w∗(e) =
e√
2

√
(φ2 + 4) + φ

√
φ2 + 8⇒ dw∗(e)

de
=

1√
2

√
(φ2 + 4) + φ

√
φ2 + 8. (21)

With the preceding result in mind, consider the interpretation and utilization of microecono-

metric evidence concerning whether the returns on the quantity/quality of education (e) justify the

extra tuition φe. To fix ideas, one might well envision econometricians finding this topic to be of

particular importance if they observe an increase in tuitions, driven, say, by an increase in the costs

of producing education φ. In the present setting, a study randomly assigning a given cohort across

universities would conclude that education is a terrible investment, since under randomization, all

graduates from the randomized cohort would be paid µθ, with an implied salary causal effect of 0 for

any education increment ∆e, as compared with an incremental tuition increase φ∆e. This situation

is depicted by the thick solid education-wage schedule in Figure 4.

However, as shown by in the preceding equation, the true equilibrium salary increment will nat-

urally increase with the marginal cost of producing education φ so as to restore signaling incentives.

Figure 4 illustrates. Notice, the equilibrium wage profile naturally becomes steeper with increases

in the marginal cost φ of producing higher education. By construction, randomization shuts off this

channel. Neglect of this fact can then lead to faulty cost-benefit assessments in higher education,

especially as costs of education production increase over time.
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4 Evidence-Based Government Policy

Much of the motivation given for random assignment is based upon the notion that the resulting

causal estimates are particularly valuable in terms of setting optimal government policies. With

this in mind, this section considers a more detailed and complex example of how the two forms of

causal effects, partial and total causal effects, can both be used by a government policymaker in a

complementary fashion. The government’s decision problem is a common one, how to use empirical

evidence to decide on regulatory and tax policies.

Time is continuous and horizons are infinite. Agents are risk-neutral and discount cash flows at

the risk-free rate r. Firms (or other agents) accumulate a stock (say capital) according to the law

of motion

dK = (I − δK)dt (22)

with the price of a unit of capital being 1 and adjustment costs being γI2.

A government (e.g. state or national) has discretion to choose the state of its policy variable. We

will call this economy, the “endogenous policy economy.”The policy state is binary, S ∈ {S1, S2}.

The policy variable influences marginal product, and with it, investment. In particular, in policy

state S the marginal product is ΠSXK, where X is a geometric Brownian motion evolving according

to

dXt

Xt
= µtdt+ σdW (23)

where W is a standard Wiener process. We shall think of X as representing an aggregate shock

hitting firms in the endogenous policy economy. Notice, the drift µt is time-varying. In particular,

as described in greater detail below, we assume µt is a binary stochastic process. The realization of

this process is private information to the government.

For the sake of the illustration, assume

ΠS2 > ΠS1.

The first causal inference problem is that, by assumption, the government does not know the pre-
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ceding inequality, nor the magnitude of either ΠS . That is, the government does not know which

policy variable state is technologically more stimulative.

Suppose now that there is a neighboring economy (the “experimental policy economy”) identical

in all respects to the endogenous policy economy, but with the exception that this neighbor ran-

domizes its policy variable, alternating between ΠS1 and ΠS2. In particular, over any infinitesimal

time interval dt, with probability λdt the policy variable will switch states. This stochastic process

is independent of any other random variable including the aggregate shock hitting the experimental

economy which has the following law of motion

dX̃

X̃
= µ̃tdt+ σdW̃

where W̃ is also a standard Wiener process and µ̃t is also a binary stochastic process that is

unobservable to firms, with identical probability law as µt. The fact that the experimental policy

economy is endowed with the same probability law for the aggregate shock as the endogenous policy

economy makes it a convenient benchmark.

The government of the endogenous policy economy will first attempt to use evidence from the

experimental policy economy’s shock responses to infer the (relative) magnitudes of ΠS1 and ΠS2.

Since the neighbor randomizes its policy variable, this first step will be an exercise in estimating

partial causal effects.

Assuming the optimizing government is successful in determining which policy state is more

stimulative in terms of underlying latent technological parameters, it faces a second challenge:

determining the magnitude of total causal effects. In particular, we assume the government in the

endogenous policy economy will adopt as a policy rule switching to the more (less) stimulative

policy if the current instantaneous aggregate drift is low (high). However, as we show, since the

aggregate drift is private information to the government, the response to policy variable changes will

be dampened (and potentially reversed) due to the opposing signal content. Here the econometrician

must estimate total causal effects in order to correctly predict how firms will respond to discretionary

policy interventions.
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4.1 Experimental Policy

We consider first the experimental policy economy in which the policy variable is an exogenous

stochastic process. Following Veronesi (2000), assume that the instantaneous drift can take on two

potential values, µ1 > µ2. This holds true in both economies.

Recall, the drift is unobservable to all parties except the government. Over any infinitesimal

time interval dt with probability pdt a drift will be randomly drawn according to the probability

distribution f = (f1, f2). Let Z be the two-dimensional vector of probability weights agents place on

each potential drift and let

µ(Z) ≡ Z1µ1 + Z2µ2. (24)

In the experimental economy, the government provides no signals, so agents must instead form

inferences based upon the realized path of X̃. From Lemma 1 in Veronesi (2000) it follows beliefs

evolve as diffusions, with:

dZn = p(fn − Zn)︸ ︷︷ ︸
≡µzn

dt+
Zn[µn − µ(Z)]

σ︸ ︷︷ ︸
≡σzn

dW̃ . (25)

The Hamilton-Jacobi-Bellman (HJB) equation for the firm is:

rV (K,X, S,Z) (26)

= max
I

ΠSKX − I − γI2 + Vk(I − δK) + Vxµ(Z)X + µz1Vz1 + µz2Vz2

+λ[V (K,X, S′,Z]− V (K,X, S,Z] +
1

2
Vxxσ

2X2 +
1

2
Vz1z1σ

2
z1 +

1

2
Vz2z2σ

2
z2

+Vz1z2σz1σz2 + Vxz1Xσσz1 + Vxz2Xσσz2 .

The HJB equation can be understood as an equilibrium condition demanding that the expected

holding return on the firm’s stock must be just equal to the opportunity cost. The holding return

consists of dividends plus expected capital gains. In turn, the capital gains can be understood as a

second-order Taylor expansion using the rules of Ito calculus.

We conjecture and verify that the value function takes the following separable form:

rV (K,X, S,Z) = KQ(X,S,Z) +G(X,S,Z). (27)

19

Electronic copy available at: https://ssrn.com/abstract=3540327



Isolating those terms in the HJB equation involving the instantaneous investment control we find

that the optimal investment policy solves

max
I

IQ(X,S,Z)− I − γI2 ⇒ I∗(X,S,Z) =
Q(X,S,Z)− 1

2γ
. (28)

That is, investment is linear in the shadow value of capital Q.

Next we note that since the HJB equation must hold pointwise, the terms scaled by K must

equate. Using this fact, we obtain an equation for pinning down the shadow value of capital Q:

(r + δ + λ)Q(X,S,Z) (29)

= ΠSX + µ(Z)XQx + µz1Qz1 + µz2Qz2 + λQ(X,S′,Z)

+
1

2
σ2X2Qxx +

1

2
σ2z1Qz1z1 +

1

2
σ2z2Qz2z2

+σz1σz2Qz1z2 +Xσσz1Qxz1 +Xσσz2Qxz2 .

Now let XΨn
S denote the shadow value of capital in policy state S given drift rate µn. As shown

in the Online Appendix, we have the following lemma pinning down the solution to the preceding

shadow value equation for the experimental economy.

LEMMA 2. In the experimental economy, the shadow value of capital is

Q(X,S,Z) = X[Z1Ψ
1
S + Z2Ψ

2
S ]

where the shadow value constants solve the following linear system

[r + δ − µ1 + λ+ pf2]Ψ
1
S1 = ΠS1 + pf2Ψ

2
S1 + λΨ1

S2 (30)

[r + δ − µ2 + λ+ pf1]Ψ
2
S1 = ΠS1 + pf1Ψ

1
S1 + λΨ2

S2

[r + δ − µ1 + λ+ pf2]Ψ
1
S2 = ΠS2 + pf2Ψ

2
S2 + λΨ1

S1

[r + δ − µ2 + λ+ pf1]Ψ
2
S2 = ΠS2 + pf1Ψ

1
S2 + λΨ2

S1.
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Subtracting the first equation listed in the lemma from the third and the second equation from

the fourth, the following inequalities are readily verified:

ΠS2 > ΠS1 ⇒ Ψ1
S2 > Ψ1

S1, Ψ2
S2 > Ψ2

S1. (31)

We then have the following important proposition showing the utility of natural policy experiments

in determining the relative magnitude of technological parameters. Of course, inferring technological

parameters is often a natural pre-requisite for setting policy optimally, and this is the case here.

PROPOSITION 1. Observing any shock response in the experimental economy allows for a correct

ranking of partial causal effects, with the response to an exogenous transition from S to S′ being

SRSS′ =
X

2γ
× [Z1(Ψ

1
S′ −Ψ1

S) + Z2(Ψ
2
S′ −Ψ2

S)]. (32)

Notwithstanding the positive conclusion of the proposition, that natural experiments here allow

for a correct ranking of relative stimulus provided by the alternative policies (sans-signaling), it is

also clear that latent time-varying beliefs (Z) will make it hard for the government to correctly infer

the absolute magnitudes of the technological parameters. Anticipating, this will be problematic

since, once policy discretion is introduced, there will be a signaling effect working in the opposite

direction of the partial causal effect.

4.2 Endogenous Policy

Suppose now that, based upon the experimental evidence (Proposition 1), the government of the

endogenous policy economy tries to lean against the wind, implementing policy ΠS2 whenever it

privately observes that the drift rate is low (µt = µ2) and ΠS1 whenever it privately observes that

the drift rate is high (µt = µ1), recalling µ1 > µ2. What will be the observed total causal effect?

The HJB equation for the firm here is:

rV (K,X, S) (33)

= max
I

ΠSKX − I − γI2 + Vk(I − δK) + VxµSX +

+p(1− fS)[V (K,X, S′)]− V (K,X, S)] +
1

2
Vxxσ

2X2.
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We conjecture and verify that the value function takes the following separable form:

V (K,X, S) = Kq(X,S) + g(X,S). (34)

Isolating those terms in the HJB equation involving the instantaneous investment control we find

that the optimal investment policy solves

max
I

Iq(X,S)− I − γI2 ⇒ I∗(X,S) =
q(X,S)− 1

2γ
. (35)

Next we note that since the HJB equation must hold pointwise, the terms scaled by K must

equate. Using this fact and rearranging terms we obtain an equation for pinning down the shadow

value of capital:

[r + δ + p(1− fS)]q(X,S) = ΠSX + µSXqx(X,S) +
1

2
σ2X2qxx(X,S) + p(1− fS)q(X,S′). (36)

Since the dividend is linear in X we conjecture the shadow value is also linear in X taking the form

q(X,S) = XψS .

Substituting this into the preceding equation and rearranging terms we obtain the following two

equations pinning down the shadow values in the endogenous policy economy

[r + δ − µ1 + p(1− f1)]ψ1 = ΠS1 + p(1− f1)ψ2 (37)

[r + δ − µ2 + p(1− f2)]ψ2 = ΠS2 + p(1− f2)ψ1.

Solving this system we find

ψ1 =
ΠS1

r + δ − µ1
(38)

+
p(1− f1)(r + δ − µ2) [ΠS2/(r + δ − µ2)−ΠS1/(r + δ − µ1)]

(r + δ − µ1)(r + δ − µ2)[1 + p(1− f1)/(r + δ − µ1) + p(1− f2)/(r + δ − µ2)]

with the symmetric expression for ψ2.

Since investment is increasing in q ≡ XψS , implementation of ΠS2 will be followed by an increase

in investment iff ψ2 > ψ1. Comparing the shadow value constants from equation (38) we have the

following proposition.
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PROPOSITION 2. Investment will increase after discretionary government implementation of

the technologically stimulative policy ΠS2 > ΠS1 if and only if the partial causal effect is suffi ciently

large to imply

ΠS2

ΠS1
>
r + δ − µ2
r + δ − µ1

. (39)

Essentially, the preceding proposition shows that the total causal effect will have the same sign

as the partial causal effect if and only if the latter causal effect is suffi ciently large to offset the

negative signal regarding aggregate drift. To see this, note that the condition in the proposition can

be stated in terms of shadow values under constant policies and drifts:

ΠS2

r + δ − µ2
>

ΠS1

r + δ − µ1
⇒ q(X,S2) > q(X,S1). (40)

The point of this example is to illustrate in a concrete way how both forms of causal effect

estimates can play a critical role in policy-setting. Perhaps ironically, here partial causal effects were

shown to be especially helpful in terms of inferring deep technological parameters. But once these

technological parameters are assessed, it seems that (perhaps) only through actually implementing

the policy rule in a discretionary fashion can the government get a better sense of how things will

work in reality. Moreover, in contrast to the present stylized example, in reality it will be hard to

predict the magnitude of signaling effects since the true nature and quality of agent information

is hard for a government to know with a high degree of precision. In fact, in reality, information

quality and beliefs will vary over time, giving rise to time-varying signal content in many applied

settings. This might well be an interesting direction for future applied theory and empirical work.

5 Conclusion

This paper questions the notion that evidence from random assignment is somehow more “cred-

ible” than more traditional forms of evidence in finance such as event studies. As we show, if a

prospective decision-maker is privately informed and is indeed attempting to make optimal discre-

tionary decisions, rather than attempting to understand the consequences of random mistakes, then
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the signal content of her decisions is payoff-relevant and decision-relevant. Causal effect estimates

derived from random assignment strip out signaling effects, potentially leaving the decision-maker

ignorant of the true implications of alternative decisions. Nevertheless, we show how partial causal

effect estimates can be used in conjunction with total causal effect estimates to decompose real and

information signaling channels. As shown, in practice, both forms of empirical estimates, partial

and total causal effects, may be necessary inputs in order to pin down optimal policies. If this fact

is appreciated, then a broader definition of “identification”should be adopted, and a broader set of

evidence should be treated as “credible.”
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Signaling, Random Assignment, and Causal Effect Estimation:

Online Appendix

February 2020

1 Experimental Economy Shadow Value

Following Veronesi (2000), assume that the instantaneous drift of aggregate output X̃ can take on 
two potential values, µ1 > µ2. Recall, the drift is unobservable to all parties except the government. 

Over any infinitesimal time interval dt with probability pdt a drift will be randomly drawn according 
to the probability distribution f = (f1, f2). Let Z be the two-dimensional vector of probability 

weights agents place on each potential drift and let

µ(Z) ≡ Z1µ1 + Z2µ2. (1) 

Since here the government provides no signals, agents must instead form inferences based upon the 

realized path of X̃.

From Lemma 1 in Veronesi (2000) it follows macroeconomic beliefs evolve as diffusions, with:

dZn = p(fn − Zn)︸ ︷︷ ︸
≡µzn

dt+
Zn[µn − µ(Z)]

σ︸ ︷︷ ︸
≡σzn

dW̃ . (2)
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The Hamilton-Jacobi-Bellman (HJB) equation for the firm is:

rV (K,X, S,Z) (3)

= max
I

ΠSKX − I − γI2 + Vk(I − δK) + Vxµ(Z)X + µz1Vz1 + µz2Vz2

+λ[V (K,X, S′,Z]− V (K,X, S,Z] +
1

2
Vxxσ

2X2 +
1

2
Vz1z1σ

2
z1 +

1

2
Vz2z2σ

2
z2

+Vz1z2σz1σz2 + Vxz1Xσσz1 + Vxz2Xσσz2 .

The HJB equation can be understood as an equilibrium condition demanding that the expected

holding return on the firm’s stock must be just equal to the opportunity cost. The holding return

consists of dividends plus expected capital gains. In turn, the capital gains can be understood as a

second-order Taylor expansion using the rules of Ito calculus.

We conjecture and verify that the value function takes the following separable form:

rV (K,X, S,Z) = KQ(X,S,Z) +G(X,S,Z) (4)

Substituting the conjectured value function into the HJB equation we obtain

(r + λ)[KQ(X,S,Z) +G(X,S,Z)] (5)

= max
I

ΠSKX − I − γI2

+(I − δK)Q+ µ(Z)X[KQx +Gx] + µz1 [KQz1 +Gz1 ] + µz2 [KQz2 +Gz2 ]

+λ[KQ(X,S′,Z) +G(X,S′,Z)]

+
1

2
σ2X2[KQxx +Gxx] +

1

2
σ2z1 [KQz1z1 +Gz1z1 ] +

1

2
σ2z2 [KQz2z2 +Gz2z2 ]

+σz1σz2 [KQz1z2 +Gz1z2 ] +Xσσz1 [KQxz1 +Gxz1 ] +Xσσz2 [KQxz2 +Gxz2 ].

Isolating those terms in the HJB equation involving the instantaneous investment control we find

that the optimal investment policy solves

max
I

IQ(X,S,Z)− I − γI2 ⇒ I∗(X,S,Z) =
Q(X,S,Z)− 1

2γ
. (6)

That is, investment is linear in the shadow value of capital Q.

2
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Next we note that since the HJB equation must hold pointwise, the terms scaled by K must

equate. Using this fact and rearranging terms we obtain an equation for pinning down the shadow

value of capital Q:

(r + δ + λ)Q(X,S,Z) (7)

= ΠSX + µ(Z)XQx + µz1Qz1 + µz2Qz2 + λQ(X,S′,Z)

+
1

2
σ2X2Qxx +

1

2
σ2z1Qz1z1 +

1

2
σ2z2Qz2z2

+σz1σz2Qz1z2 +Xσσz1Qxz1 +Xσσz2Qxz2

Since the dividend is linear in X we conjecture the shadow value of capital is also linear in X. We

then write the shadow value as follows:

Q(X,S,Z) = XΨS(Z)

Substituting this into the preceding shadow value equation and simplifying we obtain

[r + δ − µ(Z) + λ]ΨS(Z) (8)

= ΠS + (µz1 + σσz1)
∂

∂Z1
ΨS(Z) + (µz2 + σσz2)

∂

∂Z2
ΨS(Z) + λΨS′(Z)

+
1

2
σ2z1

∂2

∂Z21
ΨS(Z) +

1

2
σ2z2

∂2

∂Z22
ΨS(Z) + σz1σz2

∂2

∂Z1∂Z2
ΨS(Z).

Next we conjecture there exist constants such that

ΨS(Z) = Z1Ψ
1
S + Z2Ψ

2
S ⇒ Q(X,S,Z) = X[Z1Ψ

1
S + Z2Ψ

2
S ].

That is, we conjecture the shadow value of capital in each state represents a weighted average over

macroeconomic beliefs. Effectively, XΨn
S represents the shadow value of capital in policy state S

from the perspective of a hypothetical investor who knows current instantaneous drift is µn.

Substituting this conjecture into the preceding shadow value equation we obtain

[r + δ − µ(Z) + λ][Z1Ψ
1
S + Z2Ψ

2
S ] (9)

= ΠS + (µz1 + σσz1)Ψ
1
S + (µz2 + σσz2)Ψ

2
S + λ[Z1Ψ

1
S′ + Z2Ψ

2
S′ ].
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Next we use the law of motion for beliefs in order to rewrite the preceding equation as

[r + δ − Z1µ1 − Z2µ2 + λ][Z1Ψ
1
S + Z2Ψ

2
S ] (10)

= ΠS + [p(f1 − Z1) + Z1((1− Z1)µ1 − Z2µ2)]Ψ1
S

+[p(f2 − Z2) + Z2((1− Z2)µ2 − Z1µ1)]Ψ2
S

+λ[Z1Ψ
1
S′ + Z2Ψ

2
S′ ].

The preceding equation must hold for all possible beliefs including either extreme: Z1 = 1 or

Z2 = 1. Using this fact we obtain the following two equations

[r + δ − µ1 + λ+ pf2]Ψ
1
S = ΠS + pf2Ψ

2
S + λΨ1

S′ (11)

[r + δ − µ2 + λ+ pf1]Ψ
2
S = ΠS + pf1Ψ

1
S + λΨ2

S′

Of course, this condition must hold for either S ∈ {S1, S2}. Thus, we have the following lemma

pinning down the shadow value of capital in the experimental economy.

Lemma In the experimental economy, the shadow value of capital is

Q(X,S,Z) = XΨS(Z) = X[Z1Ψ
1
S + Z2Ψ

2
S ]

where the shadow value constants solve the following linear system

[r + δ − µ1 + λ+ pf2]Ψ
1
S1 = ΠS1 + pf2Ψ

2
S1 + λΨ1

S2 (12)

[r + δ − µ2 + λ+ pf1]Ψ
2
S1 = ΠS1 + pf1Ψ

1
S1 + λΨ2

S2

[r + δ − µ1 + λ+ pf2]Ψ
1
S2 = ΠS2 + pf2Ψ

2
S2 + λΨ1

S1

[r + δ − µ2 + λ+ pf1]Ψ
2
S2 = ΠS2 + pf1Ψ

1
S2 + λΨ2

S1.
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