
The Sustainable Quality Program in the Colombia Coffee Chain

Rocco Macchiavello - LSE & IGC Josepa (Pepita) Miquel-Florensa - TSE

Linking farmers to (international) markets has the potential to increase incomes in rural areas and reduce poverty (WB 2017)

This often requires quality upgrading

Linking farmers to (international) markets has the potential to increase incomes in rural areas and reduce poverty (WB 2017)

This often requires quality upgrading

Challenges along the chain often stifle quality upgrading:

Upstream: Input/credit/saving/insurance markets and extension services

Duflo et al. (2011), Karlan et al. (2014), Bold et al. (2017), Casaburi and Macchiavello (2019) ...

Linking farmers to (international) markets has the potential to increase incomes in rural areas and reduce poverty (WB 2017)

This often requires quality upgrading

Challenges along the chain often stifle quality upgrading:

Middle: Side-Selling and Hold-Up at the farm/mill's gates; limited competition

Antràs and Costinot (2013), Atkin and Donaldson (2015), Macchiavello and Morjaria (2019) ...

Linking farmers to (international) markets has the potential to increase incomes in rural areas and reduce poverty (WB 2017)

This often requires quality upgrading

⇒ Challenges along the chain often stifle quality upgrading:

Downstream: Lack of demand / Contracting Problems at Export Gate

Atkin et al. (2017), Antràs and Foley (2015), Macchiavello and Morjaria (2015), Blouin and Macchiavello (2019) ...

Global Buyers Supply-Chain Response

→ Many Global Buyers respond by developing in-house VSS:

Global Buyers Supply-Chain Response

→ Many Global Buyers respond by developing in-house VSS:

ILLY Industry pioneer

NESPRESSO AAA Started in 2003

C.A.F.E. PRACTICES Started in 2004

Global Buyers Supply-Chain Response

⇒ Many Global Buyers respond by developing in-house VSS:

ILLY Industry pioneer

NESPRESSO AAA Started in 2003

C.A.F.E. PRACTICES Started in 2004

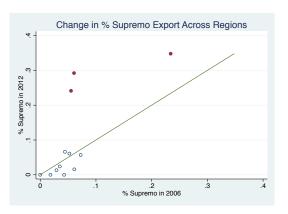
Lift Program

Farmer Support Organisations

Farmer Hub

Sustainable Quality Program in Colombia

1. Quality Buyer-Driven Voluntary Sustainability Standard (VSS)


- Started in 2003
- Implemented in 36 regions worldwide
- Coffee Industry flagship program

2. This paper focuses on Colombia:

- PPP with Federacion Nacional de Cafeteros
- Focus on Cauca (and Nariño)
 - ★ (80,000+ eligible farmers, 80% of Program Farmers in Colombia)

Export of Supremo Quality, by Region

Between 2006 and 2012 Colombia nearly doubled exports of supremo coffee (from 9% to 17%)

> 80% of increase in supremo coffee was exported from Program Regions to the Program

Preview

I. What is the reduced form impact on the supply-side?

DID, Spatial RD

- Farmers invest in plot potential to upgrade quality
- Expansion in Land (intensive and extensive margin)
- Volumes and Quality of production increased

Preview

I. What is the reduced form impact on the supply-side?

DID, Spatial RD

- Farmers invest in plot potential to upgrade quality
- Expansion in Land (intensive and extensive margin)
- Volumes and Quality of production increased

II. What is the overall welfare impact of the program?

Calibrate a simple model of the value chain

- ho pprox 30% higher surplus in the Colombian chain
- ▶ ≥ 50% of program surplus goes to farmers

Preview

I. What is the reduced form impact on the supply-side?

DID, Spatial RD

- Farmers invest in plot potential to upgrade quality
- Expansion in Land (intensive and extensive margin)
- Volumes and Quality of production increased

II. What is the overall welfare impact of the program?

Calibrate a simple model of the value chain

- ho \approx 30% higher surplus in the Colombian chain
- ▶ ≥ 50% of program surplus goes to farmers

III. What held quality back?

Counterfactuals + comparison with other VSSs

- Both supply-side and demand-side interventions are important
- Contractual arrangements between buyer and exporter key for farmers welfare

Related literature

Upgrading (and MNEs):

Atkin et al. (2017), Verhoogen (2008), Hasmann et al. (2017), Javorcik (2004),
 Alfaro-Ureña (2019),...

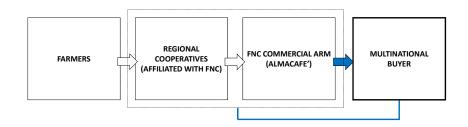
Market Structure, Contracts and Trade:

- Market Structure: Antràs and Costinot (2013), Atkin and Donaldson (2015), Macchiavello and Morjaria (2019)...
- Contracts: Antràs and Foley (2015), Macchiavello and Morjaria (2015), Blouin and Macchiavello (2019), Cajal-Grossi et al. (2019) ...

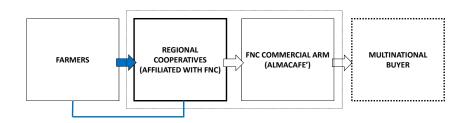
Farmers/informal firms/consumers and Intl' Markets:

▶ McCaig and Pavcnick (2018), Pavcnik (2017), ...

• Certifications:


Dragusanu and Nunn (2018), De Janvry et al. (2015), Nelson and Pound (2009), Auriol and Miquel-Florensa (2016) ...

Outline of the talk


- 0 The Sustainable Quality Program
 - i) Program at the Export Gate
 - ii) Program at the Farm Gate
 - iii) Program from Farmer Perspective
 - iv) Data
- 1 Reduced Form Supply Response
- 2 Framework & Calibration
- 3 Mechanisms: How did it work?
- 4 Discussion and Conclusions

Program Sourcing at the **Export** Gate

- ⇒ Contract between FNC and Buyer:
- 1. Export-gate price premium η (known and confirmed by data analysis)
- 2. Farm-gate price premium π (known and confirmed by data analysis)
- 3. A lump-sum payment to cover implementation costs (only amount known)

Program Sourcing at the Farm Gate

- Program is a bundle:
 - Supply: Extension + Training + Support for Renovation
 - Demand: Stable Price Premium
 - ★ Premium: COP 40/kg (~ 10% over FNC base price (COD))
 - ★ Permanent buying points in all locations

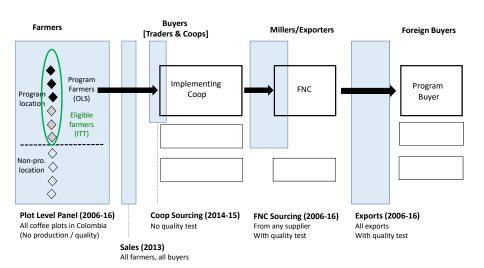
NB No formal contract enforcement with farmers (smallholders)

The Program: Farmers Decision

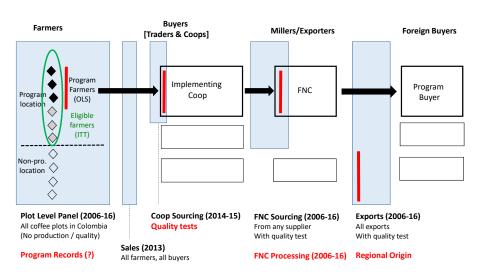
- i. Program identifies region with certain terroir conditions
- ii. Staggered program roll-out across veredas in the region
- iii. All plots within selected veredas are eligible to receive inputs & training
- iv. Eligible farmers decide whether to join the program or not (take-up):

Join: ★ Must meet program requirements (upgrade)

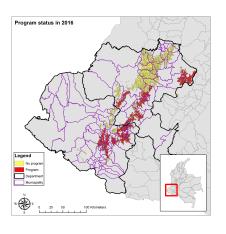
★ Has the option to sell (quality) coffee to program


Not Join: * Can upgrade taking advantage of eligibility

★ Cannot sell coffee to program

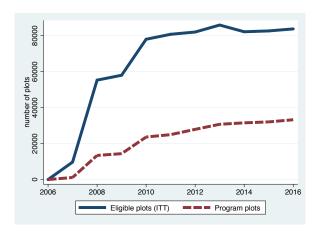

The Coffee Chain & Data

The Coffee Chain & Data

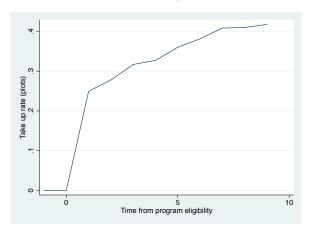

The Coffee Chain & Data

Outline of the talk

- 0 The Sustainable Quality Program
- 1 Reduced Form Supply Response
 - i) Program roll-out
 - ii) Upgrading investments
 - iii) Coffee Quality
 - iv) Other outcomes
- 2 Framework & Calibration
- 3 Mechanisms: How did it work?
- 4 Discussion and Conclusions


Program Roll-Out and Take-Up

► Vereda - Terrain characteristics


Municipality - SocioEconomic characteristics

Program Roll-Out and Take-Up

- Earlier expansion in Nariño, then Cauca
- By 2013 suitable municipalities have almost been saturated

Program Roll-Out and Take-Up

- Heterogeneity in take-up rates across municipalities ()

Yearly panel (2006-2016) of all plots in the Program Regions

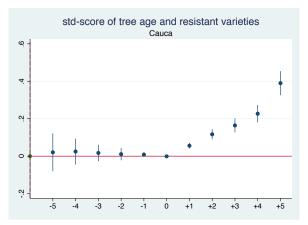
$$Y_{pvmt} = \beta_0 + \beta_1 \times P_{pvmt} + \gamma_p + \gamma_{mt} + \varepsilon_{pvmt}$$

for plot p in vereda v of municipality m in season t.

- Concerns:
 - Veredas Selection
 - Endogenous (timing of) take-up

Yearly panel (2006-2016) of all plots in the Program Regions

$$Y_{pvmt} = \beta_0 + \beta_1 \times P_{pvmt} + \gamma_p + \gamma_{mt} + \varepsilon_{pvmt}$$


for plot p in vereda v of municipality m in season t.

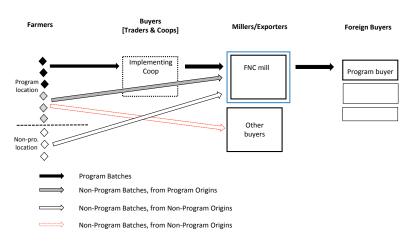
- Strategy:
 - Veredas Selection ⇒ DID with plot FE (+ spatial RD)
 - ► Endogenous (timing of) take-up ⇒ ITT specifications

Yearly panel (2006-2016) of all plots in the Program Regions

$$Y_{pvmt} = \beta_0 + \beta_1 \times P_{pvmt} + \gamma_p + \gamma_{mt} + \varepsilon_{pvmt}$$

for plot p in vereda v of municipality m in season t.

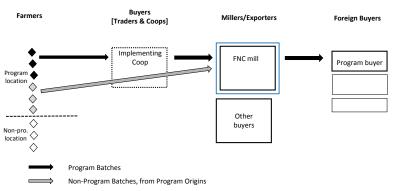
$$Y_{pvmt}=eta_0+eta_1 imes P_{pvmt}+\gamma_p+\gamma_{mt}+arepsilon_{pvmt}$$
 (1) (2) (3) (4) Standardized Plot Upgrading Score (Tree Age and Share Resistant Varieties)


	OLS	ITT	Heterogeneity (ITT)		
Program Plot	0.1862***		Good plots	Other plots	
Program Vereda	(0.009)	0.0478**	0.1506*** -0.021 (0.034) (0.022		
Observations Number of plots Plot FE Mun-Year FE	775,263 91,766 Yes Yes	775,263 91,766 Yes Yes	196,985 32,060 Yes Yes	578,278 59,706 Yes Yes	

→ Programs

⇒ Did the program increase quality?

⇒ Did the program increase quality?

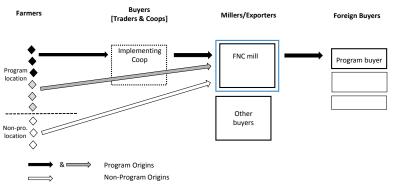

We observe origin and quality testing of all batches at FNC mills (2006-2016)

Q1 Are program batches actually better (OLS)?

$$Q_{bomy} = eta_0 + eta_1 imes ext{Program batch}_{bomy} + \gamma_{oym} + arepsilon_{bomy}$$

where Q_{bomy} denotes a quality outcome of coffee batch b from buying point o in month m of year y.

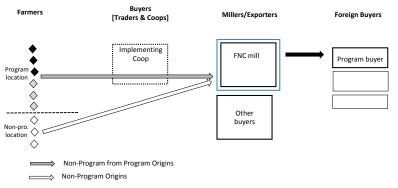
	(1) Health beans (OL	(2) Low Quality S)	(3) Health beans (OL	(4) Low Quality .S)	(5) Health beans (IT	(6) Low Quality T)	(7) Health beans (ITT s	(8) Low Quality orting)
Program batch	0.0181***	-0.0133*** (0.003)	0.0192***	-0.0140*** (0.003)				
Program origin					0.0042*** (0.001)	-0.0083*** (0.002)	0.0021 (0.002)	-0.0090*** (0.003)
Sample Mean dep. var.	All 93.95%	All 0.531%	All 93.95%	All 0.531%	All 93.95%	All 0.531%	Non-program 93.67%	Non-program 0.557%
Observations	118,758	118,758	122,897	122,897	122,897	122,897	108,095	108,095
R ²	0.656	0.648	0.482	0.493	0.475	0.488	0.368	0.379
Origin-Month-Year FE	Yes	Yes	No	No	No	No	No	No
Origin - Month FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Year-Month FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes


Robust standard errors in parentheses (cluster origin and coop-year). *** p<0.01, ** p<0.05, * p<0.1, + p<0.15

Q2 Is FNC sourcing better coffee from Program origin (ITT)?

$$Q_{bomy} = \beta_0 + \beta_1 \times \operatorname{Program Origin}_{bomy} + \gamma_{om} + \gamma_{my} + \varepsilon_{bomy}$$

where Q_{bomy} denotes a quality outcome of coffee batch b from buying point o in month m of year y.



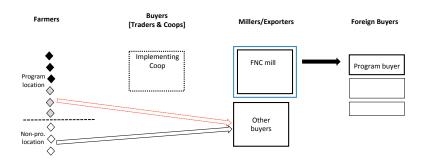
	(1) Health beans (OL	(2) Low Quality .S)	(3) Health beans (OL	(4) Low Quality .S)	(5) Health beans (IT	(6) Low Quality T)	(7) Health beans (ITT s	(8) Low Quality orting)
Program batch	0.0181***	-0.0133*** (0.003)	0.0192*** (0.003)	-0.0140*** (0.003)				
Program origin					0.0042*** (0.001)	-0.0083*** (0.002)	0.0021 (0.002)	-0.0090*** (0.003)
Sample	All	All	All	All	All	All	Non-program	Non-program
Mean dep. var.	93.95%	0.531%	93.95%	0.531%	93.95%	0.531%	93.67%	0.557%
Observations	118,758	118,758	122,897	122,897	122,897	122,897	108,095	108,095
R ²	0.656	0.648	0.482	0.493	0.475	0.488	0.368	0.379
Origin-Month-Year FE	Yes	Yes	No	No	No	No	No	No
Origin - Month FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Year-Month FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes

Robust standard errors in parentheses (cluster origin and coop-year). *** p<0.01, ** p<0.05, * p<0.1, + p<0.15

Q3 Is it purely driven by sorting?

 $Q_{bomy} = \beta_0 + \beta_1 \times \operatorname{Program Origin}_{bomy} + \gamma_{om} + \gamma_{my} + \varepsilon_{bomy}$ where Q_{bomy} denotes a quality outcome of coffee batch b from buying point o in month m of year y.

Reduced Form: Quality Response


	(1) Health beans (OL	(2) Low Quality (S)	(3) Health beans (OL	(4) Low Quality S)	(5) Health beans (IT	(6) Low Quality T)	(7) Health beans (ITT s	(8) Low Quality orting)
Program batch	0.0181***	-0.0133*** (0.003)	0.0192***	-0.0140*** (0.003)				
Program origin					0.0042*** (0.001)	-0.0083*** (0.002)	0.0021 (0.002)	-0.0090*** (0.003)
Sample Mean dep. var.	All 93.95%	All 0.531%	All 93.95%	All 0.531%	All 93.95%	All 0.531%	Non-program 93.67%	Non-program 0.557%
Observations R ²	118,758 0.656	118,758 0.648	122,897 0.482	122,897 0.493	122,897 0.475	122,897 0.488	108,095 0.368	108,095 0.379
Origin-Month-Year FE	Yes	Ves	0.462 No	0.493 No	0.475 No	0.400 No	0.366 No	0.379 No
Origin - Month FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Year-Month FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes

Robust standard errors in parentheses (cluster origin and coop-year). *** p<0.01, ** p<0.05, * p<0.1, + p<0.15

Reduced Form: Quality Response

Q4 What about sorting to other buyers?

- Challenge: we do not observe quality sold to other buyers
- ▶ Approach A: prices of all coffee transactions (only for 2013)
- Approach B: look at export quality

Approach A: Sorting and Prices from Other Buyers

- Under sorting sales to non-program buyers in program origins (by program farmers) should fetch lower prices
- RDD around program borders to overcome selection into different localities
- Caveat: due to El Niño & La Niña 2013 was a bad year for quality

Approach A: Sorting and Prices from Other Buyers

- ▶ Higher prices from the cooperative and no difference in prices from other buyers
- ▷ No negative spillovers:
 - Non-program farmers in Program Veredas → Link to table
 - ► Results at the vereda level ► Link to table

	(1) In price - a	(2) all buyers	(3) In price - C	(4) Cooperative	(5) In price -	(6) Other buyers
	(OLS)	(ITT)	(OLS)	(ITT)	(OLS)	(ITT)
Program Farmer	0.0359***		0.0345***		0.0016	
	(0.002)		(0.003)		(0.003)	
Program Vereda		0.0105*		0.0194**		-0.0102
		(0.005)		(800.0)		(0.007)
Observations	5.211	5.211	4.375	4.375	2.303	2,303
R ²	0.266	0.204	0.201	0.168	0.222	0.222
Border FE	Yes	Yes	Yes	Yes	Yes	Yes
Border Distance	Yes	Yes	Yes	Yes	Yes	Yes

Approach B: DID at Export Gate

$$S_{ry} = \beta_0 + \beta_1 \times PR_{ry} + \gamma_r + \gamma_y + \varepsilon_{ry}$$

where *r* is region and *y* is year

Dependent variable: % Exported as Supremo Coffee

(1)	(2)	(3)	(4)

Program Region × Post	0.126***	0.152**	0.136***	0.162**
	(0.041)	(0.074)	(0.036)	(0.065)

Sample	FNC	FNC	All	All
Year FE	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes
Region Trend	No	Yes	No	Yes

- Approach B: look at export quality
 - If sorting to other buyers, DID estimates should be sensitive to include non-FNC sales

Reduced Form: Other Outcomes

• We use the 2013 sales data + RDD to investigate other outcomes:

$$Y_{fmvb} = \alpha + \beta_1 \times P_{fmv} + \gamma_b + X_{fmvb} + \varepsilon_{fmvb}$$

- Sales (PGO)
 - Increased sales to Program implementer (↓ side-selling)
- Upgrading ()
 - ► Qualitatively Confirm DID results (↑ investments)
- Production ()
 - Used in calibration (↑ production)
- Spillover (PGO)
 - No evidence

Reduced Form: Sales

- Contract between the program and farmers can not be enforced:
 - Farmers could be concerned that buyer doesn't pay announced price premium
 - Farmers could be concerned that buyer reneges on promise to buy all supply of suitable quality
- ⇒ (Sales data not ideal since quality was very poor in 2013)
 - Transaction data from coop (2015/16) confirm:
 - a) 10% announced price premium ();
 - b) Program buys > 90% of Program farmers production ()

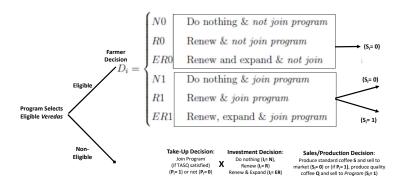
Outline of the talk

- 0 The Sustainable Quality Program
- 1 Reduced Form Supply Response
- 2 Framework & Calibration
 - i) Model
 - ii) Assumptions
 - iii) Empirical Strategy
 - iv) Results
- 3 Mechanisms: How did it work?
- 4 Discussion and Conclusions

II. Framework

II. Framework

- A perfectly competitive market for <u>standard quality</u>
 - Price for standard coffee in competitive international market pw
 - ▶ Domestic farm-gate price $p = p_w/(1 + \tau)$
 - ▶ Unit production cost c < p</p>


II. Framework

- A perfectly competitive market for standard quality
 - Price for standard coffee in competitive international market pw
 - ▶ Domestic farm-gate price $p = p_w/(1 + \tau)$
 - ▶ Unit production cost c < p</p>
- A monopsonist buyer willing to pay a quality price premium $(1 + \eta) p^{w}$
 - ▶ To produce high quality farmer incurs fixed (F_i) and variable cost (γ)
 - International buyer sources through a program implementer (FNC)
 - ▶ Program implementer pays farmers quality premium $p^Q = (1 + \pi)p$

II. Framework: Remarks

- Market Structure Assumptions:
 - 1. Treat FNC and coop as a single vertically integrated exporter
 - 2. Identical transport/processing costs τ
 - ★ (w.i.p., new data)
 - 3. Perfectly competitive standard quality market
 - ★ Guarantia de Compra + no spillover / g.e. effects on prices
 - 4. No other buyer of quality coffee
 - ★ Low baseline level + no sorting + no side-selling (+ w.i.p., new data)

Farmers Decision

- i. Program identifies region with certain terroir conditions
- II. All plots within selected *veredas* are eligible to receive inputs & training
- iii. Eligible farmers decide whether to join the program or not (take-up):

Join: has the option to sell (quality) coffee to program

Not Join: can upgrade but cannot sell to program

II. Framework: Farmer choices

Eligible farmer decides whether to invest in her plot and/or join the program

$$D_i = \begin{cases} \mathbf{l_p} = 0 & N0 & \text{Do nothing \& not join program} \\ R0 & \text{Renew \& not join program} \\ R0 & \text{Renew and expand \& not join program} \\ \mathbf{l_p} = 1 & N1 & \text{Do nothing and join program} \\ R1 & \text{Renew \& join program} \\ ER1 & \text{Renew, expand \& join program} \end{cases}$$

⇒ Benefit:

- ▶ Increase in production: $Q_i^D = (1 + \omega_d)xQ_i$
- If join: option to sell to program at $p^Q = (1 + \pi) \times p$
- ▶ The option is valued α

⇒ Cost:

- ▶ Fixed cost F_i^D
- Additional variable cost γ to produce quality
 - ⋆ γ is neither farmer nor decision specific

II. Framework: Farmer choices

Eligible farmer decides whether to invest in her plot and/or join the program

⇒ Benefit:

- ▶ Increase in production: $Q_i^D = (1 + \omega_d)xQ_i$
- If join: option to sell to program at $p^Q = (1 + \pi) \times p$
- ▶ The option is valued α

\Rightarrow Cost:

- Fixed cost F_i^D
- Additional variable cost γ to produce quality
- Farmer chooses D_i that maximizes

$$D_i \in argmax_D$$

$$\{ \mathbf{W}_i^D = (\mathbf{1} + \mathbf{I}_{\mathbf{P}} \alpha)[(\mathbf{1} + \mathbf{I}_{\mathbf{P}} \pi) \mathbf{p}^S - (\mathbf{1} + \mathbf{I}_{\mathbf{P}} \gamma) \mathbf{c}^S)] \times (\mathbf{1} + \mathbf{I}_{\mathbf{D}} \times \omega^D) \mathbf{Q}_i - \mathbf{F}_i^D \}$$

II. Framework: Program Objective Function

• Program Implementer Profits P:

$$\mathbf{P} = \mathbf{Q}^Q \times ((1+\eta)p^W - (1+\pi)p^S - \tau p^W)$$

• Farm gate premium π is set to

$$\pi \in \operatorname{arg\,max} {\color{black} \lambda} {\color{black} {f P}} + (1 - {\color{black} \lambda}) \int_Q \int_F {f I}_{f D} W_i^D d\Omega() d\Phi()$$

s.t.
$$\begin{cases} ((1+\pi) \times p - (1+\gamma) \times c) \ge (p-c) & (FarmerIC) \\ \mathbf{Q}^Q = \mathbf{Q}^Q(\pi) & (FarmerPC) \end{cases}$$

λ

- A reduced-form representation of buyer contract with FNC
- Resale price maintenance, CSR (with limited transfers), ...

Identification

- 1. $F_i^D = G^D(X_i) + e_i$ with e_i EV Type I with shape σ
 - → Farmer's decision can be represented by a multinomial logit

2. Identification Strategy:

- σ is identified from investment decisions of non-takers
- once σ is known, α *is* identified from take-up in 'excess' of what implied by π , γ and ω alone

Remarks:

- Model is over-identified (relevant constraints are imposed)
- Model of binary take-up decision similar insights but precludes counterfactuals on α
- Estimates anchored to take-up + price premia along chain \rightarrow robust to c, p^W , γ ...

II. Framework - Calibration

Estimates

	LStilli	aics	
ω	Increases in volumes		+ (w.i.p., new data)
	ω^{P}	25%	
	ω^{U}	12%	
	ω^{E}	38%	
π	Program farm gate price premium	10%	known + ▶ Table
η	Program FOB price premium	20%	known + ○ Table
η^{W}	Supremo export gate premium	10%	➤ Table

Directly observed from the data

Q_i	Farm size distribution	1000 Kg/Ha.
p_w	FOB price for standard coffee	3.75 USD/Kg
р	Farm gate price for standard coffee	2.7 USD/Kg
Τ	Transport / Processing costs	0.4

Information from agronomists

С	Variable cost for standard coffee	0.68 USD/Kg	(w.i.p., new data)
γ	Additional program variable cost	16.7%	(w.i.p., new data)

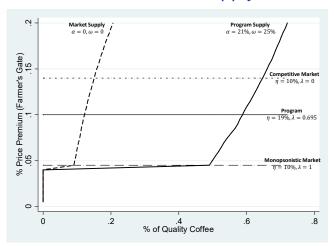
II. Framework - Results

Parameters

Faranie	1612
λ (estimated)	0.695
	[0.685,0.705]
α (estimated)	0.21
	[0.185,0.215]
ω (observed)	25%*
η (observed)	19%*
Outcom	nes
π (observed)	10%*
% Quality	59%
Take-Up (T=1)	41%
\triangle Farmers Π T=1	17%
\triangle Farmers W	19%
△ Chain Surplus	33 %
% Surplus Farmers	56%

Outline of the talk

- 0 The Sustainable Quality Program
- 1 Reduced Form Supply Response
- 2 Framework & Calibration
- 3 Mechanisms: How did it work?
 - i) Remarks
 - ii) Demand & Supply (counterfactuals)
 - iii) Comparison with other VSSs
 - iv) External Validity
- 4 Discussion and Conclusions


Remarks

- Program might have alleviated at least a market failure
 - ▶ (Marginal) benefit of producing quality at export gate: $\approx 37.5c$
 - **★** $10\% \times 3.75$ \$ $\approx 37.5c$
 - ► Marginal cost of producing quality: ≤ 27c
 - ★ Program price premium gives an upper bound 10% × 2.7\$ ≈ 27c
 - ★ Marginal cost of producing quality $16.7\% \times 0.68\$ \approx 11.4c$

Remarks

- Program might have alleviated at least a market failure
 - ▶ (Marginal) benefit of producing quality at export gate: $\approx 37.5c$
 - ★ $10\% \times 3.75\$ \approx 37.5c$
 - ► Marginal cost of producing quality: ≤ 27c
 - ★ Program price premium gives an upper bound $10\% \times 2.7\$ \approx 27c$
 - ★ Marginal cost of producing quality 16.7% × 0.68\$ ≈ 11.4c
- Program unlikely to have fully restored efficiency in the chain
 - Perfect contract enforcement would fully remove double marginalization:
 - ★ Farm gate premium would be $10\% \times 3.75\$ \approx 37.5c \Rightarrow (\pi \approx 15\%)$
 - A possible explanation: constraints on lump-sum to FNC
 - ⋆ potentially consistent with PPP with FNC and dynamic disbursement

Counterfactuals: Demand and Supply

- At the farm gate the program shifted both:
 - S: increasing production (ω) and luring farmers in through (α)
 - D: export gate premium (η) and transferring more of that to farmers (λ)

Counterfactuals: Full Table

Panel A: Calibration & Counterfactuals Counterfactuals

	Baseline Estimates	Counterfactuals								
		Supply Side			D	emand S	ide	Market Structure		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Parameters		ω=0	α =0	ω=0 α=0	λ=1	η=0.1	λ=1 & η=0.1	Monopsonist	Monopsonist + Enforceable Contracts	Competitive Market
λ (estimated)	0.695 [0.685,0.705]	0.695	0.695	0.695	1	0.695	1	1	1	0
α (estimated)	0.21 [0.185,0.215]	0.21	0	0	0.21	0.21	0.21	0	0	0
$\begin{array}{l} \omega \text{ (observed)} \\ \eta \text{ (observed)} \end{array}$	25%* 19%*	0% 19%	25% 19%	0% 19%	25% 19%	25% 10%	25% 10%	0% 10%	0% 10%	0% 10%
	10%*	14%	13.5%	16%	4.5+%	4.5+%	4.5+%	4.5+%	0.5%	14%
% Quality	59%	35%	38%	17%	49%	48%	48%	9%	7%	15%
Take-Up (T=1)	41%	28%	28%	16%	34%	34%	34%	11%	9%	15%
△ Farmers Π T=1	17%	12%	32%	23%	14%	14%	14%	17%	16%	21%
△ Farmers W	19%	9%	9%	4%	13%	13%	13%	2%	1.5%	4%
△ Chain Surplus	33%	15%	17%	6%	29%	20%	20%	3%	2.5%	4%
% Surplus Farmers	56%	61%	53%	62%	46%	66%	66%	62%	54%	100%

Comparison with other VSS

- ⇒ Compare with other programs:
 - That provide inputs and training (Environmental label)
 - ► That aim to solve price transmission issues (Social label)

Comparison with other VSS

⇒ Compare with other programs:

- That provide inputs and training (Environmental label)
- ► That aim to solve price transmission issues (Social label)

	(1) Farm Gate	(2)	(3) Mill Gate	(4)	(5)	(6) Export Gat	(7)
	Price (In)	Pr	rice (In)	Quality	Price (In)		Quality
Program	0.0946***	0.0660***	0.0462***	0.1244*** (0.025)	0.1976***	0.1896***	1.1367*** (0.039)
Environmental label	0.0080 (0.007)	0.0317***	0.0021 (0.004)	0.0078 (0.018)	0.0473*** (0.006)	0.0427*** (0.006)	-0.1056*** (0.024)
Social label		0.0149***	-0.0134*** (0.004)	-0.0837*** (0.032)	0.0902***	0.0662*** (0.007)	-0.1016*** (0.024)
Sample		All	Non-standard	Non-standard	All	Non-standard	Non-standard
Observations R ² Farmer FE	28,323 0.783 Yes	213,252 0.930	122,481 0.938	69,092 0.467	52,847 0.910	23,111 0.904	26,417 0.462
Mill sale conditions Contract conditions		Yes	Yes	Yes	Yes	Yes	Yes

Notes: Robust standard errors in parentheses (cluster buying point column 1, cluster origin-year columns 204 and cluster year-month-destination columns 5-7). "" p<0.01, "p<0.05," p<0.1, p<0.15. Unit of observation: Column 1 farmer-program, Columns 2 to 4 a coffee batch entering the mill. Columns 5 to 7 a batch at the export oate. Time period is 2006-2013.

External Validity

- Program is the flagship buyer-driven VSSs in coffee
 - Other global companies have similar programs
 - Similar programs are being implemented in other chains
- In Colombia the Program was implemented in multiple regions
 - In one region the program is implemented by a private exporter
 - Our data coverage not ideal to explore heterogeneity
- The Program is implemented in multiple countries (w.i.p., new data)
 - Central and South America: similar structure, typically with private exporters
 - East Africa: Program mostly supports NGO-managed extension/training
 - Weaker exporters: harder to guarantee reliability, traceability and enforce farm gate premium
 - → Colombia as a model to aim for

Conclusions

Comprehensive analysis of a buyer-driven quality-upgrading program

- 1. Evidence suggests that the program
 - Incentivized (larger) farmers to invest and upgrade farm
 - Quantity, Quality and Prices increased

Conclusions

Comprehensive analysis of a buyer-driven quality-upgrading program

- 1. Evidence suggests that the program
 - Incentivized (larger) farmers to invest and upgrade farm
 - Quantity, Quality and Prices increased

Welfare Evaluation

- Takers welfare increased substantially, no negative spillover on non-takers
- Farmers keep substantial share of surplus

Conclusions

Comprehensive analysis of a buyer-driven quality-upgrading program

1. Evidence suggests that the program

- Incentivized (larger) farmers to invest and upgrade farm
- Quantity, Quality and Prices increased

Welfare Evaluation

- Takers welfare increased substantially, no negative spillover on non-takers
- Farmers keep substantial share of surplus

Mechanisms

- Both supply-side and demand-side component of the bundle are important
- Contractual arrangements btw exporter and global buyer impact farmers welfare

Thank You!

Terrain conditions comparison across Veredas

	Not-P	Not-Program Ver.		gram Ver.	T-test Difference
	N	Mean/SE	N	Mean/SE	(1)-(2)
Agro-climatically attainable yield 1961-90, kg DW/ha	410	1038.800 (22.018)	350	995.740 (22.580)	43.060
Altitude (mean), metres	410	1727.627 (27.244)	350	1902.465 (24.881)	-174.838***
Altitude (std), metres	410	157.524 (5.697)	350	185.562 (5.327)	-28.038***
Slope (mean), degrees	410	16.039 (0.359)	350	19.398 (0.249)	-3.360***
Slope (std), degrees	410	6.429 (0.111)	350	7.273 (0.105)	-0.843***
Terrain ruggedness index (mean)	410	76.315 (1.724)	350	91.700 (1.223)	-15.385***
Terrain ruggedness index (std)	410	27.281 (0.645)	350	31.405 (0.645)	-4.124***
Agro-climatically attainable yield 1961-90, kg DW/ha	286	1036.185 (21.875)	312	1070.715 (22.898)	-34.529
Altitude (mean), metres	306	1794.774 (31.394)	335	1874.720 (29.756)	-79.945*
Altitude (std), metres	299	154.820 (6.164)	342	171.118 (5.042)	-16.299**
Slope (mean), degrees	301	16.541 (0.408)	340	18.300 (0.285)	-1.759***
Slope (std), degrees	302	6.444	339	7.009 (0.101)	-0.565***
Terrain ruggedness index (mean)	299	77.883 (1.894)	342	86.955 (1.380)	-9.072***
Terrain ruggedness index (std)	301	26.796 (0.628)	340	30.072	-3.276***

Municipalities comparison

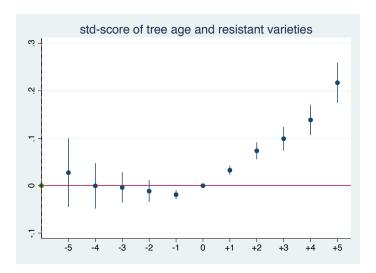
	(1) Non-program		(2) Program		T-test
	N	Mean/SE	N	Mean/SE	(1)-(2)
Official Area (Km²)	36	455.250 (89.469)	33	374.788 (63.005)	80.462
Altitude	36	1747.139 (124.334)	33	1683.727 (112.956)	63.412
Distance to district capital	36	53.229 (4.365)	33	53.062 (3.585)	0.167
Rurality Index (Rural/ Total Population)	36	0.750 (0.031)	33	0.767	-0.017
Poverty Index (SISBEN)	36	93.295	32	97.587 (0.430)	-4.292
Land Gini Index	36	0.769 (0.015)	32	0.739 (0.013)	0.029
Land Gini Index (Ownership)	36	0.754 (0.013)	32	0.716 (0.009)	0.037**
Literacy rate in 2005	36	84.589 (1.842)	32	85.435 (0.794)	-0.847
Index of soil agricultural suitability	35	2.895 (0.277)	32	2.393 (0.176)	0.502
Coffee cultivation 1997 (thsds. hectares)	32	1.484 (0.307)	29	1.181 (0.155)	0.303
Presence of coca cultivation	36	0.944 (0.222)	33	0.879 (0.212)	0.066
Presence indigenous population (1535-1540)	36	0.361 (0.081)	33	0.758 (0.076)	-0.396***
Spanish ocupied land (1510 - 1561)	36	0.361 (0.081)	33	0.273 (0.079)	0.088
Presence of land conflics (1901 - 1917)	36	0.056 (0.039)	33	0.061 (0.042)	-0.005
Presence of land conflicts (1918 - 1931)	36	0.083 (0.047)	33	0.121 (0.058)	-0.038
Violence 1948 to 1953	36	0.139 (0.058)	33	0.061 (0.042)	0.078
Presence of ELN	36	0.194 (0.078)	33	0.152 (0.063)	0.043
Presence of FARC	36	1.167	33	(0.115)	0.742***
Guerrilla Massacres	32	0.125 (0.059)	29	0.069 (0.048)	0.056
Paramilitary Massacres	32	0.875 (0.317)	29	0.172 (0.100)	0.703**

Plot outcomes

	(1) (2) plot score - Program mun.		(3) plot score -	(4) Program veredas	(5) (6) plot score - Heterogeneity		
	OLS	ITT	OLS	ITT	ITT Good	ITT Other	
Program plot	0.1699***		0.1700*** (0.009)				
Program vereda		0.0608** (0.026)		0.0277** (0.011)	0.1434*** (0.023)	0.0098 (0.012)	
Observations Number plots Plot FE	737,405 93,885 Yes	737,405 93,885 Yes	719,105 91,367 Yes	719,105 91,367 Yes	172,834 32,271 Yes	546,271 59,096 Yes	
Mun-Year FE Year FE	Yes -	Yes -	- Yes	- Yes	- Yes	- Yes	

Robust standard errors (cluster vereda) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1, + p < 0.15 Time period is 2006 to 2016. Unit of observation is plot-year.

Plot expansion


	(1) In	(2) (3) In planted area		(4) (5) (6) Plot exit		
Program plot (takers)	0.0695***		0.0875***	-0.0549*** (0.002)		-0.0688*** (0.006)
Will be takers			0.0392*** (0.007)			-0.0497*** (0.006)
Never takers eligible			0.0040 (0.006)			0.0107* (0.006)
Program vereda		0.0180*** (0.007)			-0.0061 (0.006)	
Observations Number of plots Plot and Mun-Year FE	737,405 93,885 Yes	737,405 93,885 Yes	737,405 93,885 Yes	737,405 93,885 Yes	737,405 93,885 Yes	737,405 93,885 Yes

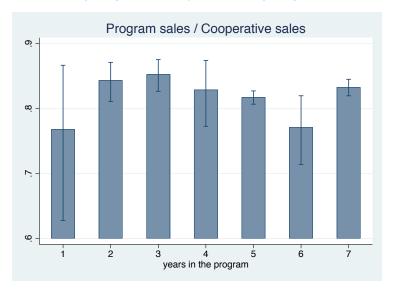
Robust standard errors (cluster vereda) in parentheses. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15 Time period is 2006 to 2016. Unit of observation is plot-year.

Parallel trends Plot Index

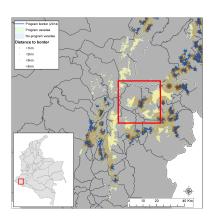
Plot analysis at Vereda level

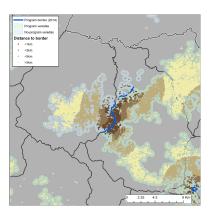
	(1) In Coffee area	(2) Plot exit	(3) Number farmers	(4) Number plots
Program vereda	0.0911***	-0.0169*** (0.005)	3.0003*** (0.630)	3.5383*** (0.826)
Observations	21,538	21,538	21,538	21,538
Number of veredas Vereda FE	2,086 Yes	2,086 Yes	2,086 Yes	2,086 Yes
Mun-Year FE	Yes	Yes	Yes	Yes

Notes: Robust standard errors in parentheses (cluster municipality). *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. Time period is 2006 to 2016. Unit of observation is vereda-year. The variable "program vereda" takes value 1 after the vereda becomes eligible by the program.



Program price premium – by farmer program tenure


Share sold to program – by farmer program tenure



RDD - Borders map

RDD - Farmer comparison

	(1) In total area	(2) % shade	(3) Number of plots	(4) Plot ownership	(5) Altitude	(6) Longitude	(7) Latitude
Program vereda	0.0808*	0.0121	0.0198	0.0204	17.7989	205.5652	39.0170
	(0.047)	(0.015)	(0.049)	(0.024)	(14.248)	(151.962)	(170.989)
Observations	5,770	5,770	5,770	5,770	5,770	5,770	5,770
R ²	0.178	0.166	0.128	0.208	0.750	0.996	0.995
Border FE, 1k border	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: Robust standard errors (cluster municipality) in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1, + p < 0.15. Unit of observation is a farmer.

Farmer spillovers

	(1) In price (all)	(2) In price (coop)	(3) In price (other buyers)	(4) Sells to Coop	(5) Sells to other	(6) Share sold to coop	(7) land	(8) density	(9) age
Program farmer	0.0306***	0.0383***	-0.0092 (0.007)	0.2389***	-0.0902+ (0.058)	0.2200***	0.6643***	333.6023*** (103.725)	-3.7587*** (1.437)
Will enter program	-0.0067 (0.007)	0.0040 (0.010)	-0.0141 (0.009)	0.0434 (0.064)	-0.0201 (0.062)	0.0665	0.3832***	272.4185** (113.760)	-4.1674*** (1.475)
Eligible not in program	-0.0052 (0.005)	0.0039 (0.007)	-0.0106 (0.007)	0.0602 (0.060)	-0.0127 (0.057)	0.0616 (0.054)	0.0350 (0.105)	257.3459** (102.263)	-0.6891 (1.429)
Observations R ²	5,211 0,266	4,375 0,201	2,303 0,222	5,211 0,208	5,211 0.213	5,211 0,279	5,209 0.197	5,211 0.112	5,211 0.197
Border FE Border Distance	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes	yes yes

Robust standard errors in parentheses, cluster locality.*** p<0.01, ** p<0.05, * p<0.1, + p<0.15

Farmer spillovers - Vereda level

	(1)	(2)	(3)	(4)	(5)
	In price (all)	In price (coop)	In price (private)	Share coop.	Number other buyers
Program vereda	0.0242*** (0.003)	0.0261*** (0.005)	0.0071** (0.003)	0.1290***	-0.0013 (0.033)
Observations	2,217	2,170	1,979	2,217	1,982
R ²	0.534	0.376	0.300	0.372	0.367
Municipality FE	Yes	Yes	Yes	Yes	Yes

Notes: Robust standard errors (cluster municipality) in parentheses *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. Unit of observation is a vereda.

Participation in FNC programs

	(1) Individual	(2) program	(3) Technical	(4) program	(5) Credit p	(6) program	(7) ID pro	(8) gram
Program farmer	0.0284***		-0.0364*** (0.004)		0.0043 (0.006)		-0.0872*** (0.002)	
Program vereda		-0.0002 (0.007)		0.0026 (0.005)		0.0148 (0.009)		-0.0058 (0.004)
Mean dep. var.	0.94	182	0.9391		0.6163		0.9241	
Observations	632,270	632,270	632,270	632,270	632,270	632,270	632,270	632,270
Number of Farmers	115,767	115,767	115,767	115,767	115,767	115,767	115,767	115,767
Farmer FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mun-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: Robust standard errors in parentheses (cluster vereda) *** p<0.01, ** p<0.05, * p<0.1, + p<0.15. Unit of observation farmer-year, time period 2007-2012.

Dependent variable is a dummy that takes value 1 if the farmer participated in a program in a given year. The "Individual program" dummy takes value 1 when the farmer had a one-to-one activity with the extension services. "ID program" refers to the FNC program to ensure all farmers had an ID that allowed them to do monetary transactions with the cooperative and keep track of the programs they are involved and their benefits.

Along the chain - Export prices

→ Program batches receive higher prices at port:

	(1) (2) (3) (4 In price per Kg excelso						
Program batch	0.1917***	0.1987*** (0.024)	0.1076*** (0.029)	0.0886*** (0.028)			
Regions	All	Program	Program	Program			
Product	All	All	High gran.	High gran.			
Quality controls	No	No	No	Yes			
Observations R^2	53,675	13,705	4,001	4,001			
	0.905	0.908	0.905	0.915			
Contract conditions	Yes	Yes	Yes	Yes			
Year-Month FE	Yes	Yes	Yes	Yes			
Origin - Year FE	Yes	Yes	Yes	Yes			
Contract conditions	Yes	Yes	Yes	Yes			

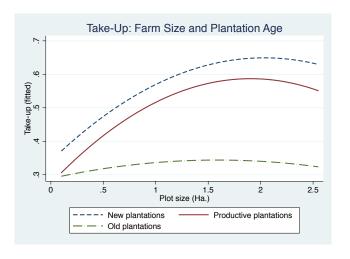
Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1, + p<0.15

→ No evidence of double-marginalization at the mill Prices at mill

Price premium at the processing stage

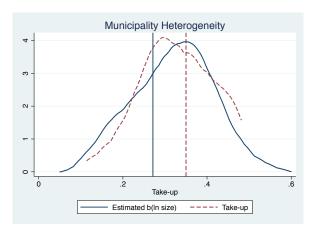
	(1)	(2) In prio	(3) ce per Kg pe	(4) ergamino	(5)
Program batch	0.0629***	0.0460***	0.0463*** (0.003)	0.0452*** (0.003)	0.0383*** (0.002)
Sample	All	Non-standard	N-S. Region	N-S. R. coop	N-S. R. coop
Quality control	No	No	No	No	Yes
Observations	213,252	122,481	44,808	27,455	26,238
R^2	0.929	0.938	0.950	0.933	0.944
Quantity control	Yes	Yes	Yes	Yes	Yes
Punto de compra - Year FE	Yes	Yes	Yes	Yes	Yes
Mill FE	Yes	Yes	Yes	Yes	Yes
Coop FE	Yes	Yes	Yes	Yes	Yes
Year-Month FE	Yes	Yes	Yes	Yes	Yes

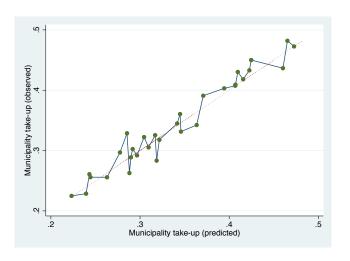
Notes: Robust standard errors in parentheses (cluster Location-year). *** p < 0.01, ** p < 0.05, * p < 0.1, + p < 0.15. Unit of observation is a transaction, a coffee batch entering the mill. Non-standard coffee are all transactions where the product is not denoted as standard. Region refers to the districts where the program is implemented. Quality controls include bean characteristics and taza tests. The *quality index* is the z-score of grams of healthy beans in sample and the negative of the grams of beans with broca and qualifying as pasilla (subproduct) in sample. Index time span is 2009-2014, and sample is restricted to this time period for Columns (4) and (5).


Estimating Fixed costs

$$F_i$$
: Log-Normal $\mu_{im} = \alpha_m + \theta_{a_i}(q_i)^2$ and σ

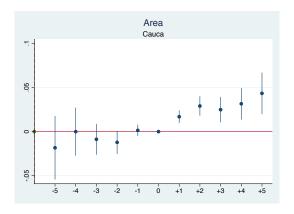
- ML estimation from Take-Up decision
- From estimates → Simulated Fixed Costs to numerically solve model (and run conunterfactuals)
 - Simulated Fixed Costs
 - ▶ Model fit (►Go)


Take-up heterogeneity - Age and size

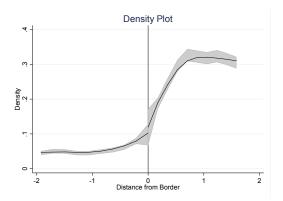

Take-up heterogeneity - Municipality

The figure reports the distribution of take-up rates across municipalities and the municipality specific estimated β_{land} in the regression Take up_{pm} = $\alpha + \beta_{land} * \text{Land Size}_{pm} + \beta_{age} * \text{Age}_{pm} + \epsilon_{pm}$ for each program municipality.

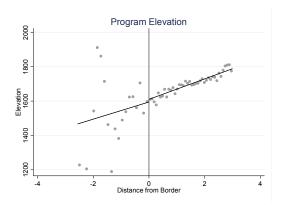
Model fit: Municipality



Plot Expansion


Dependent variable: In of plot area planted with coffee

RDD: Continuous Density



	Epanechnikov (p=2)	Epanechnikov (p=1)	Epanechnikov (p=3)	Uniform (p=2)	Triangular (p=2)
P-value	0.49	0.84	0.80	0.97	0.29

RDD: Continuous Density

	Epanechnikov	Uniform	Triangular
β	20.146	33.098	10.72
P-value	0.76	0.644	0.873

RDD: Plot Upgrading

	(1) La	(2) nd with Co	(3)	(4)	(5) Plot density	(6)	(7) Ave	(8) rage tree	(9) age
	(OLS)	(ITT)	(IV)	(OLS)	(ITT)	(IV)	(OLS)	(ITT)	(IV)
Program Farmer	0.5840*** (0.031)		0.7017*** (0.264)	81.3034*** (29.715)		664.0923*** (256.551)	-2.6267*** (0.283)		-4.5678** (1.937)
Program Vereda		0.3068*** (0.106)			290.5656*** (101.782)			-1.9986 (1.405)	
Observations	5,209	5,209	5,209	5,211	5,211	5,211	5,211	5,211	5,211
R ²	0.192	0.129	0.189	0.111	0.111	0.031	0.188	0.164	0.174
Border FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Border Distance	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Hobust standard errors in parentneses, cluster location. "" p<0.01, " p<0.05, " p<0.1, + p<0.15

RDD: Sales Patterns

- □ ... and sell bigger share of their produce to the cooperative

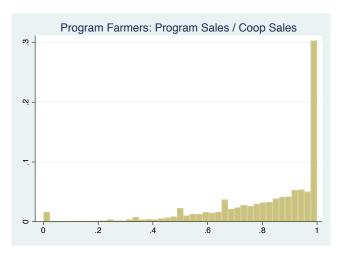
	(1) S	(2) Sells to coo	(3)	(4) Sells to	(5) o other bu	(6) Iyers	(7) Share s	(8) sold to Coo	(9) perative
	(OLS)	(ITT)	(IV)	(OLS)	(ITT)	(IV)	(OLS)	(ITT)	(IV)
Program Farmer	0.1826***		0.3167***	-0.0769*** (0.016)		-0.1063 (0.118)	0.1595***		0.2990***
Program Vereda		0.1386** (0.058)			-0.0465 (0.057)			0.1308** (0.053)	
Observations R ²	5,211 0.207	5,211 0.153	5,211 0.177	5,211 0.213	5,211 0.208	5,211 0.212	5,211 0.279	5,211 0.245	5,211 0.251
Border FE Border Distance	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Robust standard errors in parentheses, cluster location. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15

Program Price Premium

Strategy: Program sales (2015-2016) for one of the Cooperatives implementing the program

$$In(P_{fsoy}) = \beta_0 + \beta_1 \times P_{sfy} + \gamma_{oy} + \gamma_f + \varepsilon_{fsmy}$$


: farmer f, program s, buying point (origin) o in season y

	(1)	(2) In pri	(3) ce per kg.	(4)
Program sales	0.0968***	0.0960***	0.0962***	0.0591**
Sale types included	All	All	All	Non-standard
Observations Location-Year FE Farmer FE Farmer-Year FE	28,323 Yes No –	28,323 Yes Yes -	28,323 Yes - Yes	22,969 Yes - Yes

(No) Hold-Up

▶ Program buys around 80% of the program farmers deliveries to the program implementer.

Program Sourcing at the Farm's Gate

- Program farmers sell program batches to local FNC-Affiliated Cooperative
- Permanent buying points in all locations
- ▶ Premium: COP 40/kg (\simeq 10% over daily FNC price for standard quality)

Standard coffee

Program Premium

RDD: Production and Upgrading

Table: Other Outcomes: Production and Upgrading

	(1) Quant	(2) ity Produce	(3) ed (log)	(4) Plot Upgrade Index	(5) In Land Under Coffee
Program Farmer	0.6205***				
Program Vereda		0.1358***		0.1060**	0.0494**
Expand		(,	0.3831***	(,,
Renew			0.1337+ (0.085)		
Observations	5,829	5,829	790	8157	8157
Farmer controls	Yes	Yes	Yes	N.A.	N.A.
Border FE	Yes	Yes	No	Yes	Yes
Border Distance	1Km	1Km	N.A.	1Km	1Km
Vereda FE	N.A.	N.A	Yes	N.A	N.A
Takers only	N.A.	N.A.	Yes	N.A.	N.A.

Calibration: Robustness

Baseline			ROBUSTNESS						
	γ =0.167, c=0.68, τ =1.4, pw=3.75	γ =0.20	γ =0.225	c=0.75	c=1.02	τ =1.5	τ=1.6	pw=3.25	pw=4.25
λ (estimated)	0.695	0.705	0.71	0.71	0.745	0.725	0.765	0.71	0.685
α (estimated)	21%	23%	24%	22%	24%	22%	22%	22%	22%
π (observed)	10%	10%	10%	10%	10%	10%	10%	10%	10%
% Quality	59%	59%	59%	59%	59%	59%	59%	59%	59%
Take-Up (T=1)	41%	41%	41%	41%	41%	41%	41%	41%	41%
△ Farmers T=1	17%	16%	15%	17%	16%	17%	17%	17%	18%
△ Farmers W	19%	18%	18%	18%	18%	18%	18%	18%	18%
△ Chain Surplus	33%	33%	33%	33%	36%	35%	37%	34%	32%
% Surplus Farmers	56%	56%	56%	55%	52%	53%	50%	55%	57%

Full Table

Racalina

Panel A: Calibration & Counterfactuals Counterfactuals

	Estimates	Counterractuals									
		Su	Supply Side			Demand Side			Market Structure		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Parameters		ω=0	α= 0	ω=0 α=0	λ=1	η=0.1	λ =1 & η =0.1	Monopsonist	Monopsonist + Enforceable Contracts	Competitive Market	
λ (estimated)	0.695 [0.685,0.705]	0.695	0.695	0.695	1	0.695	1	1	1	0	
$\alpha \ ({\rm estimated})$	0.21 [0.185,0.215]	0.21	0	0	0.21	0.21	0.21	0	0	0	
ω (observed) η (observed)	25%* 19%*	0% 19%	25% 19%	0% 19%	25% 19%	25% 10%	25% 10%	0% 10%	0% 10%	0% 10%	
$\frac{ \text{Outcomes} }{\pi \text{ (observed)} }$	10%*	14%	13.5%	16%	4.5+%	4.5+%	4.5+%	4.5+%	0.5%	14%	
% Quality	59%	35%	38%	17%	49%	48%	48%	9%	7%	15%	
Take-Up (T=1)	41%	28%	28%	16%	34%	34%	34%	11%	9%	15%	
△ Farmers П T=1	17%	12%	32%	23%	14%	14%	14%	17%	16%	21%	
△ Farmers W	19%	9%	9%	4%	13%	13%	13%	2%	1.5%	4%	
△ Chain Surplus	33%	15%	17%	6%	29%	20%	20%	3%	2.5%	4%	
% Surplus Farmers	56%	61%	53%	62%	46%	66%	66%	62%	54%	100%	

	Panel B: Fit							
	Take-Up (P = 1) % in D (P = 1)					% in D (P = 0)		
		Nothing	Upgrade	Expand & Upgrade	Nothing	Upgrade	Expand & Upgrade	
Data Model	39% 41%	36% 32%	42% 45%	21% 23%	63% 64%	24% 23%	13% 13%	

Reduced Form: Quality Response

Dependent variable: Batch quality index								
	(1) (OLS)	(2) (OLS)	(3) (ITT)	(4) (ITT sorting)				
Program batch	0.4218*** (0.046)	0.4045***						
Program origin			0.2230***	0.1765***				

All	All	All	non-program	
123,089	123,089	123,089	108,135	
0.469	0.650	0.360	0.348	
No	Yes	No	No	
Yes		No	No	
Yes		Yes	Yes	
Yes		Yes	Yes	
	123,089 0.469 No Yes Yes	123,089 123,089 0.469 0.650 No Yes Yes —— Yes ——	123,089 123,089 123,089 0.469 0.650 0.360 No Yes No Yes — No Yes — Yes	

