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We study the interaction between a government’s bailout policy during a

banking crisis and individual banks’ willingness to impose losses on (or “bail

in”) their investors. Banks in our model hold risky assets and are able to

write complete, state-contingent contracts with investors. In the constrained

efficient allocation, banks experiencing a loss immediately bail in their in-

vestors and this bail-in removes any incentive for investors to run on the

bank. In a competitive equilibrium, however, banks may not enact a bail-in

if they anticipate being bailed out. In some cases, the decision not to bail

in investors provokes a bank run, creating further distortions and leading to

even larger bailouts. We ask what macroprudential policies are useful when

bailouts crowd out bail-ins.
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1 Introduction

In the years since the financial crisis of 2008 and the associated bailouts of banks and

other financial institutions, policy makers in several jurisdictions have drafted rules re-

quiring that these institutions impose losses on (or “bail in”) their investors in any future

crisis. These rules aim to both protect taxpayers and change the incentives of banks

and investors in a way that makes a crisis less likely. While the specific requirements

vary, and are often yet to be finalized, in many cases the bail-in will be triggered by

an announcement or action taken by the bank itself. This fact raises the question of

what incentives banks will face when deciding whether and when to take actions that

bail in their investors. In this paper, we ask how the prospect of being bailed out by the

government influences banks’ bail-in decisions and how these decisions, in turn, affect

the susceptibility of the banking system to a run by investors.

At one level, the reason why banks and other financial intermediaries sometimes ex-

perience runs by their investors is well understood. Banks offer deposit contracts that

allow investors to withdraw their funds at face value on demand or at very short notice.

During a bank run, investors fear that a combination of real losses and/or heavy with-

drawals will leave their bank unable to meet all of its obligations. This belief makes it

individually rational for each investor to withdraw her funds at the first opportunity;

the ensuing rush to withdraw then guarantees that the bank does indeed fail, justifying

investors’ pessimistic beliefs.1

A key element of this well-known story is that the response to a bank’s losses and/or

a run by its investors is delayed. In other words, there is a period of time during which

a problem clearly exists and investors are rushing to withdraw, but the bank continues

to operate as normal. Only when the situation becomes bad enough is some action

– freezing deposits, renegotiating obligations, imposing losses on some investors, etc.

– taken. This delay tends to deepen the crisis and thereby increase the incentive for

investors to withdraw their funds at the earliest opportunity.

From a theoretical perspective, this delayed response to a crisis presents a puzzle. A

run on the bank creates a misallocation of resources that makes the bank’s investors

as a group worse off. Why do these investors not collectively agree to an alternative

arrangement that efficiently allocates whatever losses have occurred while minimizing

liquidation and other costs? In particular, why does the banking arrangement not re-

spond more quickly to whatever news leads investors to begin to panic and withdraw

their funds?

Most of the literature on bank runs resolves this puzzle using an incomplete-contracts

1This basic logic applies not only to commercial banking to also to a wide range of financial in-
termediation arrangements. See Yorulmazer (2014) for a discussion of a several distinct financial
intermediation arrangements that experienced run-like episodes during the financial crisis of 2008.
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approach.2 In particular, it is typically assumed to be impossible to write and/or enforce

the type of contracts that would be needed to generate fully state-contingent payments

to investors. The classic paper of Diamond and Dybvig (1983), for example, assumes

that banks must pay withdrawing investors at face value until the bank has liquidated all

of its assets and is completely out of funds. Other contracts – in which, for example, the

bank is allowed to impose withdrawal fees when facing a run – are simply not allowed.

Even those more recent papers that study more flexible banking arrangements impose

some incompleteness of contracts. Peck and Shell (2003), for example, allow a bank to

adjust payments to withdrawing investors based on any information it receives. However,

the bank is assumed not to observe the realization of a sunspot variable that is available

to investors and, in this sense, the ability to make state-contingent payments is still

incomplete.3

If the fundamental problem underlying the fragility of banking arrangements is in-

completeness of contracts, then an important goal of financial stability policy should

be to remove this incompleteness. In other words, a key conclusion of the literature

to date is that policy makers should aim to create legal structures under which more

fully state-contingent banking contracts become feasible. There has, in fact, been sub-

stantial progress in this direction in recent years, including the establishment of orderly

resolution mechanisms for large financial institutions and other ways of “bailing in” these

institutions’ investors more quickly and more fully than in the past. The reform of money

market mutual funds that was adopted in the U.S. in 2014 is a prime example. Under

the new rules, certain types of funds are permitted to temporarily prohibit redemptions

(called “erecting a gate”) and impose withdrawal fees during periods of high withdrawal

demand if doing so is deemed to be in the best interests of the funds’ investors.4

In this paper, we ask whether making banking arrangements more fully state contin-

gent – thereby allowing banks increased flexibility to bail in their investors – is sufficient

to eliminate the problem of bank runs. To answer this question, we study a model in the

tradition of Diamond and Dybvig (1983), but in which banks can freely adjust payments

to investors based on any information available to the bank or to its investors. We think

of this assumption as capturing an idealized situation in which policy makers’ efforts to

improve the contractual environment have been completely successful. We ask whether

2An important exception is Calomiris and Kahn (1991), in which the ex post misallocation of resources
associated with a run is part of a desirable ex ante incentive arrangement to disciple bankers’ be-
havior. See also Diamond and Rajan (2001).

3This same approach is taken in a large number of papers that study sunspot-driven bank runs in
environments with flexible banking contracts, including Ennis and Keister (2010), Sultanum (2015),
Keister (2016), and many others. See Andolfatto et al. (2016) for an interesting model in which the
bank does not observe the sunspot state, but can attempt to elicit this information from investors.

4See Ennis (2012) for a discussion of the issues involved in reforming money market mutual funds.
There is a growing theoretical literature on bail-ins that we do not survey here; see, for example,
Walther and White (2017).
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and under what conditions bank runs can occur in this idealized environment.

There are two aggregate states in our model and banks face uncertainty about the

value of their investments. No banks experience losses in the good aggregate state,

but in the bad aggregate state, some banks’ assets are impaired. The government is

benevolent and taxes agents’ endowments in order to provide a public good. If there

is a banking crisis, the government can also use these resources to provide bailouts to

impaired banks. The government observes the aggregate state but cannot immediately

tell which banks have impaired assets and which do not. In addition, the government

cannot commit to a bailout plan; instead, the payment made to each bank will be chosen

as a best response to the situation at hand. As in Keister (2016), this inability to commit

implies that banks in worse financial conditions will receive larger bailout payments, as

the government will aim to equalize the marginal utility of consumption across agents to

the extent possible.

A bank with impaired assets has fewer resources available to make payments to in-

vestors. In an efficient allocation, such a bank would respond by immediately bailing in

its investors, reducing all payments so that the loss is evenly shared. When the bank

anticipates a government intervention, however, it may have an incentive to delay this

response. By instead acting as if its assets were not impaired, the first group of its depos-

itors who withdraw will receive higher payments. The government will eventually learn

that the bank’s assets are impaired and, at this point, will find the bank to be in worse

financial shape as a result of the delayed response. The inability to commit prevents the

government from being able to punish the bank at this point; instead, the bank will be

given a larger bailout payment as the government aims to raise the consumption levels

of its remaining investors. This larger payment then justifies the bank’s original decision

to delay taking action. In other words, we show that bailouts delay bail-ins.

The delay in banks’ bail-in decisions has implications at both the aggregate and bank

level. The delayed response makes banks with weak fundamentals even worse off and

leads the government to make larger bailout payments, at the cost of a lower level of

public good provision for everyone. In some cases, the misallocation of resources created

by the delay may be large enough to give investors in weak banks an incentive to run in

an attempt to withdraw before the bail-in is enacted. In these cases, the delayed bail-in

creates financial fragility.

Our approach has novel implications for the form a banking crisis must take. Models

in the tradition of Diamond and Dybvig (1983) typically do not distinguish between a

single bank and the banking system; one can often think of the same model as applying

equally well to both situations. If the banking system is composed of many banks, such

models predict that there could be a run on a single bank, on a group of banks, or on

all banks, depending on how each bank’s depositors form their beliefs. In our model,

in contrast, there cannot be a run on only one bank, nor can there be a crisis in which
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only one bank chooses to delay bailing in its investors. If there is only a problem at one

bank in our model, the government will choose to provide full deposit insurance, which

removes any incentive for investors to run as well as any need for the bank to enact a

bail-in. The problems of bank runs and delayed bail-ins can only arise in this model if

the underlying losses are sufficiently widespread.

We then analyze possible policy responses to the inefficiencies that arise in the compet-

itive equilibrium. Eliminating bailouts – if possible – would lead banks to immediately

bail in their investors when facing losses and would prevent bank runs from occurring in

equilibrium. However, it would also eliminate a valuable source of risk sharing and will

often lower welfare. We study two policies that can always be used to increase welfare:

placing a binding cap on the early payments made by banks and raising additional tax

revenue in period 0. We show that the optimal policy combines both of these tools.

The remainder of the paper is organized as follows. The next section describes the eco-

nomic environment and the actions available to banks, investors, and the government. In

Section 3, we derive the constrained efficient allocation of resources in this environment,

which is a useful benchmark for what follows. We provide the analysis of equilibrium,

including delayed bail-ins and the potential for bank runs, in Section 4. We then discuss

possible policy responses in Section 5 before concluding in Section 6.

2 The model
We base our analysis on a version of the Diamond and Dybvig (1983) model with flexible

banking contracts and fiscal policy conducted by a government with limited commitment.

We introduce idiosyncratic risk to banks’ asset holdings and highlight how banks’ incen-

tives to react to a loss are influenced by their anticipation of government intervention.

In this section, we introduce the agents, preferences, and technologies that characterize

the economic environment.

2.1 The environment

Time. There are three time periods, labeled t = 0, 1, 2.

Investors. There is a continuum of investors, indexed by i ∈ [0, 1] , in each of a continuum

of locations, indexed by k ∈ [0, 1] . Each investor has preferences characterized by

U
(
ci,k1 , c

i,k
2 , g;ωi,k

)
≡ u(ci,k1 + ωi,kci,k2 ) + v(g), (1)

where ci,kt denotes the period-t private consumption of investor i in location k and g

is the level of the public good, which is available in all locations. The random variable
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ωi,k ∈ Ω ≡ {0, 1} is realized at t = 1 and is privately observed by the investor. If ωi,k = 0,

she is impatient and values private consumption only in period 1, whereas if ωi,k = 1

she values consumption equally in both periods. Each investor will be impatient with a

known probability π > 0, and the fraction of investors who are impatient in each location

will also equal π. The functions u and v are assumed to be smooth, strictly increasing,

strictly concave and to satisfy the usual Inada conditions. As in Diamond and Dybvig

(1983), the function u is assumed to exhibit a coefficient of relative risk aversion that is

everywhere greater than one. Each investor is endowed with one unit of of an all-purpose

good at the beginning of period 0 and nothing in subsequent periods. Investors cannot

directly invest their endowments and must instead deposit with a financial intermediary.

Banks. In each location, there is a representative financial intermediary that we refer to

as a bank.5 Each bank accepts deposits in period 0 from investors in its location and

invests these funds in a set of ex ante identical projects. A project requires one unit of

input at t = 0 and offers a gross return of 1 at t = 1 or of R > 1 at t = 2 if it is not

impaired. In period 1, however, σk ∈ Σ ≡ {0, σ̄} of the projects held by bank k will

be revealed to be impaired. An impaired project is worthless: it produces zero return

in either period. We will refer to σk as the fundamental state of bank k. A bank with

σk = 0 is said to have sound fundamentals, whereas a bank with σk = σ̄ is said to have

weak fundamentals. The realization of σk is observed at the beginning of t = 1 by the

bank’s investors, but is not observed by anyone outside of location k.

After investors’ preference types and banks’ fundamental states are realized, each in-

vestor informs her bank whether she wants to withdraw in period 1 or in period 2. The

bank observes all reports from its investors before making any payments to withdraw-

ing investors. Those investors who chose to withdraw in period 1 then begin arriving

sequentially at the bank in a randomly-determined order. Investors are isolated from ei-

ther other during this process and no trade can occur among them; each investor simply

consumes the payment she receives from her bank and returns to isolation. As in Wallace

(1988) and others, this assumption prevents re-trading opportunities from undermining

banks’ ability to provide liquidity insurance.

Aggregate uncertainty. The fraction of banks whose assets are impaired depends on

the aggregate state of the economy, which is either good or bad. In the good state, all

banks have sound fundamentals. In the bad state, in contrast, a fraction n ∈ [0, 1] of

banks have weak fundamentals and, hence, total losses in the financial system are nσ̄.

The probability of the bad state is denoted q; we interpret this event as an economic

downturn that has differing effects across banks. If we think of the projects in the model

5While we use the term “bank” for simplicity, our model should be interpreted as applying to the broad
range of financial institutions that engage in maturity transformation.
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as representing loans, for example, then the loans made by some banks are relatively

unaffected by the downturn (for simplicity, we assume they are not affected at all), while

other banks find they have substantial non-performing loans. Conditional on the bad

aggregate state, all banks are equally likely to experience weak fundamentals. The ex-

ante probability that a given bank’s fundamentals will be weak is, therefore, equal to

qn.

The government. The government’s objective is to maximize the sum of investors’ ex-

pected utilities at all times. The government’s only opportunity to raise revenue comes

in period 0, when it chooses to tax investors’ endowments at rate τ. In period 1, the gov-

ernment will use this revenue to provide the public good and, perhaps, to make transfers

(bailouts) to banks. The government is unable to commit to the details of the bailout

intervention ex-ante, but instead chooses the policy ex post, as a best response to the

situation at hand. After collecting taxes, the government in our model moves two more

times: first as a banking regulator and then as a fiscal authority. We describe the actions

of the fiscal authority first.

Fiscal authority : the government observes the aggregate state of the economy at the

beginning of period but, when the aggregate state is bad, is initially unable to deter-

mine which banks have weak fundamentals. After a measure θ ≥ 0 of investors have

withdrawn from each bank, the government observes the idiosyncratic state σk of all

banks and - acting as a fiscal authority - decides how to allocate its tax revenue between

bailout payments to banks and the public good. Banks that receive a bailout from the

government are immediately placed in resolution and all subsequent payments made by

these banks are chosen by the government. The parameter θ thus measures how quickly

the government can collect bank-specific information during a crisis and respond to this

information. Once the public good has been provided, the government no longer has

access to any resources and there will be no further bailouts.

Banking regulator : the banking regulator can restrict the set of payments each bank

is allowed to make to its investors during the first θ withdrawals. These restrictions on

payments are imposed before the start of period 1 withdrawals and remain in force until

the subsequent intervention of the fiscal authority whose behavior was described above.

2.2 Timeline

The sequence of events is depicted in Figure 1. In period 0, the government chooses the

tax rate τ on endowments and investors deposit their after-tax endowment with the bank

in their location. The government regulator announces payment restrictions that will be

in place in period 1 as a function of the aggregate state and then banks choose their

contracts. At the beginning of period 1, each investor observes her own preference type
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Figure 1: Timeline

and the fundamental state of her bank; she then decides whether to withdraw in period 1

or in period 2. Banks observe the choices of their investors and begin making payments

to withdrawing investors as they arrive. Payments to withdrawing investors must be

consistent with the existing regulatory restrictions. Once the measure of withdrawals

reaches θ, the government observes all banks’ fundamental states. At this point, the

government may choose to bail out banks with weak fundamentals and places any banks

that were bailed out into resolution. After bailout payments are made, all remaining tax

revenue is used to provide the public good. Banks that were not bailed out out continue

to make payments to investors according to their contract, while the remaining payments

made by banks in resolution are dictated by the government.

2.3 Discussion

Sequential service. While our model contains many elements that are familiar from the

literature on bank runs, there are some key differences. Perhaps most importantly, banks

in our model are able to condition payments to all investors on the total demand for

early withdrawal. Green and Lin (2003) refer to this assumption as “the case without

sequential service.” This language is potentially confusing when applied to our model:

banks still serve withdrawing investors sequentially here. The key point, however, is

that a bank is able to observe early withdrawal demand before deciding how to allocate

resources across agents. By allowing all payments made by the bank to depend on this

information, our contract space is larger than that in most of the bank runs literature. In

taking this approach, we aim to capture a contractual environment that is sufficiently rich

to eliminate the underlying sources of bank runs that appear in the existing literature.

Costly public insurance. The role of aggregate uncertainty in our model is to force

the government to fix a tax plan before knowing the aggregate losses of the banking
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system. If the government knew in advance how many banks would experience loses, it

would collect additional taxes at t = 0 for the purpose of providing insurance against this

location-specific shock. In fact, given that we assume the government can costlessly raise

revenue through lump-sum taxes, it would collect enough revenue to provide complete

insurance. Our timing assumption makes providing this insurance costly. If, for example,

the probability q of the bad state is close to zero, the government will collect tax revenue

equal to the desired level of the public good in the good aggregate state. If the realized

state turns out to be bad, the marginal value of public resources will increase, but the

government will be unable to raise additional revenue.

Delayed intervention. The assumption that the government observes bank-specific in-

formation with a delay is important for our analysis because it implies that some investors

can withdraw before the government acts. One can narrowly interpret the parameter θ

as measuring the time required to both carry out detailed examinations of banks and im-

plement the legal procedures associated with resolving an insolvent bank. More broadly,

however, θ can be thought of as also including a variety of other forces that lead gov-

ernments to act slowly in the early stages of a crisis. For example, investors who are

well-connected politically may use their influence to delay any government intervention

until after they have had an opportunity to withdraw. The timing of the intervention

might also reflect opaque incentives faced by regulators.6 In addition, Brown and Dinc

(2005) provide evidence that the timing of a government’s intervention in resolving a

failed financial institution depends on the electoral cycle. Looking at episodes from 21

major emerging market economies in the 1990s, they find that interventions that would

impose large costs on taxpayers and/or would more fully reveal the extent of the crisis

were significantly less likely to occur before elections. (See also Rogoff and Sibert, 1988.)

The effect of such political factors that delay the policy response to a crisis would be

captured in our model by an increase in the parameter θ.

3 The efficient allocation
We begin by studying an allocation that will serve as a useful benchmark in the anal-

ysis. Suppose a benevolent planner could control the operations of all banks and the

government, as well as investors’ withdrawal decisions. This planner observes all of the

6Kroszner and Strahan (1996) argue that throughout the 1980s the Federal Savings and Loan Insurance
Corporation (FSLIC) faced a severe shortage of cash with which to resolve insolvent thrift institu-
tions. This lack of funds forced the FSLIC to practice regulatory forbearance and to delay its explicit
intervention in insolvent mutual thrifts in anticipation that the government would eventually supply
additional resources. This delay led a large number of insolvent thrift institutions to maximize the
value of future government liabilities guarantees (at the taxpayers’ expense) by continuing to pay
high dividends until the eventual resolution mechanism was put in place.
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information available to banks and investors, including each investor’s preference type.

It faces the same restrictions on fiscal policy as the government; in particular, all tax

revenue must be raised at t = 0, before the aggregate state is realized. The planner

allocates resources to maximize the sum of all investors’ utilities.

It is fairly easy to see that the planner will direct all impatient investors to withdraw

at t = 1, since they do not value later consumption, and will direct all patient investors

to withdraw at t = 2, since it is less expensive to provide consumption to them after

investment has matured. In addition, because investors are risk averse, the planner

will choose to treat investors and banks symmetrically. In the good aggregate state, the

planner will give a common level of consumption c10 in period 1 to all impatient investors

and a common level c20 in period 2 to all patient investors. (The second subscript

indicates that these consumption levels pertain to the good aggregate state, where zero

banks have weak fundamentals.) In the bad aggregate state, the planner will give a

common consumption profile (c1S, c2S) to investors in all banks with strong fundamentals

and a common profile (c1W ,2W ) to investors in all banks with weak fundamentals. These

consumption levels will be chosen to maximize

(1− q) {πu (c10) + (1− π)u (c20) + v (τ)}

+q

{
(1− n) (πu (c1S) + (1− π)u (c2S)) + n (πu (c1W ) + (1− π)u (c2W ))

+v (τ − (1− n)bS − nbW )

}
.

subject to feasibility constraints

πc10 + (1− π)
c20
R
≤ 1− τ (2)

πc1S + (1− π)
c2S
R
≤ 1− τ + bS (3)

πc1W + (1− π)
c2W
R
≤ 1− τ − σ̄ + bW , (4)

where bz denotes the per-investor transfer (or “bailout”) given to each bank of type z

in the bad aggregate state. These constraints each state that the present value of the

consumption given to depositors in a bank must come from the initial deposit 1 − τ ,

minus the loss σ̄ for banks with weak fundamentals, plus any bailout received.7 The

restriction that the planner cannot raise additional tax revenue in period 1 is equivalent

to saying that the bailout payments must be non-negative,

bS ≥ 0 and bW ≥ 0. (5)

7Note that our notation does not allow the planner to make bailout payments in the good aggregate
state. This assumption prevents the planner from being able to make tax revenue fully state-
contingent by, for example, setting τ = 1 and holding all resources outside of the banking system
until the aggregate state is revealed.
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The first-order conditions for the optimal consumption levels can be written as

u′(c1z) = Ru′(c2z) = µz for z = 0, S,W, (6)

where µz is the Lagrange multiplier on the resource constraint associated with state z

normalized by the probability of a bank ending up in that state. The first-order condition

for the choice of tax rate τ can be written as

(1− q)v′(τ) + qv′(τ − (1− n)bS − nbW ) = (1− q)µ0 + q(1− n)µS + qnµW , (7)

which states that the expected marginal value of a unit of public consumption equals

the expected marginal value of a unit of private consumption at t = 0. The first-order

conditions for the bailout payments are

v′(τ − (1− n)bS − nbW ) ≥ µz, with equality if bz > 0, for z = S,W. (8)

If the marginal value of private consumption in some banks were higher than the marginal

value of public consumption in the bad aggregate state, the planner would transfer

resources to (or “bail out”) these banks until these marginal are equalized. If instead

the marginal value of private consumption in a bank is lower than the marginal value of

public consumption, the bank will not be bailed out and the constraint in (5) will bind.

The following two propositions characterize the key features of the constrained efficient

allocation of resources in our environment. First, the consumption of investors in banks

with sound fundamentals is independent of the aggregate state and these banks do not

receive bailouts.8

Proposition 1. The efficient allocation satisfies

(c∗10, c
∗
20) = (c∗1S, c

∗
2S) and b∗S = 0.

Given this result, we will drop the (c10, c20) notation in what follows and use (c1S, c2S)

to refer to the consumption profile for investors in a bank with sound fundamentals

regardless of the aggregate state. Our second result shows that this profile is different

from the one assigned by the planner to investors in banks with weak fundamentals.

Proposition 2. The efficient allocation satisfies

(c∗1S, c
∗
2S)� (c∗1W , c

∗
2W ) and b∗W > 0.

8The first part of this result depends on our simplifying assumption that sound banks are completely
unaffected by the bad aggregate state, but the second part of the result does not. Even if sound
banks were to experience some losses during an economic downturn, the planner would not choose
to bail out these banks as long as the losses are small relative to those at weak banks.
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This result shows that the constrained efficient involves a combination of bailouts and

bail-ins for investors in banks with weak fundamentals. The optimal bailout b∗W gives

investors partial insurance against the risk associated with their bank’s losses. However,

the consumption of investors in weak banks remains below that of investors in sound

banks; this difference can be interpreted as the degree to which the planner “bails in” the

investors in weak banks. The efficient level of insurance is only partial in this environment

because offering insurance is costly; it requires the planner to collect more tax revenue,

which leads to an inefficiently high level of the public good in the good aggregate state.

It is worth pointing out that the constrained-efficient bail-in applies equally to all

investors in a weak bank, regardless of when they arrive to withdraw. While the desir-

ability of this feature follows immediately from risk aversion, we will see below that it

often fails to hold in a decentralized equilibrium. It is also worth noting that the con-

strained efficient allocation is incentive compatible. The first-order conditions (6) and

R > 1 imply that c∗1z < c∗2z holds for every state z and, hence, a patient investor always

prefers her allocation to that given to an impatient investor (and vice versa).

4 Equilibrium within a bank
In this section, we begin our analysis of the equilibrium of the game defined in Section 2.

The analysis proceeds as follows: in Section 4 we fix the policy of the banking regulator

and characterize the outcome within a bank, taking as given the strategies of all other

banks and their investors. In Section 5 we study the joint determinant of equilibrium

across all banks - again holding fixed the policy of the banking regulator. Finally, in

Section 6 we derive the optimal regulatory policy.

4.1 Preliminaries

We begin by reviewing the timeline of events in Figure 1 for the decentralized economy

and then provide a general definition of equilibrium.

The tax rate. To simplify the analysis in this section, we assume that the tax rate τ

levied by the government in period 0 is set to the value from the constrained efficient

allocation, τ ∗. We derive equilibrium withdrawal behavior and the equilibrium allocation

of resources for this given tax rate.9

Banking contracts. In period 0, each bank establishes a contract that specifies how much

it will pay to each withdrawing investor as a function of the aggregate state, the bank’s

9The analysis of the optimal choice of the tax rate will not contribute significantly to the analysis and
is omitted.
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fundamental state σk ∈ {0, σ̄} and the fraction ρk ∈ [π, 1] of its investors who choose

to withdraw early. In this section we focus on the form of banking contracts conditional

on the bad aggregate state where fraction n of the banks have weak fundamentals. It

will become clear that the optimal banking contracts in the good aggregate state can be

obtained as a special case of the analysis in this section.

Since investors are risk averse, it will be optimal for a bank to give the same level

of consumption to all investors who withdraw in the same period.10 Let ck1 denote the

payment made by the bank to each investor who withdraws in period 1. In period 2,

the bank will divide its matured investment, plus any bailout payment received, evenly

among its remaining depositors. The operation of the bank is, therefore, completely

described by the function which is a mapping from the bank-specific state ρk and σk to

the menu of payment options provided by the regulator Xk. That is,

ck1 : {0, σ̄} × [π, 1]→ Xk. (9)

We refer to the function in (9) as the banking contract. There is full commitment to the

banking contract in the sense that the plan in (9) will be followed unless the bank is

placed into resolution by the government. Each bank’s contract is chosen to maximize

the expected utility from private consumption of the bank’s investors.11

Banking Regulation. The banking regulator presents each bank with a menu of payment

options to choose from. The menu of payment options available to bank-k in the bad

aggregate state will be denoted Xk. For example, if bank-k is presented with Xk ≡ {0, c̄},
then the bank can only choose between a strict suspension of payments ck1 = 0 or setting

ck1 = c̄. On the other hand, if Xk = [0, c̄] then bank-k allowed to set any payment up to

an upper bound equal to c̄. Notice that the menu of payment options offered to bank-k

cannot be made contingent on the bank-specific state, σk and ρk, since this information

is not available to the banking regulator.

Also, notice that any regulatory policy implementing the efficient outcome from Section

3 must necessarily permit a weak bank the option to set c∗1W and a sound bank the option

to set c∗1S. In this section and in section 5 we assume that the menu of payments options

offered to each bank in the bad aggregate state satisfies the following Baseline Case:

10Keep in mind that our environment is different from that studied by Wallace (1990), Green and Lin
(2003), Peck and Shell (2003) and others where the bank gradually learns about the demand for early
withdrawal by observing investors’ actions as they take place. Here, a bank directly observes total
early withdrawal demand before making any payments to investors. It learns no new information as
investors sequentially withdraw at t = 1 and, therefore, an optimal arrangement will always give the
same level of consumption to each of these investors.

11This outcome would obtain, for example, if multiple banks competed for deposits in each location.
We use a representative bank in each location only to simplify the presentation.
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{0, c∗1W , c∗1S} ⊆ Xk (10)

where c∗1W and c∗1S were derived in Section 3 and the option to set 0 allows each bank to

impose a strict suspension of payments. In Section 6 we analyze the optimal regulatory

policy and show that under some circumstances the banking regulator might decide to

remove either c∗1W or c∗1S (or both) from the menu of options available to banks. The

rationale for doing so will become clear once we characterize the outcome where both of

these options are made available to each bank.

Bailouts and resolution. After a fraction θ of investors have withdrawn at t = 1, the

government observes the fundamental state σk of each bank and chooses a bailout pay-

ment bk for each bank with weak fundamentals. It then dictates the payments made by

these banks to their remaining investors as part of the resolution process. We characterize

the government’s bailout/resolution policy below.

Withdrawal strategies. An investor’s withdrawal decision can depend on both her pref-

erence type ωki and the fundamental state of her bank σk. (See Figure 1.) A withdrawal

strategy for investor i in bank k is, therefore, a mapping:

yik : Ω× Σ→ {0, 1}

where yik = 0 corresponds to withdrawing in period 1 and yik = 1 corresponds to with-

drawing in period 2. An investor will always choose to withdraw in period 1 if she is

impatient. We introduce the following labels to describe the actions an investor takes

in the event she is patient. For given σk, we say investor i in bank k follows (i) the no-

run strategy if he withdraws in period 1 only if impatient, that is, yik (ωik, σk) = ωik for

ωik ∈ {0, 1} and (ii) the run strategy if he withdraws in period 1 even if patient, that is,

yik (ωik, σk) = 0 for ωik ∈ {0, 1}. We use yk to denote the profile of withdrawal strategies

for all investors in bank k and y to denote the withdrawal strategies of all investors in

the economy. It will often be useful to summarize a profile of withdrawal strategies by

the fraction of investors who follow the run strategy in that profile, which we denote

xk(σk) ≡
ˆ

i∈[0,1]

(1− yik(ωik = 1, σk))dk.

Similarly, we use ρk to denote the total demand for early withdrawal from bank k in a

given profile, which equals

ρk = π + (1− π)xk(σk).
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Allocations. The allocation of private consumption in bank k in a particular state is a

specification of how many investors withdraw at t = 1 in that state, how much consump-

tion each of these investors receives, and how much consumption each remaining investor

receives at t = 2. This allocation depends on the banking contract for bank k, the with-

drawal strategies of investors in bank k, and the government intervention in bank k (if

any). The details of the government intervention, in turn, may depend on the contracts

of other banks and the withdrawal strategies of investors in those banks. In general,

therefore, the optimal withdrawal behavior for each investor in bank k may depend on

the contracts offered by other banks and on the withdrawal strategies of investors in

other banks.

Equilibrium. To study equilibrium withdrawal behavior within a single bank, we fix all

banking contracts, the government’s intervention policy, and the withdrawal strategies

of investors in all other banks, y−k. Together, these items determine the payoffs of what

we call the withdrawal game in bank k. That is, holding these other items fixed, we can

calculate the allocation of private consumption in bank k as a function of the strategies yk

played by that bank’s investors. An equilibrium of this game is a profile of strategies for

the bank’s investors, yk, such that for every investor i in the bank, yik is a best response

to the strategies of the other investors, y−ik .

An equilibrium of the overall economy is a profile of withdrawal strategies for all

investors y∗ such that (i) y∗k is an equilibrium of the withdrawal game in bank k gen-

erated by the strategies y∗−k of investors in all other banks, for all k, (ii) the contract

in bank k maximizes the expected utility of its investors taking as given the contracts

and withdrawal strategies y∗−k of investors in all other banks, for all k, and (iii) the

government’s bailout and resolution policy maximizes total welfare taking as given all

banking contracts and withdrawal strategies y∗. Notice how this definition reflects the

timing assumptions depicted in Figure 1. Investors in bank k recognize that their choice

of contract will influence equilibrium withdrawal behavior within their own bank but will

not affect outcomes at other banks.12 The government’s bailout and resolution policies,

in contrast, are set after all banking contracts and withdrawal decisions have been made.

Because the government cannot commit to the details of these policies ex ante, it acts

to maximize welfare taking all bank contracts and withdrawal decisions as given.

In the subsections that follow, we derive the properties of the contracts that a bank

will use in equilibrium, focusing first on the case where its fundamental state is sound.

We then turn to the case where the bank’s fundamental state is weak, which requires

characterizing the optimal bailout and resolution policies as well. Finally, we then char-

12This result follows, in part, from the assumption that there are a continuum of locations and, hence,
the actions taken at one bank have no effect on aggregate variables or on the behavior of the
government toward other banks.
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acterize the equilibrium of the entire economy, in which each bank’s contract is a best

response to all other contracts.

4.2 Banks with sound fundamentals

We assume the government does not give bailouts to banks with sound fundamentals,

nor does it place them in resolution.13 As a result, all investors who chose to withdraw at

t = 1 receive the contractual amount ck1(0, ρk), and all investors who chose to withdraw

at t = 2 receive an even share of the bank’s assets, ck2(0, ρk), which is implicitly defined

by

pkc1(0, ρ
k) + (1− ρk)c2(0, ρ

k)

R
= 1− τ. (11)

The bank and its investors recognize that ρk will result from the equilibrium withdrawal

behavior of investors. In particular, if the bank offers a higher payment in period 1

than in period 2, all investors will choose to withdraw early. In other words, equilibrium

requires

ρk =


π

∈ [π, 1]

1

 as c1(0, ρ
k)


<

=

>

 c2(0, ρ
k). (12)

We refer to (12) as the implementability constraint. If a triple (ρS, c1S, c2S) satisfy both

(11) and (12), then any banking contract with ck1(σk, ρS) = c1S for σk = 0 can implement

this allocation as an equilibrium of the withdrawal game in bank k, regardless of how

the payments ck1(σk, ρ
k) are set for other values of ρk. The following result shows that

something stronger is true: by choosing these other payments appropriately, the banking

contract can be set so that the withdrawal game in bank k has a unique equilibrium.

Proposition 3. If the allocation (ρS, c1S, c2S) satisfies both (11) and (12), there exists

a contract that implements this allocation as the unique equilibrium of the withdrawal

game played by a sound bank’s investors.

In light of the above proposition, we can recast the problem of choosing the optimal

banking contract as one of directly choosing the allocation (ρS, c1S, c2S) to maximize

expected utility

VS (ρS, c1S) ≡ ρSu(c1S) + (1− ρS)u(c2S) (13)

subject to the feasibility constraint in (11) the implementability constraint in (12) and

the regulatory restriction on banking contracts in (10) which can simply be expressed

as requiring c1S ∈ Xk. The next result shows that whenever c∗1S is a payment bank-k

13Recall from Section 3 that the constrained efficient allocation involves zero bailouts for sound banks.
Our assumption here is that the government is able to commit to follow this policy.
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is allowed to set the equilibrium allocation within a sound bank is the same as in the

efficient allocation.

Proposition 4. When bank k has sound fundamentals and c∗1S ∈ Xk there is a unique

equilibrium of the withdrawal game in the bank associated with the optimal banking con-

tract. The equilibrium allocation (ρS, c1S, c2S) satisfies ρS = π and c1S = c∗1S.

In other words, resources are always allocated efficiently within a sound bank and

investors never run on these banks.14 There are many banking contracts that implement

the desired allocation, one of which is

ck1
(
0, ρk

)
=

{
c∗1S
0

}
if

{
ρk = π

ρk > π

}
. (14)

Under this contract, the bank would immediately suspend withdrawals if more than a

fraction π of its investors request to withdraw early, saving all of its resources until period

2.15 It is easy to verify that waiting to withdraw in period 2 is then the best response

for a patient investor to any profile of withdrawal strategies for the other investors. As a

result, this contract uniquely implements the desired allocation in the withdrawal game

in bank-k and a bank run will never occur. The following result shows that something

stronger is true: by choosing these other payments appropriately, the banking contract

can be set so that the withdrawal game in bank k has a unique equilibrium.

4.3 Banks with weak fundamentals

Characterizing the outcome of the withdrawal game in a weak bank is more complicated

because it depends on the government’s bailout and resolution policies. Let W denote

the set of weak banks,

W ≡ {k ∈ [0, 1] s.t σk = σ̄} . (15)

After the first θ withdrawals have taken place in all banks, the government observes the

fundamental state σk of each bank. For k ∈ W , the government also observes the bank’s

current condition: the amount of resources remaining in the bank and the fraction of

the bank’s remaining investors who are impatient. The government then decides on a

bailout payment bk for each k ∈ W and places these banks into resolution. We derive the

government’s best responses by working backward, beginning with the resolution stage.

14The allocation within sound banks in case c∗1S might no longer be an option provided by the regulator
will be characterized in Section 6.

15The reaction of setting early payments to zero when ρk > π holds is stronger than needed to eliminate
the run equilibrium. It would suffice to set these payments low enough that a patient investor would
receive more consumption by waiting to withdraw in period 2. The key point is that the bank can
easily structure the contract to prevent a run; the form in (14) makes this point in a particularly
clean way.
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Resolution. To simplify the presentation, we assume that when a bank is placed into

resolution, the government directly observes the preference types of the bank’s remaining

investors and allocates the bank’s resources (including the bailout payment) conditional

on these types. One could imagine, for example, the using the court system to evaluate

individual’s true liquidity needs, as discussed in Ennis and Keister (2009). This assump-

tion is not important for our results, however. If instead the government were to offer

a new banking contract and have the remaining investors play a withdrawal game based

on this new contract, it could choose a contract that yields the outcome we study here

as the unique equilibrium of that game.

Let ψ̂k denote the per-capita level of resources in bank k, including any bailout payment

received, after the first θ withdrawals have taken place. Then we have

ψ̂k =
(1− τ)(1− σ̄)− θck1 (σ̄, ρk) + bk

1− θ
, (16)

where bk is the per-investor bailout given to bank k. Let ρ̂k denote the fraction of the

bank’s remaining investors who are impatient. The allocation of resources for a bank in

resolution is chosen to maximize the sum of the utilities for the remaining investors in

the bank:

V̂
(
ψ̂k; ρ̂k

)
≡ max

ĉk1 , ĉ
k
2

(1− θ)
(
ρ̂ku

(
ĉk1
)

+ (1− ρ̂k)u
(
ĉk2
))

(17)

subject to the feasibility constraint

ρ̂kĉ
k
1 + (1− ρ̂k)

ĉk2
R
≤ ψ̂k (18)

The optimal choice of post-bailout payments is determined by the first order condition

u′
(
ĉk1
)

= Ru′
(
ĉk2
)

= µ̂(ψ̂k; ρ̂k), (19)

where µ̂ is the Lagrange multiplier on the resource constraint. Since R > 1, this con-

dition implies that a bank in resolution provides more consumption to patient investors

withdrawing in period 2 than to the remaining impatient investors who withdraw in

period 1.

Bailouts. In choosing the bailout payments
{
bk
}

, the government’s objective is to max-

imize the sum of the utilities of all investors in the economy. While bailouts raise the

private consumption of investors in weak banks, they lower the provision of the public

good, which affects all investors. The government’ objective in choosing these payments

can be written as
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max
{bk}

k∈W

ˆ
W

V̂
(
ψ̂k; ρ̂k

)
dk + v

(
τ −
ˆ
W

b̂kdk

)
(20)

The first-order condition for this problem is

µ̂(ψ̂k; ρ̂k) = v′
(
τ −
ˆ
W

b̂kdk

)
for all k. (21)

Notice that the right-hand side of this equation – the marginal utility of public con-

sumption – is independent of k. The optimal bailout policy thus has the feature that the

marginal value of resources will be equalized across all weak banks, regardless of their

chosen banking contract or the withdrawal behavior of their investors. As a result, all

banks in resolution will give a common consumption allocation (ĉ1, ĉ2) to their impatient

and patient investors, respectively. These consumption values and the bailout payments

bk will satisfy the resource constraint

ρ̂kĉ1 + (1− ρ̂k)
ĉ2
R

=
(1− τ)(1− σ̄)− θck1 (σ̄, ρk) + bk

1− θ
. (22)

Using the fact that (ĉ1, ĉ2) is the same in all weak banks, this constraint shows that

the bailout payment made to bank k is increasing in the amount paid out by the bank

before being bailed out, ck1 (σ̄, ρk). Together with the first-order condition (19), this

constraint implies that bk is increasing in the fraction of bank k’s remaining investors

who are impatient, ρ̂k.

Withdrawal behavior within a weak bank. A fraction θ of a weak bank’s investors will

receive the amount specified by the contract, ck1 (σ̄, ρk), before the government intervenes.

The bank will then be bailed out and placed into resolution. Its remaining impatient

investors will receive ĉ1 and its remaining patient investors will receive ĉ2, as derived

above. A patient investor will choose to withdraw early if the contract sets ck1 > ĉ2 and

will choose to wait if ck1 < ĉ2. In other words, the fraction ρk of investors who attempt

to withdraw from a weak bank at t = 1 will satisfy

ρk =


π

∈ [π, 1]

1

 if ck1 (σ̄, ρk)


<

=

>

 ĉ2. (23)

In choosing a contract, the bank recognizes that its investors will behave in accordance

with (23), which we refer to as the implementability constraint for weak banks. The

next result is the analog of Proposition 3 from the previous section: it shows that any

allocation satisfying the implementability constraint can be implemented as the unique

equilibrium of the withdrawal game in bank k.
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Proposition 5. If (ρW , c1W ) satisfy (23), then there exists a banking contract ck1 that

implements this allocation as the unique equilibrium of the withdrawal game played by a

weak bank’s investors.

This results allows us to formulate the bank’s optimal contract problem as one of

directly choosing the allocation (ρW , c1W ) to maximize

VW (ρW , c1W ) ≡ θu (c1W ) + (1− θ) [ρ̂Wu (ĉ1) + (1− ρ̂W )u (ĉ2)] (24)

subject to the implementability constraint for weak banks (23), the regulatory restriction

on contracts in (10) namely c1W ∈ Xk, and the relationship

ρ̂W ≡
π

1− θ

(
ρW − θ
ρW

)
. (25)

This last expression shows how the fraction of the bank’s remaining investors after θ

withdrawals are impatient depends on the fraction that initially attempt to withdraw

early. The first term in the objective function in (24) is clearly increasing in c1W , re-

flecting the bank’s desire to give as much consumption as possible to the investors who

withdraw before the bank is placed into resolution. However, the implementability con-

straint (23) shows that if c1W is set greater than ĉ2, the bank’s investors will run, in

which case ρk will equal 1. A run on the bank is costly because some early consumption

is inefficiently given to patient investors; the fact can be seen by noting that ρ̂W is an

increasing function of ρk and the second term in the objective function (24) is strictly

decreasing in ρ̂W .

Equilibrium within a weak bank. Before characterizing the equilibrium outcome within

a weak bank, we introduce some useful labels. Denote with ck1(H) the highest payment

among those permitted by the regulator for bank-k. That is, ck1(H) ∈ Xk such that

ck1(H) ≥ c1 for any c1 ∈ Xk. (26)

Also denote with ck1(H |NR) the highest payment among those that are both regulatory

permitted and avoid a run within the bank i.e. those that are less or equal to ĉ2. That

is, ck1(H |NR) ∈ Xk and ck1(H |NR) ≤ ĉ2 such that

ck1(H |NR) ≥ c1 for any c1 ∈ Xk such that c1 ≤ ĉ2. (27)

Notice that ck1(H |NR) corresponds to an optimal run-proof allocation from the perspec-

tive of bank-k. Given that the regulatory policy in (10) allows each bank to set ck1 = 0,

there exist at least one run-proof contract available to bank-k and therefore ck1(H |NR)

will be well defined.
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Proposition 6. The solution to the program of maximizing (24) subject to (23), (25)

and c1W ∈ Xk has the following property: the early payment chosen by the bank will

either be set as high as the regulator allows c1W = ck1(H), or will be set to the highest

value that is both permitted and prevents a run within the bank, c1W = ck1(H |NR).

Note that (24) implies that setting c1W = ck1(H) will be optimal whenever a weak

bank is able to both pay the maximum amount allowed to the first θ investors without

generating a run among its investors, that is, ck1(H) ≤ ĉ2. On the other hand, if ck1(H) > ĉ2

then the bank would still choose to set its payment to the highest value permitted by

the regulator - run notwithstanding - whenever the following condition is satisfied:

VW
(
ck1(H), 1

)
> VW

(
ck1(H |NR), π

)
.

The above inequality implies that the loss to the remaining 1− θ investors in the bank

resulting from keeping payments as high as possible and allowing a run is more than

offset by the gain to the first fraction θ to withdraw.

Next, by observing that the inequality above is equivalent to

u
(
ck1(H)

)
− u

(
ck1(H |NR)

)
> (1− π) (u (ĉ2)− u (ĉ1))

the equilibrium of the withdrawal game in a weak bank can be fully characterized as

follows.

Proposition 7. If bank k has weak fundamentals then:

(i) If u
(
ck1(H)

)
−u
(
ck1(H |NR)

)
< (1−π) (u (ĉ2)− u (ĉ1)), there is a unique equilibrium

of the withdrawal game in bank k associated with the optimal banking contract. The

equilibrium allocation has ρW = π and c1W = ck1(H |NR).

(ii) If u
(
ck1(H)

)
− u

(
ck1(H |NR)

)
> (1 − π) (u (ĉ2)− u (ĉ1)), there is again a unique

equilibrium of the withdrawal game in bank k associated with the optimal banking contract.

The equilibrium allocation in this case has ρW = 1 and c1W = ck1(H).

(iii) If u
(
ck1(H)

)
− u

(
ck1(H |NR)

)
= (1 − π) (u (ĉ2)− u (ĉ1)), the withdrawal game in

bank k has multiple equilibria, one with ρW = π and c1W = ck1(H |NR) and another with

ρW = 1 and c1W = ck1(H).

This result shows that, outside of a knife-edge case in (iii), the withdrawal game in a

weak bank will have a unique equilibrium under the optimal banking contract. In this

sense, a bank run in our model is fundamentally different from the type of self-fulfilling

run normally studied in the literature based on Diamond and Dybvig (1983). When a

bank is in case (ii) of Proposition 7, withdrawing early is a dominant strategy for the

bank’s investors. In this sense, a bank run in our model does not rely on investors’

self-fulfilling beliefs about the actions of other investors in their bank. We show below,
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however, that the model may still have multiple equilibria because an investor’s best

response may depend critically on the withdrawal decisions of investors in other banks.

5 Equilibrium across banks
In this section we being our investigation of the properties of the overall equilibrium

across all banks, in which both the banking contract and the withdrawal strategies in

each bank are best responses to the actions taking place at other banks. Moreover, the

regulatory policy of the government is fixed to the Baseline Case in (10), namely both

c∗1W and c∗1S is made available to each bank. The next result shows that efficiency is no

longer a property of the equilibrium allocations.

Proposition 8. The equilibrium is inefficient whenever the set of weak banks is identified

with a delay.

A necessary condition for efficiency is that all weak banks self-select into c∗1W . So,

suppose all other weak banks set c∗1W and consider a given weak bank. In order for

such an allocation to be sustained in equilibrium each individual weak bank must have

no incentive to unilaterally deviate by choosing a different payment from the menu of

options available. By setting c∗1W , the sum of utilities for the investors within the bank

will be given by:

θu (c∗1W ) + (1− θ) [ρ̂Wu (c∗1W ) + (1− ρ̂W )u (c∗2W )] (28)

where ρ̂W will be equal to (π − θ)/(1− θ) as obtained from the relation in (25). On the

other hand, by setting c∗1S (recall that both c∗1W and c∗1S belong to (10) and therefore can

be chosen by each bank) the sum of utilities for the investors within the bank becomes:

θu (c∗1S) + (1− θ)
[
ρ̂dWu (c∗1W ) +

(
1− ρ̂dW

)
u (c∗2W )

]
(29)

where ρ̂dW is obtained from (25) and denotes the fraction of remaining impatient investors

after the first θ withdrawals in this case. Notice that for any value of ρ̂dW the expression

in (29) will be strictly greater than the expression in (28). Therefore setting c∗1W is not

incentive compatible for weak banks. In other words, a weak bank can deliver a strictly

higher utility to its investors by pretending to be sound and setting c∗1S and as a result

will choose not to self-select into c∗1W .

Summarizing: the allocation within weak banks will not be efficient, whenever c∗1S is

an option. At the same time, the allocation within sound banks cannot be efficient unless

c∗1S is an option. Jointly, these two claims imply that the economy-wide allocation in the

bad aggregate state cannot be efficient, regardless of the regulatory policy followed by

the government.
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5.1 Fragility

In this section, we show that, in addition to being inefficient, for some parameters the

equilibrium will be consistent with a welfare decreasing run by investors on the weak

banks. Specifically, in the run equilibrium, all investors in weak banks attempt to with-

draw at t = 1. A fraction θ of these investors successfully withdraw before the government

observes σk = σ̄ and places the bank into resolution. The equilibrium of the full model

will, in some cases, involve a run by investors on weak banks as shown in the next result.

Proposition 9. Suppose the regulatory policy is such that both c∗1W and c∗1S are among

the choices available to each bank in the bad aggregate state. Then for some parameter

values, there exists an equilibrium in which investors run on weak banks. In some cases

this equilibrium is unique, but in others it coexists with another equilibrium in which no

run occurs.

The result in Proposition 9 is established in Figure 2 which depicts the type of equilibria

that arise for different combinations of the parameters n, the fraction of weak banks, and

σ̄, the loss in each of them. The figure uses the utility function16

u(ci,k1 + ωi,kci,k2 ) =

(
ci,k1 + ωi,kci,k2

)1−γ
− 1

1− γ
and v(g) = δ

g1−γ

1− γ
. (30)

The regulatory policy is the following: the banking regulator imposes that the payment

made by each bank does not exceed an upper limit of c̄. A natural choice of this upper

limit is to set it at least equal to the payment made by sound banks in the efficient

allocation c̄ ≥ c∗1S since setting a limit below c∗1S prevents sound banks from allocating

resources efficiently. Henceforth we set c̄ = c∗1S and thus, the menu of payment options

available to each bank in both aggregate states will be given by X = [0, c∗1S].

For parameter combinations in the dark region in the lower-left part of the graph,

there is a unique equilibrium of the model and the allocation in this equilibrium does

not involve a bank run. When the losses σ̄ suffered by a weak bank are small and/or

few banks experience these losses, the process of resolving these banks has a relatively

small cost for the government. When this cost is small, the government remains in good

fiscal condition and will choose to make bailout payments that lead to relatively high

consumption levels (ĉ1, ĉ2) for the remaining investors in banks placed into resolution.

This fact, in turn, makes running in an attempt to withdraw before the government

intervenes less attractive for patient investors in a weak bank. As a result, a unique

equilibrium exists and all patient investors wait until t = 2 to withdraw.

In the unshaded region in the upper-right portion of the figure, in contrast, both

the number of banks experiencing a loss and the amount lost by each of these banks

16The other parameters of the model are set to R = 1.5, π = 0.5, γ = 5, δ = 0.5, q = 0.05 and θ = 0.5.
The tax rate τ is set to its efficient value from section 3.
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Figure 2: Equilibrium with a bank run

are significant. In this case, the government’s budget constraint will be substantially

impacted by its desire to bail out weak banks in a crisis. As the marginal value of

public resources rises, the bailout and resolution process will lead to lower consumption

levels (ĉ1, ĉ2) for the remaining investors in these banks. When ĉ2 is low enough, the

equilibrium within a weak bank k will involve a run by patient investors, as shown in

Proposition 7. The overall equilibrium in this region is again unique, but the (larger)

losses on weak banks’ asset are now compounded by the additional liquidation of assets

and misallocation of resources created by the run.17

Runs must be systemic. The pattern in Figure 2 suggests that a run can only occur

when the number of weak banks is sufficiently large. The following proposition formalizes

this result.

Proposition 10. Given other parameter values, there exists n∗ > 0 such that a bank

run does not occur in equilibrium for any n < n∗.

If the number of affected banks is small, the associated losses will have a small im-

pact on the government’s budget constraint. If the government remains in good fiscal

condition, the bailout policy it will choose ex post treats weak banks generously, leaving

their patient investors with no incentive to run. Thus, unlike other models of financial

fragility, a bank run in our model cannot be an isolated event in the sense of occurring

at a single bank or a small group of banks.

17The fact that each bank is allowed to choose among many (a continuum) of options in the example
above is not critical. Alternately we could assume that, instead of imposing an upper limit, each
bank is allowed to choose only between three payment options 0, c∗1W and c∗1S . The results in this
case will be qualitatively similar to those in Figure 2.
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Multiple equilibria. In the grey region in Figure 2, both of the equilibria described above

exist. The fact that multiple equilibria exist in this region is particularly interesting in

light of Proposition 7, which showed that the equilibrium of the withdrawal game within

each bank is unique except for in a knife-edge case. The multiplicity of equilibria illus-

trated in Figure 2 arises because of an externality in payoffs across weak banks. When

a run occurs at other weak banks, this event causes more investment to be liquidated

and leads to larger bailouts at those banks. The larger bailouts place greater strain

on the government’s budget constraint and lead – all else being equal – to a smaller

bailout at bank k. In the lighter-shaded region in Figure 2, this smaller bailout lowers

the consumption levels (ĉ1, ĉ2) enough to make running a best response for the patient

investors in bank k. In other words, in our model there is a strategic complementarity

in the withdrawal decisions of investors across banks. The usual strategic complemen-

tarity that appears in models in the Diamond-Dybvig tradition – which arises between

investors within a bank – is eliminated by the more flexible banking contracts. However,

the government’s bailout and resolution policy introduces this new complementarity in

actions across banks, which creates the region of multiple equilibria in Figure 2.

It is worth emphasizing that a run on bank k lowers the welfare of the bank’s investors

in much the same way as in the existing literature. Holding fixed the bailout payment it

receives, a bank’s investors would be strictly better off if there were no run on the bank.

Moreover, the bank has contractual tools that would allow it to prevent the run. The

problem, however, is that preventing the run requires decreasing the payment given to

the first θ investors who withdraw, and this action would decrease the bailout payment

the bank receives. Instead, in this equilibrium, the bank’s investors choose to tolerate

the run as a side effect of the plan that maximizes the level of payments the bank is able

to make to its investors before the government intervenes.

Discussion. A number of recent legislative changes aim to promote financial stability

by endowing financial intermediaries with increased contractual flexibility, which would

allow them to react as soon as they start to experience distress. For example, “gates”and

withdrawal fees in money market mutual funds, swing pricing in the mutual fund industry

more generally, and the new bail-in rules in the United States, Europe and elsewhere

can all be interpreted as giving intermediaries the opportunity – but not necessarily

the obligation – of imposing losses on all (or subset) of their investors if this is deemed

desirable for the long term health of the institution. The hope of these legislative reforms

is that these new “bail-in options” would not only be effective in mitigating fragility (or

even preventing runs entirely), but in addition, would eliminate the need for taxpayers

to finance a bailout or at least drastically reduce the cost of government’s interventions.

For instance, one important purpose of the recent reforms to money market mutual

funds in the U.S. is to reduce investors’ incentive to redeem quickly and ahead of others
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(i.e. to run) when the fund is in distress. The imposition of fees and gates must be

approved by a fund’s board of directors, who are to use these tools only if this is deter-

mined to be in the best interest of their shareholders. Notice that from the perspective

of our model, withdrawal fees and “gates” can be captured as setting lower payments in

weak banks. Our results suggest that, in an environment characterized by limited com-

mitment, asymmetric information and bailouts, these bail-in options may not be used an

thus be ineffective in promoting financial stability. In the next section, we examine ways

a policy maker might reduce the inefficiencies that arise in the competitive equilibrium

in our model and promote financial stability.

6 Optimal regulation
In the previous sections, the period 1 payments permitted to banks by the regulator were

assumed to always include both c∗1S and c∗1W . Supposing that the regulator does not

explicitly prevent a bank from setting either of these payments seemed like a reasonable

approach to regulation, especially given the fact that any regulatory policy ensuring

efficiency must necessarily allow each bank to self-select into c∗1S or c∗1W . As we established

in Proposition 8, however, the allocation where each weak bank self-selects into c∗1W is

not incentive compatible and therefore cannot be sustained in equilibrium. Furthermore,

for some parameters the economy with regulation as in the baseline case in (10) can have

as a unique equilibrium a run on all weak banks (see Proposition 9 or Figure 2).

In this section we begin our analysis of the optimal regulatory policy. Specifically, we

allow the banking regulator to freely choose the menu of payment options to be made

available to each bank as a function of the aggregate state. We ask the question: how

should the banking regulator select the menu of options offered to each bank in the good

and in the bad aggregate state respectively? First, suppose that the aggregate state is

good in which case the regulator knows that all banks must be sound. Then an optimal

regulatory policy is to offer each bank a choice between two options only: 0 and c∗1S. As

before, the option of picking 0 is there to ensure that banks can write run proof contracts

with their investors, whereas the option c∗1W is not on the table since there are no weak

banks. Observe that our decision to focus on the bad aggregate state in the exposition of

Sections 4 and 5 was without loss of generality. Indeed, if the aggregate state turns out to

be good then the regulator infers all banks must be sound in which case an appropriately

choosing regulatory policy as explained above can ensure that the resulting allocation is

efficient and runs never occur. Next we turn to the optimal regulation when fraction of

the banks are weak.
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6.1 Optimal regulation when some banks are weak

Our goal in this section is to derive optimal regulation in the bad aggregate state. First,

suppose the regulator were able differentiate weak from sound banks from the very be-

ginning of period 1 and consider a regulatory policy where each sound bank is offered

a choice between 0 and c∗1S and each weak bank is offered a choice between 0 and c∗1W .

That is, banks are allowed to suspend payments on their own. In this case a run can

never occur and the equilibrium outcome corresponds to the efficient one from Section 3.

The reason is that the best strategy available to a weak bank is to set ck1 = c∗1W whenever

ρk = π and to completely freeze payments otherwise (and similarly for a sound bank,

but with c∗1S in place of c∗1W ). Thus the regulatory ability to separate the weak from

the sound banks allows the government to design regulation which restores economic

efficiency and ensures that banks would enact contracts which are run proof.

For the rest of this section we focus on the interesting case where the set of weak banks

is not known initially to the regulator and the aggregate state is bad. For a given menu

of payment options in the bad aggregate state X the equilibrium will be characterized

by the allocation within sound banks ρS and c1S, the allocation within weak banks ,ρW

and c1W , and the bailout and resolution policy of the government ĉ1, ĉ2 and b̂. We collect

all these variables in a vector E which we refer to as the economy-wide allocation:

E ≡
(
ρW , ρS, c1S, c2S, c1W , ĉ1, ĉ2, b̂

)
(31)

We make the simplifying observation that focusing on menu of payment options which

are 3-tuples such as X = {0, c1W , c1S} (or 2-tuple whenever c1W = c1S) is in fact without

loss of generality.18

Program of the regulator when weak banks are unknown. The program of the

regulator in the bad aggregate state is to choose c1W and c1S in order to maximize

the sum of all investors utilities taking into account the incentives faced by the banks

and their investors and the bailout intervention of the fiscal authority after the first θ

withdrawals.

Alternatively, we can formulate the problem of the banking regulator as suggesting an

18The reason is that augmenting the payment menu X with an additional element creates additional
possibilities for unilateral deviations by individual banks and therefore the regulatory policy would
have to satisfy a greater number of incentive compatibility constraints. Indeed, consider a given
set X = {0, c1W , c1S} such that, in equilibrium, all weak banks choose c1W and all sound banks
choose c1S . Now, suppose a new element z is added to those already existing in X. If the switch to
z is undesirable from regulatory perspective then adding z can only reduce equilibrium equilibrium
welfare. On the other hand, if a switch to z is desirable either for the weak or for the sound banks (or
for both) then a better regulatory policy will be replacing z with the element(s) in X it is superior
to (from regulatory perspective). The reason is that keeping both the new and the old elements in
X creates incentives for deviations which - while optimal for individual banks - might be undesirable
from regulatory perspective.
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allocation to each bank. Observe that the regulator cannot control investors’ withdrawal

choices and therefore the allocation within each bank must satisfy the constraints im-

posed by investors’ withdrawal strategies. That is the allocation must satisfy (11) - (12) if

the bank is sound and (23) if the bank is weak. In addition, the regulator cannot control

the bailout policy of the fiscal authority and therefore after the first θ withdrawals the

continuation allocation within each weak bank, ĉ1 and ĉ2, must satisfy the constraints

imposed by the ex-post optimal bailout intervention in (19) - (22). Finally, the regulator

does not observe bank-specific states, ρk and σk, and hence must ensure that weak and

sound banks self-select into their corresponding payment. Specifically, if a weak bank

reports to be sound, it will be allowed to set c1S and therefore any allocation, ρ̃W and

c1S, satisfying the implementability constraint for weak banks in (23) can be attained as

an equilibrium outcome within this bank. The incentive compatibility constraint for a

weak bank can therefore be expressed as follows:

VW (ρW , c1W ) ≥ VW (ρ̃W , c1S) for all ρ̃W ∈ [π, 1] for which (23) holds (32)

If the above were not true, i.e. if there exist ρ̃∗W such that VW (ρW , c1W ) < VW (ρ̃∗W , c1S),

then a weak bank will be able to increase the sum of utilities for its investors by setting

c∗1S and then implementing the allocation corresponding to ρ̃∗W and c1S. Finally, the

incentive compatibility constraint for a sound banks is provided below:

VS (ρS, c1S) ≥ VS (ρ̃S, c1W ) for all ρ̃S ∈ [π, 1] for which (12) holds (33)

The next result summarizes the conditions under which the economy-wide allocation can

be obtained as an equilibrium of a given regulatory policy.

Proposition 11. Assume that in the bad aggregate state the banking regulator offers

each bank a choice between 0, c1W and c1S. Such a regulatory policy is without any

loss of generality. Furthermore, the regulatory policy X = {0, c1W , c1S} can result in

the economy-wide allocation E as an equilibrium if and only if E jointly satisfies (11) -

(12), (32) - (33) and (19) - (22)

In light of the this proposition we can recast the problem of choosing the optimal

regulatory policy in the bad aggregate state as one of directly choosing the economy-

wide allocation E in (31) to maximize the sum of all investors utilities:

(1− n)VS (ρS, c1S) + nVW (ρW , c1W ) + v
(
τ ∗ − nb̂

)
(34)

subject to (11) - (12), (32) - (32) - (33) and (19) - (22). Next, we introduce some notation

that will be useful when characterizing optimal regulation in the bad aggregate state.
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Systemic regulatory bail-in. A systemic bail-in policy is one where the regulator gives

each bank just two options: either suspend payments completely ck1 = 0 or set ck1 = c̄

such that c̄ < c∗1S. The benefit of such a policy is that the incentive for a weak banks

to pretend to be sound is addressed by requiring all banks to enact the same bail-in in

the bad aggregate state. Such a policy comes with a trade-off, however, since it imposes

a cost on the sound banks which will be forced into an unnecessary bail-in. Proposition

12 below shows that it can nevertheless be optimal for the regulator to require all banks

to bail-in their investors to c̄ or suspends all payments completely.

Note that in this environment a systemic bail-in can also be interpreted as imposing

restrictions on the dividends paid out by all banks during a period of financial stress.

Alternatively, one can think of c̄ as a contingent equity with a systemic trigger – if the

aggregate state is bad (the systemic event) then all banks must bail-in their investors,

even though the government realizes that not all banks are weak.

Selective regulatory bail-in. A selective bail-in policy is one where the regulator offers

each bank three options: either suspend payments completely ck1 = 0 or choose between

two different payments c1W and c1S such that c1W < c1S. A bank that voluntarily chooses

to bail-in its investors (i.e. to set c1W rather than the higher c1S) must have an incentive

to do so. A given weak bank will not self-select into a partial bail-in, unless the following

two conditions are satisfied. First, bailing-in the first θ investors from c1S to c1W must

prevent a run, that is, c1W ≤ ĉ2 < c1S. If that were not the case then a weak bank

strictly prefers to set the higher c1S. Second, the difference between c1S and c1W cannot

be too large, otherwise a weak bank would still prefer to set c1S, even at the cost of a

run. Formally, a weak bank would voluntarily bail-in to c1W if the following condition is

satisfied.

θu(c1W ) + (π − θ)u(ĉ1) + (1− π)u(ĉ2) ≥ θu(c1S) + (1− θ) [πu(ĉ1) + (1− π)u(ĉ2)]

The bank can set the payment in period 1 to c1W (i.e. bail-in), which would prevent

a run and ensure that the sum of utilities for all investors in the bank equals the left

hand side of the above expression. Alternatively, if the bank sets c1S, then this would

generate a run c1S > ĉ2 and deliver sum of utilities for its investors equal to the right

hand side of the expression above. Notice that the above condition cannot be satisfied

unless c1W > ĉ1. That is, a full bail-in is never privately optimal for a weak bank, even

if this would prevent a run. It is worth pointing out that in some cases, implementing

a selective bail-in requires the regulator to operate on both margins. That is, allowing

for a partial bail-in while distorting the allocation in sound banks in order to relax weak

banks’ incentive to behave as sound.
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The next result shows that the optimal bail-in policy can be selective or systemic

depending in parameter values.

Proposition 12. Weak banks are never required to fully bail-in their investors. For some

parameters, the optimal policy is a systemic bail-in. For other parameters, the optimal

policy is a selective bail-in.

Proposition 12 is established in Figure 3 showing the optimal bail-in policy contingent

of the size of the real losses per bank σ̄ and the fraction of the banks experiencing

real losses when the aggregate state is bad n. The remaining parameters are as follows

R = 1.5, π = θ = 0.5, δ = 0.5, γ = 6, q = 0.05. For all combinations of n and σ̄ in the

black region of Figure 3, the optimal bail-in policy is to trigger a systemic bail-in. For

combinations of n and σ̄ in the white region of Figure 3, the optimal regulatory policy

is to ensure that weak banks self-select into a partial bail-in.

Figure 3: Optimal regulation

6.2 Remarks

The main insight from this section is that policies to promote better outcomes in this

environment must take into account banks’ incentives. A bank that anticipates to be

bailed out has an incentive not to bail-in its investors after experiencing losses. One

way for the government to address this issue is to trigger a system wide bail-in whenever

a fraction of the banks are in distress. Such a policy leaves weak banks with no option

but to bail-in their investors, but it also comes at the cost. Namely, sound banks would

also be forced to enact a bail-in which will be unnecessary in their case.
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A different policy intervention is to implement a selective bail-in. The challenge in

this case is to induce weak banks to bail-in as soon as they experience losses. The

government can accomplish such a goal by allowing for a partial bail-in and, in some

cases, by distorting the allocation in the sound banks (i.e. by mandating that they set a

payment different than c∗1S). Proposition 12 showed that a selective bail-in will dominate

for some parameters whereas a system-wide bail-in will dominate for other.

In addition, note how the ability to commit ex-ante to the regulatory policy plays a

crucial role in ensuring that weak banks voluntarily choose to bail-in their investors at

the start of period 1. In particular, if the regulator allows for a partial bail-in, then weak

banks reveal themselves to the regulator by choosing c1W rather than c1S. At this point,

the ex-post optimal action for the regulator would be to step in and mandate that each

weak bank bails-in all the way to ĉ1. Weak banks would anticipate this behavior and will

set c1S in order not to reveal themselves to the regulator. Therefore, a regulator that

lacks commitment would fail to implement a selective bail-in and as a result will have to

rely solely on a system-wide bail-in.19

Finally, suppose the government can commit to strict no-bailout rule. In this case, runs

can no longer occur as part of equilibrium. The reason is that in our environment each

bank have all the information and contractual flexibility necessary to prevent runs and,

in the absence of bailouts, will have no incentive to delay fully bailing-in their investors

as soon as they have sustained real losses or realize that a run is underway. Furthermore,

the question of when weak banks are identified by the government becomes irrelevant in

the absence of bailouts since each all weak banks will face the correct incentives when it

comes to bailing in their investors. At the same time, a no-bailout policy would dispense

with the socially valuable ex-post insurance function of the government’s bailouts (recall

that weak banks experience real losses in our model). The effect on ex-ante welfare is

thus ambiguous and depends on parameter values. In addition, a no-bailout policy might

be plagued by government credibility issues.

7 Conclusion

A necessary ingredient for a bank run to occur in the the bank in question be slow to

react to the surge in withdrawal demand. This slow reaction is what leads investors

to anticipate that the future payments made by the bank will be smaller and, hence,

gives them an incentive to try to withdraw before the reaction comes. In the previous

literature, the primary factors behind this slow response have been exogenously imposed

rather than derived endogenously as part of the equilibrium outcome. Specifically, banks’

failure to respond in a timely manner has been justified by assuming that either (i)

19This logic is similar to that in Ennis and Keister (2009), which shows how the inability to commit to
suspend payments can create financial fragility.
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contracts are rigid and therefore cannot be ex-post altered to deal with a run, or (ii)

banks were unable to respond efficiently to a run because they were (at least initially)

unaware that the run was actually taking place.

In contrast, we have presented a model of banking and government interventions where

(i) banks maximize the utilities of their investors (i.e. there are no agency costs), (ii)

contracts can be made fully state contingent, and (iii) banks always have sufficient infor-

mation to respond in a timely and effective way to an incipient run. In common with the

existing literature, a bank run in our setting can occur only when the bank’s reaction to

the run is delayed. However, the delayed reaction in our model is the endogenous choice

of the bank, acting in the best interests of its investors. We show that this framework has

a number of interesting implications. For example, banks will not have an incentive to

use bail-in options and similar measures to impose discretionary losses on their investors

when they anticipate to be bailed out by the government later on. As a result, the new

bail-in rules might turn out to be not as effective in promoting financial stability as they

were originally expected to be. We addressed some of the possible approaches to fix

these weaknesses of the “bail-in rules” and concluded that they are unlikely to solve the

problem of bank runs on their own due to a combination of asymmetric information and

the policy maker’s lack commitment.
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Appendix: Proof of selected Propositions
Proposition 1.

Proof. We need to show that sound banks do not receive bailouts and the consumption of

investors in sound banks is independent of the aggregate stat. Observe that the following

condition can be shown to hold:

b∗S = 0 ⇔ (c∗10, c
∗
20) = (c∗1S, c

∗
2S) (35)

This follows from the feasibility constraints in (2) and (3) and the first order conditions

in (6). Therefore it will be sufficient to show b∗S = 0. We proceed by contradiction:

suppose that sound banks receive a bailout in the bad aggregate state, that is, bS > 0.

From (8) and the feasibility constraints we obtain that weak banks must also receive a

bailout, bW > 0. Moreover, b∗S and bW will be set to ensure that the marginal value of

the resources on all banks with a bailout equals the marginal value of the public good:

µS = µW = v′(τ − (1− n)bS − nbW )

From the above, the condition for the optimal choice of the tax rate τ in (7) reduces to:

v′(τ) = µS

However, we also have (1−n)bS+nbW > 0, that is, the total bailout in the bad aggregate

state is strictly positive and therefore:

v′(τ) < v′(τ − (1− n)bS − nbW )

Hence, we obtain µS < µS - a contradiction. Therefore we must have b∗S = 0 i.e. sound

banks are not bailed out even in the bad aggregate state. Finally, from (35) we obtain

that (c∗10, c
∗
20) = (c∗1S, c

∗
2S), namely the payment profile in sound banks is independent of

the aggregate state.

Proposition 2.

Proof. Let µ∗S and µ∗W denote the shadow value of the resources in sound and weak banks

respectively. That is,

µ∗S = u′ (c∗1S) and µ∗W = u′ (c∗1W )

We want to show (c∗1S, c
∗
2S) � (c∗1W , c

∗
2W ), suppose this were not the case, i.e. assume

that
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c∗1S ≤ c∗1W and c∗2S ≤ c∗2W (36)

Since σ̄ > 0, from (36) and (??) it follows that weak banks must be bailed out b∗ > 0.

From proposition 1 the first order condition for the optimal choice of τ can now be

written as:

v′(τ ∗) = µ∗S −
q(1− n)

1− q
(µ∗W − µ∗S)

In addition, if (36) is true then we must have µ∗W ≤ µ∗S. Moreover the following must

also hold:

µ∗W = v′ (τ ∗ − nb∗)
> v′(τ ∗)

= µ∗S −
q(1− n)

1− q
(µ∗W − µ∗S)

≥ µ∗S
≥ µ∗W

That is, we obtain µ∗W > µ∗S which contradicts µ∗W ≤ µ∗S. Therefore (36) cannot be true

and we must have

(c∗1S, c
∗
2S)� (c∗1W , c

∗
2W ) and µ∗W > µ∗S

which establishes the first part of the proposition.

Next, we want to show that b∗ > 0. So, let µ∗W (b) be the shadow value of the resources

in a given weak bank resulting from a per-investor bailout of b. The following must be

satisfied:

µW (b∗) > v′(τ ∗) > µ∗S

At the same time, if b∗ = 0, then it must be the case that:

v′(τ ∗) ≥ µW (b∗) for b∗ = 0

Otherwise, each weak bank will receive a strictly positive bailout. Hence, if b∗ = 0 it has

to be the case that v′(τ ∗) ≥ µW (b∗) and v′(τ ∗) < µW (b∗) which is a contradiction since

both of this conditions cannot hold at the same time. Therefore, our initial assumption

that b∗ = 0 cannot be true and we must have b∗ > 0.

Proposition 3.

Proof. Fix an allocation within a sound bank cS ≡ (ρS, c1S, c2S) such that budget con-

straint in (11) and the implementability constraint in (12) are both jointly satisfied.
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First, suppose that the allocation in cS has the following properties:

ρS = π, c1S ≤ c2S and ρSc1S + (1− ρS)
c2S
R

= 1− τ

Then the contract:

ck1
(
0, ρk

)
= c1S for ρk = π and ck1

(
0, ρk

)
= 0 for all ρk > π

implements the allocation cS as the unique equilibrium of the withdrawal game for the

investors within the bank when the later is sound. To see that, suppose the bank is

sound and a fraction ε ∈ [0, 1− π] of the patient investors within the bank request early

withdrawal. Observe that any allocation where a positive fraction of the patient request

early withdrawal cannot be an equilibrium when the bank is sound. Indeed, if ε > 0 then

the overall request for early withdrawals will be ρk = π + ε(1 − π) > π and therefore

the bank’s contract would set ck1 = 0, but then the budget constraint in (11) implies

that requesting late withdrawal will result in a strictly larger payment for each patient

investor. Therefore the only allocation consistent with equilibrium when the bank is

sound corresponds to ε = 0, that is, only the impatient request early withdrawals.

Second, suppose that the allocation in cS has the following properties:

ρS > π, c1S ≥ c2S and ρSc1S + (1− ρS)
c2S
R

= 1− τ

Consider a contract such that ck1
(
0, ρk

)
> c1S for ρk < π, ck1

(
0, ρk

)
= c1S for ρk = ρS and

ck1
(
0, ρk

)
> c2S for ρk > ρS. Then an argument similar to the one above can establish

that conditional on being sound, the equilibrium of the withdrawal game is unique and

implement the allocation in cS.

Proposition 4.

Proof. Suppose the banking regulator allows each bank to set its payment to c∗1S as

was assumed to be the case in the baseline economy analyzed in sections 4 and 5. The

efficient allocation within sound banks was derived in section 3 and we denote it here by

c∗S ≡ (ρ∗S, c
∗
1S, c

∗
2S) . Note that c∗S is such that ρ∗S = π and c∗1S < c∗1S . In other words, c∗S

satisfies (11) and (12). Applying Propitiation 3 it follows that c∗S can be implemented as

an unique equilibrium of the withdrawal game within sound each bank. Moreover, for

any other allocation such that cS 6= c∗1S for which (11) - (12) is satisfied, it must be the

case:

VS (ρ∗S, c
∗
1S) = ρ∗Su (c∗1S) + (1− ρ∗S)u (c∗2S)

> ρSu (c1S) + (1− ρS)u (c2S) = VS (ρS, c1S)

where the first and last equality above simply uses the definition of the objective function
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in (13) and the strict inequality on the second line follows from the fact that c∗S maximizes

the sum of investors expected utilities within sound banks as derived in Section 3.

Thus the sum of investors expected utilities within a given bank cannot be maximized

unless the equilibrium allocation within the bank conditional on being sound is exactly

c∗S. Therefore an optimal contract must result in c∗S as the unique equilibrium in all

sound banks. One such contract was given in (14).

Proposition 5.

Proof. The allocation within a given weak bank can be summarized as follows: fraction

ρW of its investors request to withdraw; the bank pays c1W to the first θ and is then

placed in resolution by the fiscal authority; each of the the remaining (1− θ)ρ̂W measure

of impatient investors within this (and any other weak bank) receives ĉ1 in period 1

and each of the remaining (1− θ)(1− ρ̂W ) measure of patient investors within this (and

any other weak bank) receives ĉ2 in period 2 where, ĉt for t = 1, 2, is determined by

the economy-wide conditions in (21) - (22) and hence beyond the control of any given

individual bank which would treat ĉt as fixed.

First, if ρW = π and cW ≤ ĉ2 then (ρW , c1W ) satisfy the implementability condition

for weak banks in (23) and the following contract:

ck1
(
σ̄, ρk

)
= c1W for ρk = π and ck1

(
σ̄, ρk

)
= 0 for all ρk > π

ensures that the equilibrium outcome within bank-k when weak is unique and corresponds

to this allocation.

Second, if ρW = 1 and cW > ĉ2 then (ρW , c1W ) also satisfies (23). In this case a

contract of the form:

ck1
(
σ̄, ρk

)
= c1W for all ρk = 1

entails that the equilibrium outcome within bank-k when weak is unique and corresponds

to the desired allocation.

Finally, the proof for the remaining combinations of ρW and c1W for which the imple-

mentability constraint in (23) is satisfied (i.e. π < ρW < 1 and c1W = ĉ2) closely follows

the above argument and is omitted.

Proposition 6.

Proof. First, if ck1(H) = ck1(H |NR) then we must have ck1(H) ≤ ĉ2. Otherwise, if

ck1(H) > ĉ2 then it also must be the case ck1(H) > ck1(H |NR) and therefore we obtain a

contradiction. Given that ck1(H) ≤ ĉ2, any allocation such that ρW = π and c1W ≤ ck1(H)

satisfies the implementability constraints in (23) and, via Proposition 5, can be obtained
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as a unique equilibrium when bank-k is weak. Next, using the objective function in (24)

and the relation in (25) we obtain that for any c1W < ck1(H):

VW
(
ck1(H), π

)
> VW (c1W , π)

The above implies that whenever ck1(H) = ck1(H |NR) it will be optimal for a weak bank to

set c1W = ck1(H) and implement the allocation associated to
(
π, ck1(H)

)
. In other words,

the optimal allocation within bank-k when weak will be characterized by c1W = ck1(H).

Second, if ck1(H) > ck1(H |NR) and ck1(H |NR) < ĉ2. Then it must be the case

ck1(H) ≤ ĉ2 < ck1(H) and the implementability constraints in (23) entails that the bank

can implement two classes of allocations: (i) ρW = 1 and c1W ∈ (ĉ2, c
k
1(H)] and (ii)

ρW = π and c1W ≤ ck1(H |NR). Note that for any allocation with ρW = 1 the opti-

mal is to set c1W = ck1(H) whereas for any allocation with ρW = π the optimal is to

set c1W = ck1(H |NR). Hence, the optimal allocation within bank-k when weak will be

characterized by c1W ∈
{
ck1(H), ck1(H |NR)

}
.

Third, assume ck1(H) > ck1(H |NR) and ck1(H |NR) = ĉ2 then in addition to the class of

allocations in (i) and (ii) bank-k will be able to implement a third class of allocations:

(iii) ρW ∈ [π, 1] and c1W = ck1(H |NR). In this case one can use (24) and (25) to show

that for any ρW > π

VW
(
ck1(H |NR), π

)
> VW

(
ck1(H |NR), ρW

)
Thus any allocations in (iii) is strictly inferior to the optimal among those in (ii), namely

ρW = π and c1W = ck1(H |NR). Hence, the optimal allocation within bank-k when weak

would still be characterized by c1W ∈
{
ck1(H), ck1(H |NR)

}
.

Proposition 7.

Proof. In Proposition 6 we have shown that a weak bank would either set c1W as high

as possible, that is, c1W = ck1(H) or it will set c1W as high as possible but still less or

equal to ĉ2, that is, c1W = ck1(H |NR). First, assume ck1(H) ≤ ĉ2 then we must have

ck1(H) = ck1(H |NR) and using that ĉ1 < ĉ2 (which follows from the first order condition

in (19)) we obtain:

0 = u
(
ck1(H)

)
− u

(
ck1(H |NR)

)
< (1− π) (u (ĉ2)− u (ĉ1))

Moreover, in this case the optimal allocation clearly is ρW = π and c1W = ck1(H) =

ck1(H |NR). Second, if ck1(H) > ck1(H |NR) then an optimal contract for bank-k must

ensure the following:

ρW = π and c1W = ck1(H |NR) if VW
(
ck1(H), 1

)
> VW

(
ck1(H |NR), π

)
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ρW = 1 and c1W = ck1(H) if VW
(
ck1(H), 1

)
< VW

(
ck1(H |NR), π

)
Finally, if VW

(
ck1(H), 1

)
= VW

(
ck1(H |NR), π

)
then the bank will be indifferent between

ρW = π and c1W = ck1(H |NR) and ρW = 1 and c1W = ck1(H) and therefore both of these

allocations correspond to a contract which is optimal for the bank.

Proposition 8.

Proof. First, suppose that the aggregate state is good. Then the regulator infers that all

banks are sound, but still does not observe the requests for withdrawals within any of

the banks. In this case, a regulatory allowing each bank to choose between 0 and c∗1S.

That is,

X0 = {0, c∗1S}

The above ensures that each bank finds it optimal to set up a contract which would

uniquely results in the efficient within bank allocation

ρk = π, ck1 = c∗1S and ck2 = c∗12

One such contract is the following: if the aggregate state is good, the bank sets ck1(ρk, σk) =

c∗1S for ρk = π and ck1(ρk, σk) = 0 for all ρk > 0. Finally, the level of the public good is

equal to τ ∗. In other words, the economy wide allocation will be efficient.

Second, suppose the aggregate state is bad. Since the regulator does not observe which

are the sound and which are the weak banks the menu of payment options available to all

banks must be the same Xn. Next, observe that a necessary condition for the equilibrium

to be efficient in the bad aggregate state is that both c∗1W and c∗1S belong to the set of

permitted payments. That is,

{c∗1W , c∗12} ⊆ Xn

So suppose all other weak banks select c∗1W and consider a given weak bank choosing

between c∗1W and c∗1S. A direct comparison of the expressions in (28) - (29) shows that

the bank in question is able to deliver strictly greater utility to its investors by deviating

and choosing c∗1S and therefore setting c∗1W is not incentive compatible. In other words,

any economy-wide allocation where all weak banks select c∗1W and, at the same time,

c∗1S is also an option is not consistent with equilibrium. Thus we have established the

desired result, since the equilibrium in the bad aggregate state cannot be efficient unless

both c∗1W or c∗1S are permitted by the regulator.

Proposition 10.
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Proof. We need to show that a bank run cannot occur when the fraction of weak banks

in the bad aggregate state n is close enough to zero. First, the menu of payment options

cannot be optimal unless all weak banks select a payment c1W such that c1W ≤ c∗1S (see

Proposition 11 below). Next, we show that for n sufficiently small, we must have

c1W < ĉ2 (37)

Moreover, the above relation will hold regardless of whether weak banks experience a

run or not. In other words, as the fraction of weak banks becomes converges to zero the

bailout policy of the fiscal authority provides full deposit insurance and therefore weak

banks will not be subject to runs from their investors. Observe that since c∗1S < c∗2S in

order to show (37) it will be sufficient to establish that as n converges to zero we have:

(ĉ1, ĉ2) −→
n→0

(c∗1S, c
∗
2S) (38)

Indeed, holding other parameters fixed, as the fraction of weak banks in the bad aggregate

state approaches zero we can use the conditions in (6) - (8) to obtain the following:

u′ (c∗1S) −→
n→0

v′ (τ ∗)

u′ (ĉ1) = v′
(
τ ∗ − nb̂

)
−→
n→0

v′ (τ ∗)

From the above it follows that regardless of whether the other weak banks experience

a run, the payment plan for each bank in resolution will converge to the payment plan

within sound banks as stated in (38) which, in turn, implies the desired condition in

(37).

Proposition 11.

Proof. The regulatory policy of the government is summarized in two sets X0 and Xn

where X0 is the menu of payment options offered to each bank in the good aggregate

state where all banks are sound and Xn is the menu of payment options offered to each

bank in the bad aggregate state where fraction n of the banks are weak.

Next, let c0S be the within bank allocation in the good aggregate state, cnS the within

bank allocation in the bad aggregate state when the bank is sound and cW the within

bank allocation in the bad aggregate state when the bank is weak. Note that we do not

need to index cW by n since there are no weak banks in the good aggregate state. Next,

we define three sets:

FS (X0) ≡
{
c0S

∣∣∣∣ such that c01S ∈ X0, (11) and (12) holds.

}
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FS (Xn) ≡
{
cnS

∣∣∣∣ such that cn1S ∈ Xn, (11) and (12) holds.

}

FW (Xn, ĉ) ≡
{
cW

∣∣∣∣ such that c1W ∈ Xn and (24) holds.

}
Remark 1. If the following set of conditions is satisfied:

c0S ∈ FS (X0), c
n
S ∈ FS (Xn) and cW ∈ FW (Xn, ĉ) (39)

Then there is a banking contract such that:

(i) If the aggregate state is good, then the within bank allocation is unique and given

by c0S.

(ii) If the aggregate state is bad and the bank is sound, then the within bank allocation

is unique and given by cnS.

(iii) If the aggregate state is bad and the bank is weak, then the within bank allocation

is unique and given by cW .

Remark 1 follows directly from the Proposition 3 and Proposition 5. Next, for given

menu of payment options in each aggregate state X0 and Xn and for given resolution

policy for the fiscal authority in the bad aggregate state ĉ = (ĉ1, ĉ2) we can use Remark

1 to formulate the program of any given individual bank.

Remark 2. Taking as given the regulation and resolution policy of the government,

X0, Xn and ĉ, an individual bank will choose c0S, cnS and cW in order to solve the following

program:  max
{c0S ,cnS ,cW}

{(1− q)VS (c0S) + q [(1− n)VS (cnS) + nVW (cW )]}

subject to (39)

 (40)

If conditional on being weak, each bank chooses the same allocation then the bailout

and resolution policy of the fiscal authority will be obtained as the solution to:

(1− θ)
[
ρ̂W ĉ1 + (1− ρ̂W )

ĉ2
R

]
= 1− τ − σ̄ − θc1W + b̂ (41)

u′ (ĉ1) = Ru′ (ĉ2) = v′
(
τ − nb̂

)
(42)

Next, we want to formulate the program of the regulator. We set the tax rate equal

to its value from the efficient allocation τ = τ ∗. Allowing the regulator to choose τ

will complicate the analysis without any new insights. Next, recall that any given bank

chooses a contract so as to uniquely implement the most desirable allocation among these

that can result in equilibrium of the withdrawal game within the bank taking as given

the actions of the regulator, the fiscal authority and all other banks and investors. Now
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we pose a similar problem for the banking regulator.

Remark 3. The program of the banking regulator can be formulated as recommending

an allocation to each bank c0S, cnS and cW in addition to a bailout and resolution policy

to the fiscal authority ĉ, b̂ in order to maximize:

(1− q)
[
VS
(
c0S
)

+ v (τ ∗)
]

+ q
[
(1− n)VS (cnS) + nVW (cnW ) + v

(
τ ∗ − nb̂

)]
Subject to (40), (41) and (42).

The current formulation of the program of the regulator is not complete, however,

since we still need to specify the payment options offered to banks X0 and Xn. We

proceed by making the following observations.

Remark 4. An optimal regulatory policy in the good aggregate state is given by

X0 = {0, c∗1S} .

Conditional on there being no weak banks, setting X0 = {0, c∗1S} ensures that the

efficient allocation is the unique equilibrium. Thus, if there are no weak banks, the

regulatory options will be set to{0, c∗1S}, the allocation is unique and corresponds to the

efficient allocation derived in section 3. Henceforth we focus on the bad aggregate state

and drop the superscript n when referring to allocations within sound banks.

Remark 5. It is without loss of generality if we suppose that in the bad aggregate

state the banking regulator offers each bank a choice between 0, c1W and c1S.

Suppose that the payment options available to each bank are contained in the set

Xn and consider an equilibrium outcome such that in the bad aggregate state all sound

banks set c1S and all weak banks set c1W . Clearly it must be the case that c1W and

c1S both belong to Xn. Moreover, if we were to remove all other element but these two

from the set Xn then the equilibrium just described would still exist. The reason is that

a weak bank that decided on c1W among a set X containing, among c1W and cn1S, also

some other elements would still choose c1W when these other elements were removed as

payment options. The same argument holds for the sound banks as well.

Conversely, suppose we start from a smaller set where weak banks self-select into c1W

and sound banks self-select into c1S. Notice that an addition of a new element, say z,

to the set of options banks can choose from would either have no effect i.e. each bank

would continue to make the same choice as before or the new element z would attract

a subset of the banks that would abandon their old choice and switch to z. Suppose

that adding z as an option entails weak banks choosing this payment (sound banks, in

contrast, continue to prefer c1S over both c1W and z).

The situation just described, however, is equivalent to replacing c1W with z. In-

deed, the addition of z to the set of payments available to each bank makes c1W an

off-equilibrium choice and the resulting equilibrium allocation would also obtain if c1W

were not available in the first place. Finally, observe that this conclusion remains true
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regardless of whether the regulator actually prefers weak banks to choose z instead of

c1W . At the same time, if the regulator preferred z to c1W for the weak banks then

deleting c1W rather than keeping it as an option cannot reduce welfare.

To summarize: the above argument suggest that it will be without loss of generality if

we assume that each bank is offered at most three options: 0, c1W and c1W (which would

reduce to just two whenever c1W = c1S). As pointed out previously, the option to set

zero is necessary to prevent runs and to ensure that the equilibrium where weak banks

self-select into c1W whereas sound banks self-select into c1S not only exists but is unique

as well.

Next, consider the economy-wide allocation EB in the bad aggregate state where in

addition to c1W and c1S the remaining components of the allocation are collected below:

EB ≡
(
ρW , ρS, c1S, c2S, c1W , ĉ1, ĉ2, b̂

)
Remark 6. If the aggregate state is bad, then the regulatory policy X = {0, c1W , c1S}

can result in the economy-wide allocation E as an equilibrium if and only if E jointly

satisfies (11) - (12), (32) - (33) and (19) - (22)

First, from Proposition 3 the allocation within sound banks will satisfy (11) - (12).

Second, from Proposition 5 the allocation within weak banks will satisfy (32). Third,

the ex-post optimal bailout and resolution policy of the fiscal authority will satisfy (19)

- (22). Fourth, weak banks must prefer to implement the allocation associated with c1W

and sound banks must prefer to implement the allocation associated with c1S. That is,

the incentive compatibility constraints in (32) - (33) must hold.

Define FR to denote the set of all economy-wide allocations EB for which (11) -

(12), (32) - (32) - (33) and (19) - (22) holds. The optimal regulation policy in the bad

aggregate state can be stated as choosing the economy-wide allocation to maximize the

sum of investors’ expected utilities in the bad aggregate state.

max
EB∈FR

{
(1− n)VS (cnS) + nVW (cnW ) + v

(
τ − nb̂

)}
(43)
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