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Abstract

Measuring substitution patterns across differentiated products is at the heart of

many empirical studies. Most of the approaches used in applied work, including the

leading approach pioneered by Berry, Levinsohn, and Pakes (1995) (BLP), impose

distributional and functional form assumptions and restrictions on individual con-

sumer behavior that may restrict substitution patterns in the space of product char-

acteristics. In this paper, I propose a flexible approach that does not place arbitrary

assumptions about how substitution patterns depend on product characteristics and is

agnostic about individual consumer behavior. To this end, I rely on an inverse market

share function that I show to be consistent with utility maximization by heteroge-

neous consumers. I find my approach yields substitution patterns that BLP cannot re-

cover, including complementarity in demand, and can accommodate multiple choices.

My approach can be applied to topics in various fields of economics, such as digital

economics, industrial organization, and international trade, to address policy-relevant

questions such as the evaluation of mergers and regulatory changes in taxes and trade

policy.
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1 Introduction

Understanding how consumers substitute across differentiated products is at the heart of
many empirical studies, meaning that measuring substitution patterns is a preliminary step
of these studies.1 Prominent examples include the measurement of market power and the
evaluation of mergers and acquisitions. Market power depends on substitution patterns as
products facing closer substitutes tend to have lower markups. The incentives of the merg-
ing firms to increase their prices also depend on substitution patterns: the price increase
following the merger will be higher the more substitutable the products of the merging
firms are. To obtain convincing empirical findings, it is thus crucial to rely on credible
estimates of substitution patterns.

The state-of-the-art approach to estimate substitution patterns among differentiated
products using market-level data is due to Berry et al. (1995) (BLP). It uses the random
coefficient logit model, which, theoretically, allows for a wide variety of substitution pat-
terns determined by the proximity of products in characteristic space. In practice, however,
achieving flexibility is challenging as it requires the utility and random coefficient specifi-
cations to be flexible enough. For tractability, many papers applying BLP impose arbitrary
distributional assumptions (typically normal random coefficients) and functional form as-
sumptions (usually linearity of the utility in characteristics), thereby possibly restricting
the substitution patterns.2 Besides, by using the random coefficient logit model, BLP as-
sumes that each individual consumer chooses only her preferred product, which may bias
substitution patterns when consumers choose baskets of products.3

In this paper, I propose a flexible approach that does not rely on arbitrary assumptions

1Examples span a wide range of topics in industrial organization: evaluation of mergers (Baker and Bres-
nahan, 1985; Nevo, 2000a; Miller and Weinberg, 2017), measurement of market power (Bresnahan, 1989;
Berry et al., 1995; Nevo, 2001), and welfare gains from new products (Petrin, 2002). Examples can also be
found in various fields of economics: environmental policy (Reynaert, 2021), financial markets (Dick, 2008;
Ho and Ishii, 2011), food policy (Griffith et al., 2019), health care (Ho and Lee, 2017), telecommunications
market (Bourreau et al., 2021), vertical markets (Berto Villas-Boas, 2007; Crawford and Yurukoglu, 2012),
voting (Gordon and Hartmann, 2013), and trade policy (Verboven, 1996a; Berry et al., 1999).

2McFadden and Train (2000) show that the market share function (choice probabilities) implied by any
random utility model can be approximated by a random coefficient logit model, provided that the utility
and random coefficient specifications are flexible enough. In Section 5, I provide simulations showing that
misspecification of random coefficients may bias estimates of substitution patterns. See also Lu et al. (2019),
Compiani (2021), and Narita and Saito (2021). Davis and Schiraldi (2014) show that imposing functional
form assumptions on the utility, such as linearity in characteristics, may generate substitution patterns that
are not driven by how close products are in characteristic space, even when many random coefficients are
included.

3See Narita and Saito (2021) for further details.
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about how substitution patterns depend on product characteristics and is agnostic about in-
dividual consumer behavior. Furthermore, in line with BLP, I use market-level data where
consumers choose among a set of products differentiated according to some characteristics
that the modeler may observe or not. The modeling of unobserved characteristics possi-
bly creates an endogeneity problem that I address using a standard instrumental variable
strategy based on exogenous variation in the choice set. Thereby, my approach allows for
a wide range of substitution patterns in characteristic space. In particular, I show that it
yields substitution patterns that BLP cannot recover.

I obtain rich substitution patterns in two steps. First, I specify an inverse market share
function that is flexible in the sense that it can match the substitution patterns generated by
any member of a large class of inverse market share functions.4 I refer to this inverse mar-
ket share function as the flexible inverse logit (FIL) model since it improves the logit model
thanks to a flexible nesting structure (i.e., allocation of products into groups). Specifically,
this latter admits a group for each pair of products whose substitution pattern is governed
by a nesting parameter that tends to be higher as the two products are closer substitutes.5 By
focusing on an inverse market share function, I build on a key insight underlying the litera-
ture: the inverse market share function is the target of estimation. It means that knowledge
of it and its first and second derivatives is sufficient to answer many questions of interest.
Based on Berry (1994), it also means that it generates equations that can be directly used as
a basis for estimation using regressions. Besides, by doing so, I avoid placing restrictions
on individual consumer behavior. The FIL model thus accommodates a wide variety of
consumer behavior and substitution patterns, including multiple choices (i.e., purchases of
several units of different products) and complementarity in demand (i.e., a negative cross-
price derivative of market share). However, without further assumptions, this prevents any
study at the individual consumer level that, e.g., requires knowledge of the distribution
of consumer preferences. Lastly, the FIL model is consistent with utility maximization. In
particular, it can be derived from a specific instance of the class of models of heterogeneous,
utility-maximizing consumers studied by Allen and Rehbeck (2019). Thus, combined with
a model of firm conduct, it can be used for counterfactual analysis such as the simulation
of mergers or regulatory changes in taxes and trade policy.

Second, I map the nesting parameters in characteristic space. That is, I specify each

4Formally, this inverse market share function will be shown to be flexible in the sense of Diewert (1974).
5The FIL model can be motivated as a flexible member of the class of inverse market share functions

developed by Fosgerau et al. (2021), which extend that of the nested logit models by allowing any nesting
structure.
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pair-specific nesting parameter as a parametric, pair-invariant function of how close the
two products are in this space. This mapping allows generating substitution patterns deter-
mined by the proximity of products in characteristic space – rather than their identity, i.e.,
substitution patterns are in characteristic space – rather than in product space. As shown
by Gandhi and Houde (2020), BLP also embeds these realistic restrictions. However, in
BLP, they are determined by random coefficient specifications. Besides, consistency with
economic theory, such as utility maximization, generates inequality restrictions on the map-
ping. Relying on the literature on the econometrics of shape restrictions (Matzkin, 1994;
Chetverikov et al., 2018), I impose these restrictions during estimation to obtain better
estimates of substitution patterns. Lastly, I specify the mapping using Bernstein polyno-
mials to make the substitution patterns mainly driven by data rather than by distributional
or functional forms assumptions. This also makes it convenient to impose the inequality
restrictions since they can be readily converted into a set of constraints that are linear in the
Bernstein polynomial coefficients.

My general finding is that my approach allows for a large set of possible substitution
patterns. In theory, it and BLP generate two non-nested sets: in constrast to BLP, I rule
out income effects and allow for complementarity in demand. As a by-product, using a
standard result in convex analysis, I establish a new invertibility result that applies to a
large class of (inverse) market share functions, including some that Berry et al. (2013)’s
results do not cover.6 However, absent income effects and complementarity in demand, it
is not clear which of the two approaches provides a broader set of substitution patterns. To
gain insights into this, I run Monte-Carlo simulations and, at the same time, examine im-
plications for implied markups and merger price effects based on static price competition
between multi-product firms. Simulations lead to the following results. First, even when
restricted to substitutes, my approach generates substitution patterns different from BLP. It
means that it can accommodate substitution patterns that BLP cannot recover. Furthermore,
my approach can outperform BLP in two cases: first, when BLP is misspecified about its
random coefficient specification, and, second, when consumers choose baskets of products,
rather than products alone. These results suggest that my approach can obtain in some cir-

6This class of inverse market share functions includes those implied by many additive random utility
models (ARUM) used in applied work. In the ARUM, the utility that a consumer derives from choosing a
product is given by the sum of a deterministic utility term and a random utility term (Anderson et al., 1992).
This invertibility result includes ARUM without income effect and heterogeneity in preferences apart from
the random utility terms. In particular, it rules out observed heterogeneity related to observed individual
characteristics and unobserved heterogeneity through random coefficients.
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cumstances better estimates than BLP, which can be explained by the fact that it does not
rely on arbitrary assumptions about how substitution patterns depend on product character-
istics and is agnostic about individual consumer behavior. Lastly, my approach can match
the substitution patterns implied by the benchmark BLP allowing a normal random coef-
ficient on an observed product characteristic, even when there is substantial unobserved
heterogeneity in preferences.

Ongoing Work. To illustrate my approach, I revisit work by Nevo (2000a, 2001) on
market power and merger simulation in the ready-to-eat cereals market.

Related Literature. My paper relates to several strands of literature on the estimation of
demand models for differentiated products. First, as already mentioned, it is in line with
the literature pioneered by Berry (1994) and BLP. However, it differs from this literature
by relying on a different modeling strategy. BLP assumes an additive random utility model
– the random coefficient logit model – from which the market share function is derived
by utility maximization and inverted numerically to obtain inverse market share equations
as a basis for estimation. Since the inversion is not in closed form, BLP prevents us from
using regressions for estimation and thus requires a more complex estimation procedure.7

By contrast, I specify an inverse market share function that I show to be consistent with
utility maximization and directly estimate using parametric regression techniques. In this
respect, closest to my paper are Compiani (2021) and Fosgerau et al. (2021) who directly
estimate inverse market share functions using regression techniques based on market-level
data. Compiani (2021) develops a non-parametric approach. He also does not make distri-
butional assumptions and imposes minimal functional form restrictions grounded in eco-
nomic theory. However, his approach turns out to be feasible only in settings with small
choice sets, whereas my approach can handle small to very large choice sets. Fosgerau et al.
(2021) develops a class of inverse market share functions that extend that of the nested logit
models by allowing any nesting structure while preserving their computational simplicity.
The FIL model is the member that admits a flexible nesting structure with a group for each
pair of products.

7See Conlon and Gortmaker (2020) for more details. BLP complicates the estimation, which involves a
numerical inversion nested into a non-linear, non-convex optimization problem and simulation of the market
share function. It thus requires dealing with the related issues of local optima, choice of starting values, and
accuracy of simulation and numerical inversion (see Knittel and Metaxoglou, 2014, and references therein).
Other approaches to solve BLP’s problem were proposed by Dubé et al. (2012); Lee and Seo (2015); Salanié
and Wolak (2019).
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Therefore, my paper is also linked to the literature that estimates substitution patterns
using models based on a nesting structure that allocates products into groups, where prod-
ucts in the same groups tend to be closer substitutes. The most prominent examples are the
nested logit models that group products into exhaustive, mutually exclusive groups. They
are easy to estimate by linear regression but have been criticized for restricting substitu-
tion patterns. This has led the literature to propose models based on more general nesting
structures. The vast majority of them are members of the class of generalized extreme
value (GEV) models developed by McFadden (1978). These models include the ordered
logit (Small, 1987), the product differentiation logit (Bresnahan et al., 1997), the ordered
nested logit (Grigolon, 2021), etc. Closer to the FIL model are the paired combinatorial
logit (Chu, 1989; Koppelman and Wen, 2000) and the flexible coefficient multinomial logit
(Davis and Schiraldi, 2014), which also use a flexible nesting structure. However, they
restrict products to be substitutes in demand and require a complex estimation procedure
similar to that in BLP.

Furthermore, my paper is related to the flexible functional form approach (see Barnett
and Serletis, 2008, and references therein), which, e.g., includes the almost ideal demand
system of Deaton and Muellbauer (1980). This line of research builds flexible models in
the sense of Diewert (1974) to derive demand equations that only comprise observables and
require the addition of additive error terms to serve as a basis for estimation. As highlighted
by the literature, this approach has two main limitations. First, it has many parameters that
quickly increases with the number of products, which makes its use to large choice sets
very challenging. This is because it requires very large datasets and a high number of
instruments. Second, because it generates substitution patterns in product space, it cannot
be used to predict the demand for a new product. My approach also involves a flexible
model of consumer behavior – the FIL model – but maps parameters in characteristic space,
which overcomes these limitations.

Lastly, my paper relates to papers that aim to obtain rich substitution patterns in char-
acteristics space. They include papers that semi- or non-parametrically estimate random
coefficients in demand models, i.e., without imposing distributional assumptions on the
random coefficients (Fox et al., 2011, 2016; Fox and Gandhi, 2016; Lu et al., 2019). They
also include Athey and Imbens (2007) who extend BLP by allowing multiple unobserved
characteristics terms, and Bajari and Benkard (2005) and Berry and Pakes (2007) who
use pure characteristics demand models. Furthermore, they also include papers that map
demand parameters in characteristics space, and in particular those that apply the distance-
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metric approach of Pinkse et al. (2002) for demand estimation purposes (Pinkse and Slade,
2004; Slade, 2004; Davis and Schiraldi, 2014).

The remainder of the paper is organized as follows. Section 2 provides an overview
of my approach. Section 3 provides an extended discussion about the theoretical aspects
of my approach, including a study of the substitution patterns that it accommodates and
its consistency with standard consumer theory. Section 4 describes the empirical strat-
egy. Section 5 presents simulations that show the performance of my approach and how it
compares to BLP. Section 6 concludes.

2 Overview of the Approach

The general framemork I rely on is standard in the literature pioneered by Berry (1994)
and Berry et al. (1995) (see also Berry and Haile, 2014). I consider a population of
consumers choosing among J + 1 differentiated products indexed by j = 0, . . . , J in
a market t. Product j = 0 is referred to as the outside good. Market t is defined by
a collection

(
x(1)
t , x(2)

t ,pt, ξt

)
of product/market characteristics: x(1)

t ≡ (x(1)
1t , . . . , x

(1)
Jt )

and x(2)
t ≡ (x(2)

1t , . . . , x
(2)
Jt ) are two sets of observed characteristics, with x(1)

jt ∈ RK1 and
x(2)
jt ∈ RK2; pt ≡ (p1t, . . . , pJt) are observed prices, with pjt ∈ R; ξt ≡ (ξ1t, . . . , ξJt) are

unobservables at the level of product and/or market, with ξjt ∈ R, summarizing product
differentiation that is not explained by observed characteristics.

Then, I assume a linear index restriction, constraining the way characteristics enter the
model. On the one hand, I let

(
x(1)
t , x(2)

t ,pt, ξt

)
enter the model through indexes defined as

δjt ≡ x(1)
jt β1 + x(2)

jt β2 − αpjt + ξjt, j = 1, . . . , J, (1)

where α > 0, β1 ∈ RK1 and β2 ∈ RK2 . On the other hand, I let x(2)
t enter in an unrestricted

way, i.e., both through the indexes and directly. This implies that x(1)
t , ξt and pt will be

perfect substitutes and that consumer behavior will be arbitrarily affected by x(2)
t . The

logit model does not incorporate characteristics x(2)
t . In the rancom coefficient logit model,

characteristics x(2)
t are those that admit a random coefficient. For the outside good, I set

δ0t = 0.
Lastly, I define an empirical model of consumer behavior describing the aggregate

behavior of the population of consumers. Different modelings can be used: utility, de-
mand, inverse demand, etc. Here, I specify an inverse market share function σ−1 ≡
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(
σ−1
1 , . . . , σ−1

J

)
that, x(2)

t held fixed, maps from observed market shares st ≡ (s1t, . . . , sJt) ∈
∆+

J to product indexes δt ≡ (δ1t, . . . , δJt) ∈ RJ , where σ−1
j is the inverse market share

function for product j and ∆+
J denotes the set of non-zero market shares, so that for the

outside good, we have s0t = 1−
∑J

k=1 skt.
8

Model. My approach relies on the following inverse market share equations:

σ−1
j

(
st, x

(2)
t ; {µij}i,j>0

)
≡ ln

(
sjt
s0t

)
−
∑
i ̸=j

µij ln

(
sjt

sit + sjt

)
= δjt, j > 0, (2)

with µij = µ
(

d(2)
ij,t;γ

)
, ∀i, j > 0, i ̸= j, (3)

µij = µji, ∀i, j > 0, i ̸= j, (R1)

µij ≥ 0, ∀i, j > 0, i ̸= j, (R2)∑
i ̸=j

µij < 1, ∀j > 0, (R3)

where d(2)
ij,t is a vector of measures of proximity between products i and j in characteristics

x(2)
t and γ is a parameter vector.

Observe that the inverse market share equations (2) reduce to that implied by the logit
model

σ−1
j (st) ≡ ln

(
sjt
s0t

)
= δjt, j = 1, . . . , J, (4)

when all parameters µij shrink to zero. As is well known, the logit model yields counter-
intuitive substitution patterns whereby decreases in product j’s price reduce the demand
for any other product k ̸= j by the same percentage, regardless of how close substitutes
products are. Thus, Model (2) deviates from the logit model and its restrictive substitution
patterns thanks to its positive parameters µij . In Section 3, I show how these latter gov-
ern substitution patterns between products i and j and allow to obtain flexible substitution
patterns.

To obtain richer substitution patterns, the literature has developed demand models that
deviate from the logit model in two main ways. The first way introduces unobserved con-
sumer heterogeneity in preferences through random coefficient specifications, as in Berry
et al. (1995) (hereafter BLP). The second way uses models based on a nesting structure

8That is, ∆+
J ≡

{
st ∈ (0,∞)

J
:
∑J

j=1 sjt < 1
}

.
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(i.e., allocation of products into groups). The most prominent example is the (simple)
nested logit model that groups products into exhaustive, mutually exclusive groups (and
with a group for the outside good alone) and leads to the following inverse market share
equations

σ−1
j (st;µ) ≡ ln

(
sjt
s0t

)
− µ ln

(
sjt∑
k∈g skt

)
= δjt, j = 1, . . . , J, (5)

for a product j in group g. These equations highlight that Model (2) generalizes the inverse
market share of the nested logit model by relying on a flexible nesting structure that admits a
group for each pair (i, j) of products i, j > 0 and a group for the outside good j = 0 alone.
Hereafter, I refer to parameters µij as nesting parameters and Model (2) as the flexible
inverse logit (FIL) model as it extends the inverse demand of the logit model flexibly,.
Specifically, the FIL model can be viewed as a flexible member of Fosgerau et al. (2021)’s
class of models that extends the inverse demand of the nested logit model by allowing any
nesting structure. In Section 3, I further show that it is consistent with a representative
consumer model and a model of heterogeneous, utility-maximizing consumers.

Equations (3) map the nesting parameters in the characteristic space generated by x(2)
t .

They generate substitution patterns depending on how close products are in this space,
rather than on their identity, i.e., substitution patterns are in characteristic space, not in
product space. Building on Pinkse et al. (2002) and Pinkse and Slade (2004), I express
each parameter µij as a parametric, pair-invariant function of a vector d(2)

ij,t of measures of
proximity between products i and j in characteristics x(2)

t . These mappings allow to explain
why consumers are more inclined to substitute among products with similar characteristics,
e.g., why consumers whose most preferred car is a BMW tend to switch to another luxury
car rather than to a non-luxury car following BMW’s price increase. As shown by Gandhi
and Houde (2020), BLP also embeds these realistic restrictions on substitution patterns.
The key difference is that while in BLP they are determined by random coefficient specifi-
cations, here they are determined by the mappings (3).

Restrictions (R1) – (R3) on the nesting parameters µij can be motivated in two ways.
First, under these restrictions, the inverse market share function σ−1 in Equations (2) is in-
vertible up to the normalization δ0t = 0 (see Corollary 2 in Appendix C.1). This means that
the specified inverse market share function defines a market share function σ, rather than
a correspondence. The normalization is required because otherwise there exists an infinity
of vectors δt that can rationalize the vector st. It reflects the fact that, before normaliza-
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tion, the market share function is invariant to translation in product indexes δt, meaning
that differences in δt, not their absolute values, determine the market share function. This
invertibility result actually extends to a large class of inverse market share functions, includ-
ing those implied by any additive random utility model without income effect and observed
heterogeneity in preferences related to observed individual characteristics and unobserved
heterogeneity in preferences through random coefficients (see Proposition 1 in Appendix
C.1).

Second, Restrictions (R1) – (R3) have an economic content. As shown in Section 3,
they make the matrix of price derivatives of market share symmetric and negative definite.
These properties are key for consistency with utility maximization (see Nocke and Schutz,
2017) and for the market share function of each product to be (strictly) decreasing in its own
price. Furthermore, they allow for complementarity in demand, defined by a negative cross-
price derivative of market share. As a result, the invertibility result above supplements
existing results by Berry (1994) and Berry et al. (2013) by not relying on the "connected
substitutes" structure and, in particular, by allowing for complementarity in demand.9

Before turning to the estimation, two remarks are in order: (i) the random coefficient
logit used by BLP also embeds translation invariance of the market share function, and
symmetry and negative definiteness of its derivative matrix; (ii) Restrictions (R1) are re-
dundant to the mappings (3), the latter implying the former since d(2)

ij,t ≡ d(2)
ji,t.

Identification and Estimation. The market-level data I rely on are the same as BLP.
Consider having data {sjt, pjt, x(1)

jt , x
(2)
jt } on market shares, prices and product characteris-

tics for j = 1, . . . , J products in t = 1, . . . , T markets.
Combining Equations (2) and (3) allows to obtain each unobserved characteristic term

ξjt as a parametric function of data and demand parameters (α,β1,β2,γ)

ξjt = ln

(
sjt
s0t

)
−
∑
i ̸=j

µ
(

d(2)
ij,t;γ

)
ln

(
sjt

sit + sjt

)
− x(1)

jt β1 − x(2)
jt β2 + αpjt. (6)

Following the literature, the ξjt terms are structural error terms, as they summarize all
the product/market characteristics observed by consumers and firms but not by the mod-
eler. Furthermore, product characteristics x(1)

jt and x(2)
jt are assumed to be exogenous (i.e.,

9The connected substitutes structure requires that (i) products be weak substitutes, i.e., everything else
equal, an increase in δj weakly decreases demand σi for all other products; and (ii) the “connected strict
substitution” condition hold, i.e., there is sufficient strict substitution between products to treat them in one
demand system.
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uncorrelated with ξjt), whereas prices and market shares are considered as endogenous.10

Then, provided that there exist instruments zt for prices and market shares, we can es-
timate demand parameters based on the following conditional moment restrictions (Berry,
1994)

E[ξjt|x(1)
t , x(2)

t , zt] = 0, j = 1, . . . , J, t = 1, . . . , T (7)

where γ is such that Restrictions (R1) – (R3) are satisfied.
In Section 4, I provide details about estimation, identification, and implementation.

However, I can make three comments at this stage. First, I will only require parametric
instrumental variable regressions for estimation. This is because my approach relies on an
inverse market share function, which has an explicit formula known up to some parameters
to be estimated. This contrasts with BLP that uses the random coefficient logit model for
which there is no explicit inversion formula such as in Equation (6), and in turn, prevents
us from using regressions.

Second, the structural interpretation of the error terms help build intuition for identifi-
cation using instruments. As in the literature (see Berry and Haile, 2014), any variable that
induces exogenous variation in choice sets will be good candidates as instruments. As a
result, I will use standard instruments of the literature, thereby relying only on conventional
sources of empirical variation to identify demand parameters.

Third, I will impose Restrictions (R1) – (R3) during estimation. This builds on the
literature on the econometrics of shape restrictions (Matzkin, 1994; Chetverikov et al.,
2018) that shows how imposing restrictions during estimation help improve the estimation.
At the same time, this makes inference harder. A future version of this paper will propose
a method to handle this issue.

3 Theory: Substitution Patterns and Utility

In this section, I provide theoretical details about my approach. I first describe how it
can accommodate rich substitution patterns in characteristic space. Then, I show that it is
consistent with utility maximization.

10For example, consider a price competition model. Prices are endogenous because firms take into ac-
count both observed and unobserved characteristics when they set their prices. Furthermore, market shares
are endogenous as they are determined by a full system of equations involving the entire vectors of endoge-
nous prices and unobserved characteristics, and consumers choose products while potentially considering the
unobserved characteristics.
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3.1 Substitution Patterns

Substitution patterns refer to how consumers substitute among products following a price
increase. They can be captured by the matrix of own- and cross-price derivatives of market
share: own-price derivatives express how much a one-unit product’s price increase would
cause a drop in its own market share, whereas cross-price derivatives indicate where the
lost demand goes. Absent income effect, the matrix of price derivatives of market share is
equivalent to the Slustky matrix.

Formally, the Slutsky matrix is given by[
∂σi(δt)

∂pjt

]
= −α

[
∂σi(δt)

∂δjt

]
, (8)

where σi denotes the market share function for product i. Let σ−1(st) = δt. Then,11

[
∂σi(δt)

∂pjt

]
= −α

[
∂σ−1

i (st)
∂sjt

]−1

. (9)

For the FIL model (2), we have

∂σ−1
i (st)
∂sjt

=



1

s0t
+

1−
∑

i ̸=j µij

sjt
+
∑

i ̸=j

µij

sit + sjt
, if i = j,

1

s0t
+

µij

sit + sjt
, if i ̸= j,

(10)

where µij is mapped in characteristic space according to Equations (3).
Restrictions (R1) – (R3) have implications for substitution patterns. Restrictions (R1)

imply Slutsky symmetry, while Restrictions (R2) and (R3) imply Slutsky negative defi-
niteness.12 Absent income effect, these properties are key for the FIL model to be consis-
tent with the maximization of a quasi-linear utility function (see, e.g., Nocke and Schutz,

11Let σ−1(st) = δt. Then, use that σ−1 is invertible, with inverse σ, and apply the chain rule (Simon and
Blume, 1994, Theorem 14.4).

12Restriction (R1) implies that the matrix (10) is symmetric, which implies that its inverse, the Slustky
matrix (8), is symmetric as well. The matrix (10) is the sum of two matrices, where the first one is positive
semi-definite and the second one, by Restrictions (R2) and (R3), is positive definite as it is a symmetric,
strictly diagonally dominant matrix with positive diagonal entries (Horn and Johnson, 2012, Theorem 6.1.10.)
Then the matrix (10) is positive definite and so is its inverse. As α > 0, this implies that the Slustky matrix
(8) is negative definite.
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2017).13 Furthermore, they entail that the demand of each product is strictly decreasing
in its own price (law of demand). Lastly, they do not restrict products to be substitutes in
demand.

The mappings (3) also have implications for substitution patterns. To see this, let yjt ≡
(sjt, x

(2)
jt ) and y−jt ≡ (y1t, . . . , yj−1,t, yj+1,t, . . . , yJt). Then, the FIL model (2) mapped in

characteristic space can be rewritten as follows (see Appendix C.3 for details)

σ−1
j

(
yj, y−j;γ

)
= ln

(
sjt
s0t

)
−

J∑
i=1

µ
(

d(2)
ij,t;γ

)
ln

(
sjt

sit + sjt

)
+Ct, j = 1, . . . , J, (11)

whereCt ∈ R is a market-specific constant and where the sum is over all products including
product j itself.

The inverse market share function (11) for product j exhibits three key features. First,
it is product-invariant and only depends on market shares st and characteristics x(2)

t

σ−1
j

(
yj, y−j;γ

)
= σ−1

k

(
yj, y−j;γ

)
= σ−1

(
yj, y−j;γ

)
, for any j ̸= k. (12)

Second, it does not depend on the ordering of competing products k ̸= j but only on
their market shares s−jt and characteristics x(2)

−jt:

σ−1
(
yj, y−j;γ

)
= σ−1

(
yj, yρ(−j);γ

)
(13)

where ρ(−j) is any permutation of −j ≡ (1, . . . , j − 1, j + 1, . . . , J). These two features
imply that it is not the identity of products but their characteristics and popularity that
determine substitution patterns.

Third, the inverse market share function (11) does not depend on the absolute value of
the characteristics but on their relative values. Formally, it is invariant to translation in x(2)

t :

σ−1
(
yj + (0, c), y−j + (0J−1, c1J−1);γ

)
= σ−1

(
yj, y−j;γ

)
, for all c ∈ R, (14)

where 0J−1 ∈ RJ−1 is a vector of zeros and 1J−1 ∈ RJ−1 is a vector of ones. It means that
it is not the level of product characteristics but their closeness in characteristic space that
determine substitution patterns.

These three features reveal how the mappings (3) generate substitution patterns deter-

13Note that I can use Nocke and Schutz (2017)’s results because the market share function is continuously
differentiable.
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mined by the proximity of products in the characteristic space generated by x(2)
t – rather

than their identity, i.e., substitution patterns are in product space – rather than in character-
istic space. 14

Equation (11) help build intuition on how my approach generates rich substitution pat-
terns. Observe first that the nesting structure is just a valuable way to fully parametrize the
matrix of (inverse) market share derivatives. It means, by contrast to the nested logit model,
that the nesting structure of the FIL model does not require the modeller to take a stand on
the relevant dimensions along which groups can be defined and its implied substitution
patterns are not constrained by a priori restriction such as product segmentation.

Then, note that the FIL model is flexible in the sense of Diewert (1974) in a large
class of well-defined inverse market share functions, encompassing all those implied by
any additive random utility model without income effect and observed heterogeneity in
preferences related to observed individual characteristics and unobserved heterogeneity in
preferences through random coefficients. That is, the FIL model can match the vector
of market shares as well as any matrix of own- and cross-price elasticities implied by an
inverse market share function of this class.15

This result is formally stated in Proposition 3 in Appendix C.2. Its proof can be
sketched in two steps. The first step uses the invertibility of the FIL model to show that
there always exists a vector δt of indexes that equates the vector st of observed shares to
the vector σ of predicted shares. The second step shows that the FIL model can match any
own- and cross-price elasticities, which, once the market shares are matched, is equivalent
to match the own- and cross-price derivatives. Intuitively, we can match the cross-price
derivative ∂σi(δt)/∂pjt by appropriately choosing the value of the nesting parameter µij .
Once this is done, all own-price elasticity ∂σj(δt)/∂pjt are automatically matched because,
as for any unit-demand model

∂σj(δt)

∂pjt
= −

∑
k ̸=j

∂σk(δt)

∂pjt
. (15)

14The first two features are referred to as symmetry and anonymity. Therefore, my approach closely relates
to Compiani (2021) who uses anonymity to reduce the dimensionality of his non-parametric estimation,
and to Gandhi and Houde (2020) who use anonymity and symmetry of the linear-in-characteristics random
coefficient logit model to construct new approximations of the optimal instruments.

15A demand system is flexible in the sense of Diewert (1974) if it is able to provide a first-order approx-
imation to any theoretically grounded demand system at a point in price space. Equivalently, flexibility can
also be viewed as the ability of the (direct or indirect) utility function to provide second-order approximations
to any utility function. This is because the partial derivatives of the demand function can be uniquely derived
from the second partial derivatives of the utility function.
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Note that flexibility in the sense of Diewert (1974) means that we can match price
elasticities in a single market. That is, given a single market, we can conveniently choose
values for the parameters µij to match the price elasticities implied by a nested logit model.
However, flexibility does not hold when we consider multiple markets, i.e., a flexible model
cannot match the price elasticities in all markets simultaneously. By contrast, simulations
in Section 5 show how the mappings (3) can yield rich substitution patterns in all market
simultaneously.

This discussion has highlighted the role of the nesting parameters in driving substitution
patterns. To obtain further intuition into this, I consider the following stylized example.

Example 1. Let J = 3 and assume that x(1)
t = (0.3, 0.25, 0.2), pt = (1.1, 1, 0.9), ξjt ∼

N (0, 0.152), δjt = −5−pjt+x(1)jt +ξjt. Set µ23 = 0.4 and let µ12 and µ13 vary. The scatter
plot below shows that higher values for µ12 implies higher elasticity between products 1

and 2. By varying the value of µ13, it also shows that the relationship between products 1
and 2 (substitutes/complements) is affected by product 3.

Figure 1: The nesting parameter µij governs substitution patterns between products i and j

The scatter plot shows the cross-price demand elasticity of product 1 with respect to product 2 as a function of
µ12 for different values of µ13. The red horizontal line correspond to the threshold between complementarity
and substitutability in demand.

Example 1 shows that the nesting parameter µij governs substitution patterns between
products i and j. First, the higher the value for µij , the higher the cross-price elasticity ηij .
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Then, the FIL model allows for complementarity in demand. Lastly, whether products i and
j are complements or substitutes does not uniquely depend on µij but also on µik, k ̸= j,
k ̸= i. This finding is consistent with the theoretical result whereby whether two products
are complements or substitutes in demand depends on the relation of the two products to
the other products (Samuelson, 1974).

3.2 Utility Maximization

Recall that my approach relies on the FIL model defined in Equations (2). As shown
above, it is an inverse market share function that is consistent with utility maximization.
I here show that it can be derived from a representative consumer model and a model of
heterogeneous, utility-maximizing consumers.

Representative Consumer. Building on Fosgerau et al. (2021), I first show that the FIL
model is consistent with a representative consumer whose utility function describes the
aggregate behavior of a population of possibly heterogeneous consumers.

Consider a representative consumer choosing among J + 1 differentiated products and
a homogeneous numéraire good in a market t. Let vjt be the quality of the differentiated
product j = 0, . . . , J in market t and pjt be its price. In the empirical framework, we have
vjt = x(1)

jt β1 + x(2)
jt β2 + ξjt. The price of the numéraire good is normalized to 1 and the

representative consumer’s income y is assumed to be sufficiently high for the consumption
of the numéraire good be positive.

Let µj ≡ 1−
∑

i ̸=j µij for all j = 1, . . . , J . The FIL model is consistent with a repre-
sentative consumer who chooses market shares sjt ≥ 0, j = 0, . . . , J of the differentiated
products and a quantity zt ≥ 0 of the numéraire good to maximize her direct utility function
u defined by

u(zt, st) = αzt +
J∑

j=0

vjtsjt −

[
s0t ln(s0t) +

J∑
j=1

sjt

(
µj ln(sjt) +

∑
i ̸=j

µij ln(sit + sjt)

)]
(16)

if
∑J

j=0 sjt = 1 and u = −∞ otherwise, subject to her budget constraint

J∑
j=0

pjtsjt + zt ≤ y. (17)
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As for the logit and nested logit models (Anderson et al., 1988; Verboven, 1996b),
utility (16) embeds two effects. The first effect, given by αzt +

∑J
j=0 vjtsjt, captures the

utility that the representative consumer derives from consuming the differentiated products
and the numéraire in the absence of interaction (in utility) among them. The second ef-
fect, given by the expression into brackets, models its preference for variety. Indeed, if
utility (16) were only given by αzt +

∑J
j=0 vjtsjt, then the representative consumer would

maximize her utility by choosing the product j with the highest utility vjt. Overall, the rep-
resentative consumer chooses a positive quantity of every product while trading-off variety
against quantity. With this representation, similarly to the nested logit model, each param-
eter µij measures taste for variety over products i and j; the intuition being that µij > 0

makes the representative consumer more willing to choose products i and j. Furthermore,
the parameter α > 0 expresses consumer’ price sensitivity or its marginal utility of income,
and β1 and β2 capture consumer’ taste for characteristics x(1)

jt and x(2)
jt , respectively.

A Model of Consumer Heterogeneity. The FIL model can also be derived as specific
instance of the large class of utility models studied by Allen and Rehbeck (2019). To see
this, note first that Restrictions (R1) – (R3) imply that the term into brackets of utility (16)
is a strictly concave function of s that do not depend on δ. Then, by Allen and Rehbeck
(2019), utility (16) can be derived, after an aggregation across consumers, from a model of
heterogeneous, utility-maximizing consumers. Importantly, we do not need to know and
identify the distribution of heterogeneity to estimate demand parameters.

As a result, the FIL model allows for (unobserved) consumer heterogeneity in prefer-
ences modelled by the second term of utility (16). However, as it stands, it does not allow
for observed heterogeneity in preferences related to observed individual characteristics or
unobserved heterogeneity in preferences through random coefficients. With this represen-
tation, the parameters µij control for the distribution of preferences in the population of
consumers.

A Remark on the µij’s. The nesting parameters µij are structural parameters, as they
describe consumers’ preferences and they are invariant to changes in regulation (e.g., taxes)
and in firms’ strategy (e.g., pricing strategies, product characteristics) (see Hurwicz, 1966).
However, a question is whether or not the nesting parameters mapped in characteristic space
(3) are structural. It is clear that they are not structural, since they are no longer invariant to
changes in product characteristics by firms. However, parameters in γ, which parametrize

17



the mappings, are structural and can be interpreted as controlling for the distribution of
valuation for product characteristics x(2)

t in the population, as the random coefficients in
BLP.

4 Empirical Strategy

4.1 Estimation and Identification

Estimation. Recall that estimation using market-level data is based on the conditional
moment restrictions (7). These conditional moment restrictions lead to the following un-
conditional moment restrictions

E[ξjtz̃t] = 0, j = 1, . . . , J, t = 1, . . . , T (18)

where z̃t = {x(1)
t , x(2)

t , hjt(x
(1)
t , x(2)

t , zt)}, with hjt functions of x(1)
t , x(2)

t and zt, and where I
recall that ξjt is given by Equation (6) and γ satisfies Restrictions (R1) – (R3).

Identification. Identification of the FIL model amounts to identifying demand parame-
ters {α,β1,β2,γ). As explained above, the FIL model boils down to an IV regression
where prices and log-share terms are endogenous. Therefore, the main identification as-
sumption is the existence of instruments zt, that is, variables that induce enough indepen-
dent exogenous variation in each of these endogenous variables. The discussion about
identification thus reduces to the question about what sources of empirical variation help
learn about demand parameters.

Consider first the vector of utility indexes δt. It is easy to identify, as for two products
with identical characteristics, higher market shares imply higher utility indexes. Formally,
as shown in Proposition 1, assuming δ0t = 0 and given a value for µij’s, there is a one-to-
one mapping between the vector of utility indexes and the vector of market shares.

Regarding the parameters α, β1 and β2 entering the utility indexes, their identification
is also fairly simple. As is well known in the literature (see, e.g., Berry, 1994; Berry et al.,
1995; Berry and Haile, 2014, etc.), it requires dealing with price endogeneity, which is done
by using valid supply-side instruments, i.e., cost shifters and/or markup shifters. The first
set of instruments includes Hausman instruments, i.e., prices in other markets (Hausman
et al., 1994; Nevo, 2001). The second set involves BLP instruments, i.e., functions of the
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characteristics of competing products (Berry et al., 1995; Gandhi and Houde, 2020), as
well as market shocks such as mergers (Miller and Weinberg, 2017).

Turn now to the nesting parameters µij , which, as mentioned above, govern substitu-
tion patterns between products i and j. Their identification is more tricky since it requires
exogenous variation in the relative popularity of product j with respect to product i. It
means that we need instruments that reveal the substitution patterns among products. Vari-
ables that generate exogenous variation in the choice set (i.e., changes in prices, product
characteristics and number of products) are therefore good candidates as instruments.

To gain further insights into the identification of the µij’s, I consider a stylized example
with J = 3 products and a single market t, where the model of consumer behavior is a FIL
model and the model of firm conduct is price competition with three single-product firms.
I assume that the modeler observes data on prices and market shares. For the example, I set
s1t = 0.075, s2t = 0.0125, s3t = 0.01 and p1t = p2t = p3t = 1. I want to understand how
different sources of empirical variation help identification of µ12, µ13 and µ23. For the sake
of clarity, I set µ13 = µ23 = 0.3 and study identification of µ12. Specifically, I consider
two sets of empirical variation: (i) a 10% increase in product 1’s cost, ∆c1 = 10%; (ii) a
merger between firms 1 and 2.

Figure 2 show how prices (top panels) and relative shares (bottom panels) are affected
by the cost increase (left panels) and the merger (right panels), depending on the level of
µ12. It illustrates monotonic relationships between the variation in prices and µ12 on one
hand, and between the variation in relative shares and µ12 on other hand. For example, a
10% increase in product 1’s cost leads to 5.5% increase in its own price when µ12 = 0 and
a 6% increase when µ12 = 0.5. Thereby, the way prices and relative shares change with
product 1’s cost increase or with the merger drives the estimates of µ12.

Lastly, consider the mappings. Identification requires finding a unique vector of pa-
rameters γ such that µij = µ

(
d(2)
ij,t

)
for all i ̸= j. For example, in the one-dimensional

mapping described where the mapping is specified using a Bernstein polynomial, the pa-
rameter vector γ can be obtained as the OLS estimates of a regression of µij on polynomial
basis. The identification assumptions are therefore the same as in a OLS setting.

4.2 Implementation

I conclude this section by providing a user guide to estimating substitution patterns using
my approach. For simplicity, I present the simplest case, also used in the simulations of the
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Figure 2: Insights on identification

(a) Cost shifter and Prices

(b) Cost shifter and Relative Shares

(c) Merger and Prices

(d) Merger and Relative Shares

next section, where the mappings are uni-dimensional, i.e., when x(2)jt ∈ R.

Step 0. Preliminary choices. Consider mapping the µij’s in the characteristic space
generated by x(2)jt ∈ [0, 1]. The modeler has two choices to make.

1. Measure of proximity. There exist different possible measures of proximity (based
on the Euclidian distance, absolue value, etc.). I choose

d
(2)
ij,t = 1− |xit − xjt|, (19)

where d(2)ij,t = 0 when there is minimal proximity and d(2)ij,t = 1 when there is maximal
proximity.

2. Specification of µ. There are different ways of specifying µ as a function of d(2)ij,t. As
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mentioned above, I use a Bernstein polynomial of order D in d(2)ij,t

µij = µ
(
d
(2)
ij,t;γ

)
=

D∑
k=0

γk

(
D

k

)(
d
(2)
ij,t

)k (
1− d

(2)
ij,t

)D−k

, (20)

so that γ ≡ (γ0, . . . , γM). In practice, we have to choose the order D of the polyno-
mial (e.g., by using cross-validation).

Step 1. Computation of instruments zt. Building on insights from Newey (1990), Bel-
loni et al. (2012) and Gandhi and Houde (2020), we can construct instruments as the pre-
dicted values from lasso regressions of each endogenous variable on functions of the ex-
ogenous variables of the model.

For example, for the price variable, we can consider two sets of exogenous variables:

1. Product characteristics x(1)
jt and x(2)

jt , cost shifters zjt, and possibly interactions and
polynomials.

2. Differentiation instruments (Gandhi and Houde, 2020) in x(1)
jt , x(2)

jt and zjt:

∑
i

(uit − ujt)
k , and

(∑
i

(uit − ujt)

)k

, (21)

where ujt ∈ {x(1)
jt , x

(2)
jt , zjt} and the sums are (i) over all products (except j), (ii) over

products of the same firm and (iii) over products of rival firms.

The first set is intended to proxy for the marginal cost part of the price, whereas the
second set should proxy for the markup part of the price.

Step 2. Constraints. The modeler must define the restrictions she wants to impose on
the nesting parameters µij . As mentioned above, Restrictions (R1) are already imposed via
the mappings.

As shown by Chak et al. (2005), the non-negativity restrictions (R2) on µij can be
converted into a set of non-negativity restrictions on the coefficients γk of the Berstein
polynomial:

γk ≥ 0, for all k = 0, . . . , D. (22)
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For Restrictions (R3), there is no such a result. Then, I directly enforce them. Lastly,
the modeler may also want to restrict products to be substitutes in demand. For example,
we may believe that cars are substitutes. I have empirically found that imposing constraints
(R2) and

∑
i ̸=j µij ≤ 1/2 help enforcing substitutability.16

Step 3. Constrained generalized method of moments (GMM). I employ the iterated
GMM estimator, while imposing the restrictions defined just above. Let θ = (α,β1,β2,γ).
Let N = J × T , ξ = (ξ11, . . . , ξjt, . . . , ξJT )

′ and z = (z11, . . . , zjt, . . . , zJT )′.

• Stage 1. Obtain θ̂
1

and ξ̂
1

where

θ̂
1
= argmin

θ

(
ξ′z
N

)(
z′z
N

)−1(z′ξ
N

)
subject to restrictions. (23)

and ξ̂
1

are the residuals.

• Stage s > 1. Let D ≡ diag(ξ̂
s−1

). Obtain θ̂
s

and ξ̂
s
, where

θ̂
s
= argmin

θ

(
ξ̂
s−1′z
N

)(
z′Dz
N

)−1
(

z′ξ̂
s−1

N

)
subject to restrictions. (24)

and ξ̂
s

are the residuals.

• Repeat Stage s until convergence defined as |θ̂
s
− θ̂

s−1
| < 1e− 05. Obtain demand

estimates θ̂ = (α̂, β̂1, β̂2, γ̂).

Step 4. Estimated Price-Elasticities and Markups. For a market t, the estimated matrix
of price elasticities of market share function is computed as follows.

− α̂ [diag(ŝt)]−1

[
∂σ−1

i (ŝt)
∂sjt

]−1

[diag(pt)] , (25)

where ŝt denotes the vector of predicted market shares and ∂σ−1
i (ŝt) /∂sjt is defined by

Equation (10) with µij = µ
(

x(2)
t ; γ̂

)
.

When combined with a model of firm conduct, demand estimates can be used to back
out estimated marginal costs and thus markups (Bresnahan, 1989; Berry et al., 1995; Nevo,

16Even when these constraints are enforced, there still exist cases where complementarity can occur. How-
ever, it happens very seldom.
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2001). Following the literature, I consider a static oligopolistic price competition model
with F multiproduct firms. That is, in each market t, each firm f = 1, . . . , F produces a
set of products Jf and chooses the prices pjt for its products j ∈ Jf to maximize its profit
function given by

Πft =
∑
j∈Jf

(pjt − cjt)σj(pt), (26)

where σj is the demand function for product j implied by the FIL model and where cjt is
its marginal cost. Assuming that a pure-strategy Nash equilibrium in prices exists, we can
use the associated first-order conditions to back out the estimated marginal cost ĉjt.

Then, the estimated relative markup (in percentage) of product j in market t is com-
puted as follows

100× pjt − ĉjt
pjt

. (27)

Step 5. Merger Simulation. Assuming that a pure-strategy Nash equilibrium in prices
exists, demand and marginal costs estimates can be used together with the associated post-
merger first-order conditions to compute the post-merger equilibrium prices (Baker and
Bresnahan, 1985; Nevo, 2000a).

5 Monte-Carlo Simulations

This section provides Monte-Carlo simulations. They have two purposes. First, they show
that my approach works well with samples of moderate sizes – in simulations I use the
same amount of data as the pseudo-real data set from Nevo (2000b).

Second, they help compare my approach to BLP in terms of price elasticities, markups,
and merger’s price effect. To this end, I take BLP that uses a normal random coefficient on
exogenous characteristics, like in the seminal paper by BLP, as the benchmark.

5.1 Data Generating Processes

Both BLP and my approach combine a model of consumer behavior and a model of firm
conduct. The model of consumer behavior is a static random coefficient logit (RCL) model
in BLP,17 and the FIL model mapped in characteristic space in my approach. In both

17See Berry et al. (1995); Nevo (2000b); Conlon and Gortmaker (2020) for details.
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approaches, the model of firm conduct is a static oligopolistic price competition model
with multiproduct firms.

FIL Model. In the simulations, I consider FIL models mapped in characteristic space
defined by Equations (2) – (3) with linear, one-dimensional mappings in the characteristic
space generated by x(2)jt ∈ R18

µij = γ0 + γ1

(
1− |x(2)it − x

(2)
jt |
)
, (28)

and linear indexes given by

δjt = β0 + βx
(2)
jt − αpjt + ξjt. (29)

RCL Model. In the simulations, I consider RCL models with a single random coefficient
on an exogenous continuous characteristics x(2)jt ∈ R. The conditional indirect utility of a
consumer n in market t from choosing product j = 1, . . . , J is given by

unjt = β0 + βnx
(2)
jt − αpjt + ξjt + εnjt, (30)

where the εnjt are distributed i.i.d. type I extreme value and where the utility from choosing
the outside good j = 0 is un0t = εn0t, for all markets t = 1, . . . , T . Each consumer n
chooses one unit of the product that provides her the highest utility. Then, the market share
of product j in market t is computed as the probability that product j provides the highest
utility across all products in market t.

Simulations and estimations of the RCL model make use of the Python package PyBLP
by Conlon and Gortmaker (2020), which implements the best practices for estimating RCL
models using BLP. In particular, I construct instruments into two steps. First, I use the
differentiation instruments developed by Gandhi and Houde (2020). Second, I update to
the optimal instruments of Chamberlain (1987).

Price Competition Model. I consider a price competition model as defined in the previ-
ous section. Assuming that a pure-strategy Nash equilibrium in prices exists, prices pt and
market shares st are determined by the associated first-order conditions.

18Note that estimation of the FIL model when the data generating process is from BLP uses Bernstein
polynomials of order D > 1.

24



In the simulations, the marginal cost cjt is parametrized as follows

cjt = ψ0 + ψxx
(2)
jt + ψwwjt + ωjt,

where wjt is a cost shifter affecting only marginal costs, and ωjt is an unobserved cost
component.

Data Generating Processes (DGPs). In each DGP, I construct 50 Monte Carlo datasets.
Each dataset describes T = 100 markets with J = 25 products and F = 5 firms, each one
producing 5 products. Each market t is characterized by (sjt, pjt, xjt, ξjt, wjt, ωjt)j=1,...,J ,
where xjt and wjt are drawn from two independent standard uniform distributions, and
where the vector of error terms[

ξjt

ωjt

]
∼ N

([
0

0

]
,

[
0.152 0.05

0.05 0.152

])
. (31)

In all DGPs, I set ψ0 = 2 and ψx = ψw = 1.

DGP 1.BLP with a Normal Random Coefficient. I consider two specifications:

(a) Moderate unobserved heterogeneity: α = 1, β0 = 3 and βn ∼ N (3, 62).

(b) Substantial unobserved heterogeneity: α = 1, β0 = 3 and βn ∼ N (3, 122).

DGP 2. BLP with a Log-normal Random Coefficient. I consider two specifications:

(a) β0 = 3 and βn ∼ 3 + logN (0, 3).

(b) β0 = 6 and βn ∼ 3 + logN (0, 3.5).

DGP 3. Gentzkow Model with interaction parameter Γ. 19 I consider one specification.

(a) α = 1, β0 = 3, βn ∼ N (3, 32), and Γ = 6.

DGP 4. FIL Model with a Linear µ. I consider two specifications:

(a) α = 1/4, β0 = β = 1/4 and µij = 0.04
(
1− |x(2)it − x

(2)
jt |
)

.

(b) α = 1/2, β0 = β = 1/2 and µij = 0.02 + 0.02
(
1− |x(2)it − x

(2)
jt |
)

.
19Details to come.
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5.2 Results

DGP 1. BLP with a Normal Random Coefficient. The first set of simulations use data
generated from the benchmark BLP with a normal random coefficient. Table 1 presents the
results.

Table 1: DGP 1 – BLP with a Normal Random Coefficient

Post-Estimation Outputs Merger’s Price Effect

Own-Elasticities Cross-Elasticities Markups All firms Merging Firms Others

DGP 1(a): BLP with β ∼ N (3, 62)

True -4.0040 0.1479 30.1808 2.7743 6.1053 0.5537
[-4.0073 ; -4.0007] [0.1478 ; 0.1481] [30.1527 ; 30.2089] [2.7543 ; 2.7943] [6.0614 ; 6.1491] [0.5489 ; 0.5584]

BLP -3.9986 0.1477 30.2406 2.7793 6.1163 0.5546
[-4.0272 ; -3.9701] [0.1467 ; 0.1488] [30.0193 ; 30.4618] [2.7545 ; 2.8041] [6.0618 ; 6.1708] [0.5490 ; 0.5602]

Logit -2.9766 0.1116 40.7262 3.6330 8.0981 0.6563
[-3.0455 ; -2.9078] [0.1090 ; 0.1141] [39.7618 ; 41.6907] [3.5473 ; 3.7186] [7.9074 ; 8.2888] [0.6406 ; 0.6720]

FIL D = 4 -4.2640 0.1626 29.4566 2.8963 6.1789 0.7079
[-4.4007 ; -4.1273] [0.1574 ; 0.1679] [28.4686 ; 30.4447] [2.8004 ; 2.9922] [5.9738 ; 6.3840] [0.6846 ; 0.7312]

FIL D = 6 -4.1197 0.1571 30.4607 2.9978 6.3900 0.7364
[-4.2418 ; -3.9975] [0.1525 ; 0.1618] [29.4959 ; 31.4256] [2.9032 ; 3.0924] [6.1897 ; 6.5903] [0.7118 ; 0.7610]

FIL D = 8 -4.0918 0.1561 30.7129 3.0328 6.4523 0.7531
[-4.2157 ; -3.9678] [0.1514 ; 0.1609] [29.7299 ; 31.6958] [2.9353 ; 3.1303] [6.2469 ; 6.6576] [0.7271 ; 0.7792]

FIL D = 10 -4.1176 0.1572 30.5520 3.0211 6.4223 0.7536
[-4.2434 ; -3.9917] [0.1524 ; 0.1620] [29.5402 ; 31.5638] [2.9207 ; 3.1214] [6.2122 ; 6.6325] [0.7260 ; 0.7811]

DGP 1(b): BLP with β ∼ N (3, 122)

True -3.9814 0.1465 30.3978 2.8406 6.2309 0.5804
[-3.9849 ; -3.9780] [0.1464 ; 0.1467] [30.3679 ; 30.4277] [2.8127 ; 2.8685] [6.1693 ; 6.2925] [0.5737 ; 0.5871]

BLP -3.9772 0.1464 30.4511 2.8453 6.2413 0.5812
[-4.0065 ; -3.9479] [0.1453 ; 0.1475] [30.2217 ; 30.6804] [2.8124 ; 2.8782] [6.1689 ; 6.3138] [0.5736 ; 0.5889]

Logit -1.8446 0.0655 67.6284 5.4809 12.4740 0.8189
[-1.9517 ; -1.7374] [0.0617 ; 0.0693] [63.2920 ; 71.9647] [5.1352 ; 5.8266] [11.6883 ; 13.2598] [0.7664 ; 0.8713]

FIL D = 4 -4.7170 0.1731 27.0824 2.5132 5.4587 0.5496
[-4.9548 ; -4.4791] [0.1644 ; 0.1819] [25.5676 ; 28.5973] [2.3719 ; 2.6546] [5.1544 ; 5.7630] [0.5166 ; 0.5826]

FIL D = 6 -4.4059 0.1614 28.6769 2.6445 5.7584 0.5686
[-4.5977 ; -4.2141] [0.1544 ; 0.1685] [27.3702 ; 29.9836] [2.5214 ; 2.7675] [5.4935 ; 6.0233] [0.5395 ; 0.5976]

FIL D = 8 -4.2673 0.1566 30.0540 2.7929 6.0590 0.6155
[-4.4799 ; -4.0548] [0.1488 ; 0.1644] [28.2264 ; 31.8816] [2.6212 ; 2.9646] [5.6909 ; 6.4271] [0.5745 ; 0.6565]

FIL D = 10 -4.1669 0.1530 30.7837 2.8644 6.2134 0.6318
[-4.3754 ; -3.9584] [0.1454 ; 0.1606] [28.9413 ; 32.6261] [2.6889 ; 3.0399] [5.8380 ; 6.5887] [0.5893 ; 0.6743]

Notes: Summary statistics across 50 Monte Carlo replications. For each replication, I compute the average. The middle number is the average over replications; lower numbers in brackets are the
bounds of the 95% confidence interval.

Consider first DGP 1(a) that allows for moderate unobserved heterogeneity in prefer-
ences. Note first that the logit model yields biased estimates of prices elasticities, markups
and merger’s price effect. This shows that there is sufficient unobserved heterogeneity, so
that achieving accuracy is not trivial. Results lead to three main comments. First, they
show the ability to my approach to match results from the benchmark BLP. For example,
for the own- and cross-price elasticities and the markups, I find that the BLP and FIL con-
fidence intervals contain the true values and overlap. For the merger’s price effect, I find a
very slight upward bias with respect to BLP and the truth. Overall, I obtain the best results
for the post-estimation outputs, when µ is a Bernstein polynomial of order D = 6; for the
counterfactual analysis (merger’s price effect) when it is of orderD = 4. This suggests that
there is a trade-off between in-sample and out-of-sample fits. Second, results illustrate that
my approach works well with a sample of moderate size (2500 observations). Third, they
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show that the FIL confidence intervals are larger than the BLP ones. This was expected
since BLP is correctly specified while the FIL model is not. However, my approach still
yields informative confidence intervals.

Turn now to the DGP 1(b) that allows for substantial unobserved heterogeneity. Again,
the logit model yields (even more) biased results. Results show that my approach is able to
match those from the benchmark BLP, even when there is substantial unobserved hetero-
geneity in preferences.

DGP 2. BLP with a Log-normal Random Coefficient. The second set of simulations use
data generated from BLP with a log-normal random coefficient. Figure 2 presents the
results.

Table 2: DGP 2 – BLP with a Log-normal Random Coefficient

Post-Estimation Outputs Merger’s Price Effect

Own-Elasticities Cross-Elasticities Markups All firms Merging Firms Others

DGP 2(a): BLP with β ∼ 3 + logN (0, 3)

True - logN -4.0015 0.1665 31.149 3.7902 8.3335 0.7613
[-4.0058 ; -3.9973] [0.1663 ; 0.1667] [31.116 ; 31.182] [3.6837 ; 3.8967] [8.0746 ; 8.5924] [0.7518 ; 0.7708]

BLP - logN -4.0060 0.1666 31.146 3.7933 8.3417 0.7611
[-4.0413 ; -3.9707] [0.1652 ; 0.1681] [30.865 ; 31.427] [3.6797 ; 3.9069] [8.0672 ; 8.6161] [0.7504 ; 0.7718]

BLP - N -3.3020 0.1379 37.958 3.9310 8.5451 0.8549
[-3.3846 ; -3.2195] [0.1344 ; 0.1413] [36.917 ; 38.999] [3.8214 ; 4.0406] [8.3077 ; 8.7826] [0.8302 ; 0.8796]

Logit -1.9854 0.0868 64.566 6.8117 14.917 1.4080
[-2.0787 ; -1.8921] [0.0828 ; 0.0909] [61.355 ; 67.777] [6.4738 ; 7.1496] [14.176 ; 15.658] [1.3385 ; 1.4775]

FIL D = 4 -3.9546 0.1710 32.547 3.7111 7.8206 0.9715
[-4.0710 ; -3.8382] [0.1660 ; 0.1760] [31.504 ; 33.590] [3.5856 ; 3.8366] [7.5558 ; 8.0854] [0.9385 ; 1.0045]

FIL D = 6 -4.0221 0.1740 31.867 3.6095 7.6272 0.9310
[-4.1236 ; -3.9206] [0.1696 ; 0.1783] [30.951 ; 32.784] [3.4981 ; 3.7209] [7.3925 ; 7.8619] [0.9013 ; 0.9607]

FIL D = 8 -3.9870 0.1724 32.174 3.6346 7.6825 0.9360
[-4.0975 ; -3.8766] [0.1677 ; 0.1772] [31.242 ; 33.106] [3.5253 ; 3.7439] [7.4501 ; 7.9148] [0.9082 ; 0.9637]

FIL D = 10 -4.0009 0.1730 32.399 3.6567 7.7347 0.9381
[-4.1349 ; -3.8668] [0.1672 ; 0.1788] [30.744 ; 34.055] [3.4664 ; 3.8470] [7.3324 ; 8.1369] [0.8888 ; 0.9874]

FIL D = 12 -4.0783 0.1764 31.582 3.5563 7.5249 0.9105
[-4.2015 ; -3.9552] [0.1711 ; 0.1817] [30.334 ; 32.829] [3.4140 ; 3.6985] [7.2244 ; 7.8253] [0.8733 ; 0.9478]

FIL D = 14 -4.1339 0.1787 30.883 3.4799 7.3605 0.8928
[-4.2204 ; -4.0475] [0.1750 ; 0.1825] [30.201 ; 31.565] [3.3959 ; 3.5639] [7.1827 ; 7.5383] [0.8709 ; 0.9147]

DGP 2(b): BLP with β ∼ 3 + logN (0, 3.5)

True - logN -3.9973 0.1690 31.378 4.1117 9.0524 0.8179
[-4.0020 ; -3.9926] [0.1688 ; 0.1692] [31.345 ; 31.411] [3.9616 ; 4.2619] [8.6863 ; 9.4185] [0.8053 ; 0.8306]

BLP - logN -3.9951 0.1689 31.435 4.1144 9.0571 0.8194
[-4.0351 ; -3.9551] [0.1673 ; 0.1706] [31.115 ; 31.756] [3.9571 ; 4.2718] [8.6760 ; 9.4381] [0.8050 ; 0.8337]

BLP - N -2.9064 0.1262 43.904 4.7137 10.183 1.0678
[-3.0127 ; -2.8002] [0.1216 ; 0.1308] [42.241 ; 45.567] [4.5279 ; 4.8995] [9.7813 ; 10.584] [1.0253 ; 1.1103]

Logit -1.5014 0.0681 86.610 9.3526 20.409 1.9817
[-1.5839 ; -1.4189] [0.0644 ; 0.0718] [82.040 ; 91.180] [8.8532 ; 9.8520] [19.321 ; 21.497] [1.8744 ; 2.0889]

FIL D = 4 -3.7881 0.1691 34.619 4.2061 8.6338 1.2543
[-3.9630 ; -3.6132] [0.1614 ; 0.1768] [32.855 ; 36.383] [3.9170 ; 4.4952] [8.1493 ; 9.1182] [1.0617 ; 1.4470]

FIL D = 6 -3.9206 0.1750 33.361 4.0464 8.2922 1.2159
[-4.0913 ; -3.7499] [0.1674 ; 0.1826] [31.646 ; 35.076] [3.7315 ; 4.3613] [7.7922 ; 8.7922] [0.9920 ; 1.4398]

FIL D = 8 -3.8911 0.1737 33.339 4.0134 8.2569 1.1843
[-4.0391 ; -3.7431] [0.1671 ; 0.1803] [31.953 ; 34.726] [3.7763 ; 4.2504] [7.8780 ; 8.6359] [1.0074 ; 1.3612]

FIL D = 10 -3.9683 0.1771 32.881 3.9759 8.1591 1.1871
[-4.1369 ; -3.7997] [0.1697 ; 0.1846] [31.247 ; 34.515] [3.6377 ; 4.3141] [7.6169 ; 8.7012] [0.9652 ; 1.4090]

FIL D = 12 -4.0025 0.1787 32.151 3.8512 7.9469 1.1208
[-4.1283 ; -3.8767] [0.1732 ; 0.1842] [31.129 ; 33.173] [3.6337 ; 4.0688] [7.6130 ; 8.2808] [0.9583 ; 1.2832]

FIL D = 14 -3.9732 0.1774 32.398 3.8917 8.0168 1.1416
[-4.0993 ; -3.8471] [0.1718 ; 0.1829] [31.350 ; 33.447] [3.6707 ; 4.1127] [7.6733 ; 8.3604] [0.9738 ; 1.3094]

Notes: Summary statistics across 50 Monte Carlo replications. For each replication, I compute the average. The middle number is the average over replications; lower numbers in brackets are the
bounds of the 95% confidence interval.

Both DGPs 2(a) and 2(b) allow for substantial unobserved heterogeneity in preferences.
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In both cases, the logit model yields severely biased results.
This set of simulations aims at comparing my approach to the misspecified BLP that

incorrectly assumes a normal, rather than a log-normal, random coefficient. In both DGPs,
we observe first that the misspecified BLP yields severely biased estimates of elasticities
and markups. This result shows that distributional assumptions in BLP can restrict patterns
of substitution and implied markups. See Compiani (2021) and Lu et al. (2019) for other
examples. When consider the merger’s price effect, the biases almost disappear with DGP
2(a) and are less severe with DGP 2(b). By contrast, my approach provides results very
close to the truth, both for the price elasticities and markups and for the merger’s price ef-
fect. This result shows that my approach can outperform the BLP approach when the latter
is misspecified and illustrates how powerful my approach can be by not relying on distri-
butional assumptions and functional form assumptions regarding how substitution patterns
depend on product characteristics.

Lastly, I obtain the best results when µ is a Bernstein polynomial of order D = 12,
against D = 6 when the DGPs were generated from the benchmark BLP (DGPs 1(a) and
1(b)). This result is certainly be due to the fact that with the log-normal random coefficients
of DGPs 2(a) and 2(b), we have a far higher unobserved heterogeneity in preferences than
with the normal random coefficients of DGPs 1(a) and 1(b).

DGP 3. Gentzkow (2007)’s model of demand for baskets of products. The third set of
simulations use data generated from Gentzkow (2007). Figure 3 presents the results.

Table 3: DGP 3 – Gentzkow (2007)’s model of demand for baskets of products

Post-Estimation Outputs Merger’s Price Effect

Own-Elasticities Cross-Elasticities Markups All firms Merging Firms Others

DGP: Gentzkow’s Model

True - Baskets -4.0112 0.1676 31.722 3.3917 7.1085 0.9138
[-4.0138 ; -4.0085] [0.1675 ; 0.1677] [31.694 ; 31.75] [3.3720 ; 3.4113] [7.0664 ; 7.1506] [0.9087 ; 0.9188]

BLP -4.4015 0.1815 27.917 2.8976 6.2044 0.6931
[-4.4546 ; -4.3484] [0.1793 ; 0.1836] [27.585 ; 28.249] [2.8612 ; 2.9340] [6.1261 ; 6.2827] [0.6843 ; 0.7019]

Logit -3.3308 0.1392 36.851 3.7974 8.1757 0.8786
[-3.3899 ; -3.2716] [0.1367 ; 0.1416] [36.186 ; 37.517] [3.7282 ; 3.8667] [8.0267 ; 8.3246] [0.8624 ; 0.8948]

FIL D = 6 -3.8496 0.1604 32.721 3.5872 7.368 1.0667
[-3.9700 ; -3.7293] [0.1553 ; 0.1654] [31.611 ; 33.832] [3.4617 ; 3.7127] [7.1131 ; 7.6228] [1.0271 ; 1.1063]

FIL D = 8 -3.8844 0.1618 32.331 3.5411 7.2782 1.0497
[-3.9931 ; -3.7758] [0.1573 ; 0.1664] [31.372 ; 33.291] [3.4338 ; 3.6485] [7.0601 ; 7.4964] [1.0160 ; 1.0834]

FIL D = 10 -3.8773 0.1615 32.425 3.5511 7.2988 1.0527
[-3.9902 ; -3.7643] [0.1568 ; 0.1662] [31.421 ; 33.429] [3.4395 ; 3.6628] [7.0711 ; 7.5266] [1.0181 ; 1.0873]

FIL D = 12 -3.8971 0.1623 32.33 3.5422 7.2773 1.0521
[-4.0178 ; -3.7763] [0.1573 ; 0.1674] [31.227 ; 33.433] [3.4192 ; 3.6651] [7.0260 ; 7.5285] [1.0145 ; 1.0897]

FIL D = 14 -3.9127 0.163 32.113 3.5168 7.2287 1.0423
[-4.0237 ; -3.8018] [0.1583 ; 0.1676] [31.148 ; 33.078] [3.4092 ; 3.6244] [7.0097 ; 7.4477] [1.0087 ; 1.0758]

FIL D = 16 -3.8884 0.162 32.113 3.5452 7.2873 1.0504
[-4.0058 ; -3.7711] [0.1571 ; 0.1669] [31.148 ; 33.078] [3.4266 ; 3.6638] [7.0449 ; 7.5298] [1.0142 ; 1.0866]

Notes: Summary statistics across 50 Monte Carlo replications. For each replication, I compute the average. The middle number is the average over replications; lower numbers in brackets are the
bounds of the 95% confidence interval.
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Results show that the benchmark BLP can lead to biased estimates of substitution pat-
terns, markups and merger price effects when consumers choose baskets of products, rather
than products alone. This result is theoretically shown by Narita and Saito (2021). By con-
strast, my approach obtains good predictions of substitution patterns, markups and merger
price effects, especially whenD = 14. This demonstrates that my approach can outperform
BLP when the DGP is generated by consumers making multiple choices.

DGP 4. FIL Model with a Linear Mapping. The third set of simulations use data gener-
ated from a FIL model with a linear mapping. Figure ?? presents the results.

Table 4: DGP 4 – FIL Model with a Linear Mapping

Post-Estimation Outputs Merger’s Price Effect

Own-Elasticities Cross-Elasticities Markups All firms Merging Firms Others

DGP 4(a): FIL with µij = 0.04(1− |x(2)it − x
(2)
jt |)

FIL -2.2866 0.0864 52.371 4.9727 10.15 1.5213
[-2.2875 ; -2.2857] [0.0864 ; 0.0865] [52.35 ; 52.391] [4.9606 ; 4.9849] [10.125 ; 10.175] [1.5171 ; 1.5255]
BLP -1.7152 0.0612 70.136 5.5674 12.557 0.9079
[-1.7862 ; -1.6441] [0.0587 ; 0.0638] [66.939 ; 73.333] [5.3155 ; 5.8193] [11.986 ; 13.127] [0.8681 ; 0.9476]

DGP 4 (b): FIL with µij = 0.02 + 0.02(1− |x(2)it − x
(2)
jt |)

FIL -4.0692 0.1416 32.571 4.9467 7.185 3.4545
[-4.0802 ; -4.0582] [0.1414 ; 0.1418] [32.554 ; 32.589] [4.8787 ; 5.0147] [7.1026 ; 7.2673] [3.3435 ; 3.5655]

BLP -5.1602 0.1679 22.969 1.6898 3.8511 0.2489
[-5.2555 ; -5.0649] [0.1648 ; 0.171] [22.547 ; 23.39] [1.6585 ; 1.7211] [3.7793 ; 3.9229] [0.2444 ; 0.2534]

Notes: Summary statistics across 50 Monte Carlo replications. For each replication, I compute the average. The middle number is the average over replications; lower numbers in brackets are the
bounds of the 95% confidence interval.

Results show that the benchmark BLP (with normal random coefficient) can lead to
incorrect estimates of substitution patterns, markups and merger price effects. These sim-
ulations thus illustrate that, even when it allows only substitutable products, my approach
can generate patterns of substitution, markups and merger price effect that the benchmark
BLP cannot recover.

6 Conclusion

This paper has proposed a flexible approach to estimate substitution patterns in differenti-
ated products markets using market-level data. My approach relies on an inverse market
share function rather than a utility function. Thereby, even if it prevents studies at the indi-
vidual consumer level, it can be used to answer many economic questions of interest, such
as the measurement of market power and effects of regulatory changes in taxes and trade
policy. Furthermore, my approach does not rely on arbitrary restrictions on how substitu-
tion patterns depend on product characteristics and is agnostic about individual consumer
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behavior. This explains why it can accommodate rich substitution patterns, including some
that the BLP approach cannot recover.

My approach can be applied to various topics in industrial organization, international
trade, digital economics, environmental economics, etc. In particular, due to its simplicity
of estimation, a likely audience of my approach involves antitrust practitioners who are
under time pressure and wish to avoid complex estimation procedures without sacrificing
flexibility. Indeed, the nested logit models are commonly used by antitrust practitioners
for merger simulation.20 Yet, they have been criticized for restricting the substitution pat-
terns and they require the modeler to select the relevant observed characteristics that define
groups, which, in practice, is not always obvious.21 By contrast, my approach does not
require a priori restrictions, such as product segmentation, which makes it a good option
for merger simulation purposes.

Throughout this paper, I have maintained several assumptions that may be relaxed.
First, my demand model generates market shares (unit demand). An extension to vari-
able consumption, in spirit to the constant expenditure specifications of Björnerstedt and
Verboven (2016), will be considered in a future version. Second, I have assumed that the
modeler has only access to market-level data. An extension to individual-level data is left
for future research. Lastly, a future version of this paper will include an empirical applica-
tion and an extension to multi-dimensional mapping.

Appendix A Bernstein Polynomials

This appendix provides some details on the Bernstein polynomials. See Chapter 6 in Davis
(1975) for a comprehensive treatment.

For a positive integer D, the Bernstein basis functions defined over interval [a, b] are
defined by

bk,M (x) ≡

(
D

k

)
(x− a)k (b− x)D−k

(b− a)D
,

20See e.g. the Lagardère/Natexis/VUP (2004), TomTom/Tele Atlas (2008), Unilever/Sara Lee (2010) cases
litigated by the European Commission (CCR - Competition Competence Report Autumn 2013/1). Despite
their limitations, they are also used by academics. (See e.g., Björnerstedt and Verboven, 2016; Berry et al.,
2016, for recent papers).

21Consider, for example, the market for cars, where cars belong to five segments: subcompact, compact,
standard, intermediate, and luxury. Grigolon (2021) suggests a natural ordering of cars from subcompact to
luxury, while Brenkers and Verboven (2006) consider a hierarchical structure without prior ordering. Deter-
mining which of the two nesting structures best describes the market is not obvious.
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where k = 0, . . . , D. In applications, Bernstein basis functions are often expressed over
interval [0, 1] as

bk,D (x) =

(
D

k

)
xk (1− x)D−k .

A univariate function defined over interval [a, b] can be approximated by a linear com-
bination of the Bernstein basis functions

D∑
k=0

θkbk,D (x) ,

for x ∈ [a, b] and for some coefficients θk, k = 0, . . . , D.
The generalization to a multivariate function defined over [a1, b1] × . . . × [aL, bL] is

straightforward. A multivariate function can be approximated by

D∑
k1=0

. . .
D∑

kL=0

θk1,...,kLbk1,D (x1)× . . .× bkL,D (xL) ,

for (x1, . . . , xL) ∈ [a1, b1] × . . . × [aL, bL] and for some coefficients θk1,...,kL , k1, k2, . . . =
0, . . . , D.

Appendix B Elements of Convex Analysis

This appendix provides the elements of convex analysis used in the paper. See Rockafellar
(1970) for a comprehensive treatment of the topic. For a a real-valued function f , the
vector let ∇f(x) = [∂f(x)/∂xi] denote its gradient with respect to the vector x. For a set
X , int(X ) its interior and bd(X ) its boundary.

Consider a convex function f : X ⊆ RJ → R ∪ {±∞}. Its effective domain domf

is defined by domf = {x ∈ X |f(x) < +∞} and is a convex set in RJ . A proper convex

function f is a convex function that takes values in the extended real number line such that
f (x) < +∞ for at least one x and f (x) > −∞ for every x. Then, f is proper if and only
if its effective domain domf is non-empty and the restriction of f to domf is finite.

Let f : RJ → R ∪ {+∞}. Its convex conjugate is the function f ∗ : RJ → R ∪ {+∞}
defined by

f ∗ (x∗) = sup
x∈domf

{x∗⊺x − f (x)}.
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A proper convex function f is essentially smooth if (i) int (domf) is non-empty; (ii)
f is differentiable throughout int (domf), and (iii) limi→∞ |∇f(xi)| = +∞ whenever
x1, x2, . . . is a sequence in int (domf) converging to a point x ∈ bd (domf).

A pair (int (domf) , f) is a convex function of Legendre type if int (domf) is an open
convex set and f is a strictly convex function on int (domf) that is essentially smooth.

The following proposition, due to Rockafellar (1970), establishes an important invert-
ibility result.

Proposition 1. Let f : RJ → R ∪ {+∞} be a continuous convex function. Assume that
(int(domf), f) is a convex function of Legendre type. Then, ∇f is a continuous bijection
between int (domf) and int (domf ∗), with a continuous inverse mapping (∇f)−1 = ∇f ∗,
i.e., ∇f ∗(x∗) = (∇f)−1(x∗) for all x∗ ∈ int (domf ∗).

Proof. See Theorem 26.5 in Rockafellar (1970).

Appendix C Proofs

C.1 Invertibility

Let ∆J ≡
{

st ∈ [0,∞)J :
∑J

j=1 sjt < 1
}

with int(∆J) its (relative) interior and bd(∆J)

its boundary. The following proposition establishes an invertibility result that can be used
to show invertibility of a large class of inverse demand functions.

Proposition 2. Consider the function G = (G1, . . . , GJ) : [0,∞)J → [0,∞)J . As-
sume that G is continuously differentiable and homogeneous of degree one on int (∆J)

and that lnG has a matrix of derivatives Js
lnG that is positive definite and symmetric on

int (∆J). Further assume that the 1-norm | lnG (st) | approaches infinity as st approaches
bd (∆J). Let f : [0,∞)J → RJ be defined by f = (f1, . . . , fJ) where fj(st) = lnGj(st)−
ln
(
1−

∑J
k=1 skt

)
. It follows that f is invertible on int (∆J).

Proof. The proof is an application of Proposition 1 to the pair (int(∆J),Ω), where Ω is
defined by

Ω (st) =


∑J

j=1 sjtfj (st) + ln
(
1−

∑J
k=1 skt

)
−
∑J

j=1 sjt if st ∈ ∆J ,

+∞ otherwise.
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Using the generalized Euler equation for homothetic functions (McElroy, 1969), we
have ∇Ω(st) = f(st). The proof thus consists in showing that the pair (int(∆J),Ω) is a
convex function of Legendre type.

Ω is strictly convex on int(∆J), since its Hessian is equal to Js
lnG(st) + 1JJ/s0t for

any s ∈ int(∆J), where 1JJ is a J × J matrix of ones. Ω is essentially smooth, since
it is differentiable through the open convex set int(∆J) with limi→∞ |∇Ω (sit) | = +∞
whenever s1t , s2t , . . . is a sequence in int(∆J) converging to a point st ∈ bd(∆J). This latter
feature is shown by first noting that ∇Ω(st) = f(st) for st ∈ int(∆J) and then using that
limst→bd(∆J ) | lnG(st)| = +∞.

As a corollary, I obtain invertibility of the FIL model.

Corollary 1. Let Restrictions (R1) – (R3) hold. Consider any vector δt ∈ RJ of product
indexes. Then, holding x(2)

t fixed and δ0t = 0, there exists a unique vector st ∈ ∆+
J of

nonzero market shares such that Equations (2) hold.

Equations (2) describe an inverse demand function σ−1, i.e., a mapping from market
shares to product indexes. This corollary establishes existence and uniqueness of the in-
verse mapping from product indexes to market shares, i.e., the demand function σ, up to
the normalization δ0t = 0.

Proof. The proof amounts to show that the FIL model satisfies the assumptions of Propo-
sition 2. Let

Gj(st) = (sjt)
1−

∑
i ̸=j µij

∏
i ̸=j

(sit + sjt)
µij (32)

then fj = lnGj corresponds to the FIL model (2). The matrix of derivatives of lnG has
entries ij given by[

1−
∑

i ̸=j µij

sjt
+
∑
i ̸=j

µij

sit + sjt

]
1{i = j}+

[
µij

sit + sjt

]
1{i ̸= j}.

It is easy to show that the 1-norm | lnG (st) | that approaches infinity as st approaches
bd (∆J). It then remains to show that the function G is homogeneous of degree one and
that its derivative matrix is positive definite and symmetric.
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It is homogeneous of degree one, since for κ > 0 and j = 1, . . . , J ,

Gj (κst) = (κsjt)
1−

∑
i̸=j µij

∏
i ̸=j

[κ(sit + sjt)]
µij

=

[
κ1−

∑
i̸=j µij

∏
i ̸=j

κµij

][
(sjt)

1−
∑

i̸=j µij
∏
i ̸=j

(sit + sjt)
µij

]
,

=
[
κ1−

∑
i ̸=j µij+

∑
i ̸=j µij

]
Gj (st) ,

= κGj (st) .

Furthermore, the derivative matrix of lnG is symmetric since Restriction (R1) implies
that its entry ij, µij/(si + sj), equals its entry ji, µji/(sj + si).

Lastly, the derivative matrix of lnG is positive definite as, by Restrictions (R2) and
(R3), it is a symmetric, strictly diagonally dominant matrix with positive diagonal entries
(Horn and Johnson, 2012, Theorem 6.1.10.).

C.2 Flexibility

The following proposition establishes that the FIL model is flexible in the sense of Diewert
(1974) in a large class of inverse demand models.

Proposition 3. The FIL model is flexible in the sense of Diewert (1974) in the class of
inverse demand models defined by

σ−1
j (st;µ) = lnGj(st;µ)− ln(s0t) (33)

where

1. The function G is homogeneous of degree one,

2. The function lnG has a matrix of derivatives that is symmetric and positive definite
on ∆J ,

3. The 1-norm | lnG(st) approaches infinity as st approaches bd(∆J).

Proof. Assume that we observe the vectors of prices and market shares, pt and st. The
proof consists in showing that the FIL model satisfies the following two requirements: (i)
it can match the vector of market shares st; and (ii) it can match the true matrix of own-
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and cross-price demand elasticities, with entries ij given by λij .

Market Shares. Proposition 1 implies that there exists a unique vector of δt such that
σ(δt;µ) = st, which shows the first requirement. Given a value for µ, we can set

δjt = ln

(
sjt
s0t

)
−
∑
i ̸=j

µij ln

(
sjt

sit + sjt

)
, j = 1, . . . , J.

to match the vector of market shares st.

Price Elasticities. Observing prices and market shares, matching price elasticities amounts
to matching price derivatives. Since the matrix of price elasticities is positive definite, this
is equivalent to matching its inverse whose entries ij are given by

λij ≡
1

α

∂σ−1
i (st)
∂sjt

=



1

α

[
1

s0t
+

1−
∑

i ̸=j µij

sjt
+
∑

i ̸=j

µij

sit + sjt

]
, if i = j,

1

α

[
1

s0t
+

µij

sit + sjt

]
, if i ̸= j.

(34)

Consider matching the off-diagonal entry λij . Given a value for α, we must choose µij

such that
λij =

1

α

(
1

s0t
+

µij

sit + sjt

)
, (35)

which can be inverted to obtain µij as a function of st, λij and α

µij =

(
αλij −

1

s0t

)
(sit + sjt) . (36)

Equation (35), together with Restrictions (R2), we note that λij > 0. Note that we must
choose sufficiently high for Restrictions (R2) to be satisfied and sufficiently for Restrictions
(R3) to be satisfied.

Consider now matching the diagonal entries λjj . Differentiating
∑J

k=1 σk(δ)+σ0(δ) =

1 implies, for all j = 1, . . . , J , that
∑J

k=1
∂σk(δ)
∂pj

+ ∂σ0(δ)
∂pj

= 0, which can be rearranged as∑J
k=1

∂σk(δ)
∂pj

= −αs0sj . This rearrangement uses that the relationship between the outside
good and any product j > 0 is of the logit form and that market shares are matched.
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C.3 Mapping

Consider the mappings (3)
µij = µ

(
d(2)
ij,t

(
x(2)
it , x

(2)
jt

))
(37)

where I make explicit the dependency of d(2)
ij,t in characteristics x(2)

jt for the purpose of the
proof.

The FIL model (2) mapped in characteristic space can be rewritten as

σ−1
j

(
st, x

(2)
t

)
= ln

(
sjt
s0t

)
−
∑
i ̸=j

µ
(

d(2)
ij,t

(
x(2)
it , x

(2)
jt

))
ln

(
sj

sit + sjt

)
, (38)

= ln

(
sjt
s0t

)
−

J∑
i=1

µ
(

d(2)
ij,t

(
x(2)
it , x

(2)
jt

))
ln

(
sj

sit + sjt

)
+ Ct, (39)

where Ct = µ (0) ln (1/2) ∈ R.
Observe in Equation (39) that the sum is over all products i = 1, . . . , J , including

product j itself, and that the constant C is product-invariant. This shows that the FIL
model projected in characteristics space is symmetric and anomynous.

Lastly, using Equation (38) shows that σ−1
j is invariant to translation in x(2) since, for

all c ∈ R,

σ−1
j

(
s, x(2) + c1

)
= σ−1

j

(
s,d(2)

(
x(2) + c1

))
= σ−1

j

(
s,d(2)

(
x(2)
))

= σ−1
j

(
s, x(2)

)
.
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