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Abstract

This paper investigates the welfare implications of the rapid innovation in Central

Processing Units, and, specifically, asks whether it results in inefficient elimination of

basic Personal Computer configurations. I analyze a game in which firms make multiple

discrete product choices, and tackle challenges such as partial identification and sample

selection. The estimated model implies that the demand for PCs is highly segmented.

Using this model, I find that Intel’s introduction of its Pentium M chip contributed

significantly to the growth of the mobile PC segment and to consumer welfare. The

lion’s share of these consumer benefits were enjoyed by the 20% least price-sensitive

consumers. The Pentium M crowded out the Pentium III and Pentium 4 technologies.

I find that keeping those products on the shelf could have increased the welfare of

price-sensitive consumers, but sizable fixed costs offset these benefits.
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1 Introduction

Innovation in Personal Computer (PC) technology plays a key role in fostering growth in many

economic sectors. A salient feature of this process is a rapid elimination of existing products.1

The goal of this work is to ask whether this process results in inefficient product elimination. This

question is motivated by consumer heterogeneity: while some consumers have a high willingness

to pay for the most advanced technology available, others primarily perform basic tasks (e.g.

Web browsing or word processing), which require modest computing power.

When basic PC configurations disappear, consumers who would have optimally chosen to

purchase them end up buying stronger machines (or choose not to purchase a PC at all). Keep-

ing these basic configurations on the shelf, alongside the more advanced ones, could, therefore,

contribute to the welfare of such consumers.2 From the point of view of a social planner, how-

ever, these benefits to consumers must be weighed against the impact on producer profit, and,

specifically, the additional fixed costs that would have been required so as to keep such basic

configurations on the shelf (e.g. the cost of technical support, marketing, and inventory manage-

ment). If these costs are not too large, a social planner may prefer to keep offering these basic

configurations, meaning that their elimination by the market was socially inefficient.

Theoretical analyses (Spence (1976), Mankiw and Whinston (1986)) have demonstrated that

equilibrium product choices may be characterized by social inefficiency. Two types of external-

ities drive these failures: on the one hand, a firm that contributes to variety by introducing a

differentiated product to the market generally fails to appropriate the full surplus associated with

this product introduction, and the implied positive externality may lead to insufficient variety.

On the other hand, launching an additional product imposes a negative externality on rivals,

suggesting a potential for excessive product introduction. The lesson from this theoretical lit-

erature is that it is necessary to learn the values of market-specific parameters (namely, those

governing cost and demand in a given industry) to be able to determine the existence, nature

and magnitude of such market failures.

Motivated by this question, I estimate a model of supply and demand in which both the set

of PC configurations offered to consumers, and the prices charged for such configurations, are

endogenously determined. I then perform counterfactual analyses to determine the impact of

innovation on the portfolio of technologies offered to consumers, to determine whether products

are inefficiently eliminated, and to quantify the impact of innovation on various consumer types.

The answers to these questions depend on primitives: the distribution of consumer preferences,

the variable and fixed costs incurred by PC makers, and the nature of the supply-side game.

1Pakes (2003) reports an average annual attrition rate of 85 percent.
2Adding or removing products from the market affects consumers also via the effect on equilibrium prices. As explained below,

my empirical framework treats both product offerings and prices as endogenous, which allows me to capture these effects.
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I focus on innovation in the Central Processing Unit (CPU), a crucial PC component which

is responsible for all calculations. CPU innovation plays a central role in the PC industry: in

addition to directly improving PC performance, faster chips also increase the marginal value of

complementary innovations in both software and hardware. The CPU market is controlled by two

main vendors: Intel, and its smaller competitor Advanced Micro Devices (AMD). Downstream

PC makers (e.g. Dell, Hewlett-Packard (HP), Gateway) purchase these chips and install them

in their various PC products.

I model a two-stage game played by PC makers: in the first stage, they face a discrete menu of

vertically differentiated CPUs, and simultaneously choose which CPU options to offer with their

PC products. While consumer heterogeneity provides incentives to offer vertically differentiated

PC configurations, offering each such configuration results in fixed costs. In the second stage,

the chosen configurations are sold to consumers in a simultaneous price-setting game. CPU

innovation expands the menu of CPU options, and I use the model to predict the impact of this

expansion on both product choices and prices in the PC market.

I use data on PC prices, characteristics and sales to estimate demand and marginal costs

for PC products. These estimates reveal producers’ variable-profit benefits from offering PC

configurations. I also use the observed variation in product offerings to make inference on fixed

cost parameters. For example, an observed decision to offer a certain PC configuration implies

an upper bound on the fixed costs associated with it. Having estimated both the benefits and

the costs which accrue to PC makers from offering PC configurations, I simulate outcomes of the

two-stage game to study the impact of innovation.

My estimates imply that the demand for PCs is highly segmented. In particular, strong

consumer heterogeneity is detected in price sensitivity, in the taste for portability, and in the

degree to which consumer utility from any fixed bundle of PC characteristics falls over time. I

find that the average willingness to pay for a fixed product falls by �257 every year. I interpret

this as evidence that innovation in software drives the average consumer toward being more of

an “advanced PC user” over time.3 Consumers also display a considerable willingness to pay for

PC brands, suggesting that product choices by some PC makers can have an important impact

on the map from upstream CPU innovations to consumer welfare.

I use the estimated model in counterfactual analysis to study the impact of Intel’s introduction

of its Pentium M chip, which is considered a landmark in mobile computing. I artificially remove

this technology from the market, and compute the set of potential equilibria under this “no

Pentium M” scenario.4 Comparing these outcomes to outcomes in the observed equilibrium (i.e.,

3As discussed below, my sample period was not characterized by significant hardware upgrades driven by a new operating system
from Microsoft, so other innovation (e.g., in Web applications) is likely to have been the driving force behind this process.

4As explained below, the term “potential equilibria” pertains to outcomes which cannot be ruled out as equilibria of the game.
The need to work with this concept stems from the partial identification of fixed costs, also to be discussed below.
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in the presence of the Pentium M) provides a measure of the Pentium M’s effect.

I find that, in the second quarter of 2004, the presence of the Pentium M made a substantial

contribution to the growth of the mobile segment of the PC market, and that some of this

growth came at the expense of Desktop sales. The presence of the Pentium M increased the total

consumer surplus by 3.2%-6.3%. This innovation also led to a significant re-alignment of PC

makers’ product offerings, and, in particular, crowded out products based on older technologies

such as certain Intel Pentium III and Pentium 4 chips.

I also document substantial heterogeneity in the impact of innovation on different consumer

types. The 20% least price-sensitive consumers enjoy the bulk of the benefits from innovation,

while the impact on other segments of consumer demand appears minimal to nonexistent (at

least in the short run). While price-sensitive consumers can be hurt by the elimination of basic

technologies, they also benefit from the decrease in prices of surviving technologies prompted

by the arrival of cutting-edge innovations. Since both product choices and prices are treated as

endogenous, the effects of both forces are taken into account in the welfare analysis.

I use the model to ask whether a social planner could improve welfare by adding back to the

market notebook PCs based on the eliminated Pentium III and Pentium 4 technologies, in the

sense that the added fixed costs would be outweighed by the contributions to consumer surplus

and to variable profit.5 If this is the case, we would determine that the elimination of such

technologies was socially inefficient. I find that bringing these technologies back to the shelf

would have substantially increased the welfare of price-sensitive consumers. On the other hand,

the presence of sizable fixed costs offsets these welfare gains to a large extent, so that the scope

for inefficient elimination appears to be very limited: the upper bound on the lost welfare is

small compared to the benefits from innovation, while the lower bound suggests no welfare loss.

Caveats: long-term benefits and upstream profits. While my estimates capture the

process by which consumer utility from a fixed bundle of hardware characteristics falls over

time, my framework does not account for the crucial role played by CPU innovation in fostering

complementary innovation in software, which fuels this shift in consumer preferences.6 My

analysis, therefore, does not account for some long-term contributions of CPU innovation to

welfare. This motivates future research of dynamic complementarities in innovative activities.7

Another aspect not formally addressed by my framework is the quantitative impact of the

analyzed downstream game on the profits and decisions of upstream firms such as Intel or Mi-

5To be clear, this counterfactual does not “reverse” the effect of innovation, as it keeps the Pentium M technology in the market.
It merely adds some eliminated PC products back to the market, alongside the more advanced technologies, to determine if this can
be welfare-enhancing.

6Gawer and Cusumano (2002) describe the manner by which Intel acts to coordinate standards used by hardware and software
developers in order to foster complementary innovation, which, in turn, increases the demand for new chips.

7See Rosenberg (1979) for a seminal discussion of this issue.
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crosoft. I take the process of CPU innovation (which determines the menu of feasible CPUs) to

be exogenous.8 This assumption is reasonable since, as discussed below, the pace of innovation

in computing power is largely driven by Moore’s Law.9 Furthermore, my welfare calculations

define “producer profits” as the profits of PC makers, and so I do not formally take into account

the impact of, say, adding basic PC configurations to the shelf on the profit of Intel or Microsoft.

I argue that taking these externalities into account would only reinforce my findings: Intel

and Microsoft are likely to benefit from the elimination of basic products, as it shifts consumer

demand toward higher-margin chips and software products. Since I already find that adding

these basic products back to the market does not improve total welfare, taking into account the

likely-adverse impact on Intel and Microsoft would only reinforce this finding.

Methodological contribution. To the best of my knowledge, this is the first paper that solves

and estimates a model where firms make multiple-discrete product choices (i.e., they choose

their product portfolio from a discrete menu of potential products) while providing a full-fledged

modeling of cost and demand systems (see the literature review below). This requires me to

tackle several methodological challenges.

First, the discrete nature of these product choices implies that the game is not guaranteed

to have a unique equilibrium, and, as a consequence, fixed costs are only partially identified.

Recent literature (see below) has exploited necessary equilibrium conditions to place bounds on

partially-identified parameters, and I extend this approach in this paper to the multiple-discrete

product setup described above. I allow for important heterogeneity in fixed costs across firms,

and estimate bounds on the mean per-configuration fixed cost for each firm. This approach yields

identified intervals for fixed cost parameters which endpoints are defined by means of random

variables. As a consequence, I am able to use rather simple techniques to perform inference on

the set-identified parameters.

Second, I allow for a large, discrete product space, which provides a detailed picture of PC

product variety. This exacerbates the computational burden associated with simulating sets of

counterfactual predictions, as allowing for n product choices yields 2n feasible vectors of product

offerings. I develop methods which reduce this burden. The intuition behind these methods is

that, if a firm can profitably deviate by offering an additional product at a given situation, it

would have the same profitable deviation when facing fewer competing products.

A third, difficult challenge tackled in this paper is sample selection, which arises since firms are

explicitly assumed to have selected the set of products observed in the data. I allow for structural

8I explain below how I control for Intel’s decisions regarding when to phase out its CPU technologies, which allows me to focus
on the downstream decisions regarding which of the remaining chips to adopt.

9Another reasonably-exogenous source of innovation is initiative taken by engineers, which is known to have played a key role in
the development of the Pentium M.
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errors in both the fixed and the variable components of the profit function. As a consequence,

potential selection bias could affect both the point estimators of the variable profit parameters,

and the set estimators of the fixed cost parameters.

I develop techniques that address both these issues. The selection problem in the estimation

of variable profit parameters is handled by imposing a point-identifying assumption, according

to which firms commit to product choices before they observe realizations of marginal cost and

demand shocks.10 I then show that a finite-support assumption for fixed costs gives rise to a

partial-identification approach that solves the selection bias in the estimation of fixed costs.

Related literature. Song (2007, 2010), Gordon (2009), and Goettler and Gordon (2009) study

the upstream CPU market. These papers assume that the CPU serves as a perfect proxy for the

PC. The current paper addresses a different set of questions (i.e., PC product variety), and, as a

consequence, develops a very different framework. Nosko (2010) also makes the assumption that

the CPU is a perfect proxy for the PC, and builds on the methodology developed in this paper

to study the product portfolio choices of upstream CPU makers.11

A vast industrial organization literature considers estimation of partially-identified models (e.g.

Haile and Tamer (2003), Pakes, Porter, Ho and Ishii (2006), Berry and Tamer (2006), Ciliberto

and Tamer (2009)). Ishii (2008) estimates a model in which banks choose an integer number of

ATM locations. The discreteness of this choice leads to partial identification, similarly as in my

framework. My focus on product variety, however, implies that I am interested not only in the

total number of PC configurations offered by a firm, but also in their type. As a consequence,

I must consider a vector of product-choice binary indicators for each firm. Moreover, unlike the

literature cited above, my framework does not rely on a reduced-form profit function and instead

measures profits from an estimated model of cost and demand, while showing how to overcome

difficult selection problems that arise with respect to the structural demand and cost errors.

This paper is also related to a long-standing literature (e.g. Trajtenberg (1989), Petrin (2002))

that studies the welfare benefits associated with new goods. My work adds to this literature by

explicitly modeling the impact of innovation on the entire portfolio of products offered, thus

taking into account the lost welfare from eliminated technologies.

The rest of this paper is organized as follows: Section 2 describes the industry and the data

used. Section 3 presents the model, and Section 4 discusses identification and estimation. Section

5 reports structural estimation results, while Section 6 addresses the economic questions of

interest via counterfactual analysis. Concluding remarks are offered in Section 7.

10Eizenberg (2009) describes an alternative approach (that was not implement in practical estimation) which relaxes this assumption.
There, it is shown that the selection mechanism itself can be used to generate moment inequalities which provide partially-identifying
information on variable profit parameters.

11This paper predates Nosko’s paper.
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2 Data and Industry

The data used in this research come from a number of sources. PC market data is from IDC’s

Quarterly PC Tracker database.12 I observe three years of quarterly data (2001Q3-2004Q2)

from the U.S. market, including the number of units sold and total dollar value by quarter (e.g.

2002Q3), segment (e.g. Home), vendor (e.g. Dell), brand (e.g. Inspiron), form factor (e.g.

Portables), CPU vendor (e.g. Intel), CPU brand (e.g. Pentium 4) and CPU speed range (e.g.

1.0-1.49 GHz) combinations.13 For each observation, I compute the average price by dividing

total value by total sales. I convert values to constant dollars using the Consumer Price Index

(CPI), reported by the Bureau of Labor Statistics. I define a product as a unique combination

of observed characteristics.14

As discussed below, the demand model employed in this work assumes that a consumer buys at

most one unit of some PC product in a quarter. This is a reasonable assumption for households,

but not for commercial PC consumers.15 I therefore use only the portion of the data which

pertains to the Home segment of the market, and, following previous work (e.g. Goeree (2008)),

I define the size of the market as the number of U.S. households in a quarter, as reported

by the U.S. Census Bureau.16 Since PC makers typically target the Home and Commercial

segments with different product lines, it is reasonable to study product choices in the Home

market separately.17

The Home PC market. The sample period corresponds to the early years of Microsoft’s

Windows XP operating system. Due to modest system requirements, the launch of Windows

XP did not prompt widespread hardware upgrades by consumers. This makes the sample period

appropriate for the estimation of a model in which the distribution of consumers’ willingness to

pay for computing power plays an important role.

Sales in the Home segment accounted for about 38% of total U.S. PC sales during the studied

period. While many firms operate in this competitive market, some vendors (most notably

Dell and HP) enjoy sizable market shares, as reported in Table 1. The top 5 vendors together

accounted for a 60%-70% share of the market. A similar concentration level is reported by Goeree

(2008) for the late 1990s.

12http://www.IDC.com/.
13In some cases, slightly less-disaggregated information is available in that sales are split evenly among observations pertaining to

the same vendor-quarter cell. This issue is not likely to cause a problem since the implied average prices, computed as explained
below, appear very reasonable.

14These definitions follow Goeree (2008). The data used in that paper has a somewhat similar structure to that used in this paper,
in that it also consists of 12 quarters, and has similar observed product characteristics.

15Purchases of the latter were studied by Hendel (1999).
16I interpolate linearly between the 2000 and 2004 household totals to obtain quarter-by-quarter figures.
17Some overlap exists between these markets, since some “Home” consumers purchase PC products designed for commercial users,

and vice versa. As explained below, the estimation of fixed costs focuses on brands that mainly target the Home segment, which
should alleviate potential biases resulting from this issue.
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The upstream market for CPUs is, by contrast, significantly more concentrated. Table 2 shows

that more than 70% of the PCs sold in the Home market had an Intel CPU installed, while slightly

over 20% had a CPU from AMD. IBM had a small market share by virtue of making the CPUs

used in Apple’s computers. I exclude Apple products from the empirical analysis since I do

not have processor speed information for them (Apple’s market share during the sample period

hovered about 3%).18

Evidence for the rapid innovation in CPU technology is offered in Figure 1, which depicts the

share of various CPU clock speed ranges in the three years of the sample. The market share of

CPUs with clock speeds in the 2-2.99 GHz range jumped from merely 5% in the first year of the

sample to almost 60% by the second year. In parallel, the share of slower CPUs fell sharply over

time.19 A fundamental force behind CPU innovation has been the ability of manufacturers to

double the number of transistors on an integrated circuit every 18-24 months, a regularity known

as “Moore’s law”.20 As a consequence, chips become smaller, faster, less power-consuming, and

cheaper to produce. Lower levels of power consumption played a key role in the growth of the

mobile PC segment, while lower CPU production costs contributed (among other forces) to a

rapid decline in average PC prices. Both these PC market trends are underscored in Figure 2.

PC product lines and CPU technologies. This paper is interested in the portfolio of

CPU options offered with PC product lines. I define PC product lines as combinations of PC

vendor, brand and form factor (e.g., “Dell-Inspiron-Portables”). I define CPU technologies as

combinations of CPU brand and speed range (e.g., Intel’s Pentium 4 1.5-1.99 GHz). Typically,

multiple configurations of each product line are observed in the data, each with a different CPU

technology installed.

Table 3a reports the rate of adoption of Intel’s CPU technologies in Desktop PC product

lines.21 The columns of the table correspond to CPU technologies, and the entries report the

fraction of PC product lines in which these technologies were offered. The first column, for

example, reports the fraction of product lines that adopt Celeron processors with CPU speed

in the 0.5-0.99 GHz range. These CPUs were utilized in 89% of the product lines in the first

quarter, but were rapidly phased out, in parallel to increased adoption of new CPU technologies.

18After removing Apple products, observations with negligible market shares (defined as selling less than 100 units in the quarter),
observations with a dollar value of zero, and observations with missing speed information, I obtain 2,287 observations, each of which
is a quarter-product pair.

19Note, however, that clock speed alone is a poor indicator of CPU performance. CPUs of advanced generations (e.g. Intel’s
Pentium 4) are differentiated from their predecessors along dimensions other than raw clock speed: they may have more cache
memory on board the chip, have better designs, or use more sophisticated algorithms. It is, therefore, important to control for both
CPU brand and clock speed to adequately capture CPU performance, and I do so in the empirical application.

20The prediction by Intel’s Gordon Moore was that the number of transistors on a chip would double and costs would fall by 50%
every 18 months (Walters (2001), p.22).

21The analysis in this paper is restricted to PC makers’ decisions to install Intel’s CPUs, taking offerings based on AMD products
as exogenous (the prices of all PC products are always endogenous in this paper, though). An analysis of the variety of AMD chips
offered would be an interesting extension, but would require careful attention given the asymmetry between the two chip makers.
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Table 3b reports such information for portable PC product lines.

Tables 3a and 3b convey significant variation, in that most CPU technologies are only adopted

in a subset of product lines at a given point in time. This variation is instrumental in identifying

the cost of offering PC configurations. Some of this variation, however, is artificial; first, certain

CPUs could not be installed in certain PC product lines due to technical constraints. Second,

some PCs with obsolete CPU technologies may be sold in a given quarter, in small amounts,

simply because some firm still has them in stock. In such cases, it is likely that Intel has already

phased out the relevant technology, and it would therefore be misleading to include it in the menu

of CPU technologies that PC makers can feasibly install in their PC product lines. I describe

below how I take such issues into account in defining the feasible set of CPU technologies.

3 Model

The primitives of the model are consumer demand for PCs, PC makers’ marginal and fixed costs,

and the Subgame Perfect Nash Equilibrium (SPNE) concept of a game played by the oligopoly

of PC makers. I now describe the model in detail.

3.1 Household Demand

Following Berry, Levinsohn, and Pakes (1995) (BLP), and Goeree (2008), the demand for PCs

is modeled by a random-coefficient-logit specification. A set Jt of PC products is available for

purchase in quarter t. Each household chooses at most one of the products in Jt, or chooses

the outside option of not purchasing any of the PCs offered. The latter option may include

buying a used PC, or buying an Apple computer.22 The household makes the discrete choice

that maximizes the following indirect utility function, describing the utility derived by household

i from PC product j at time t:

uijt(ζit, xj, pjt, ξjt; θ
d) = xjtβ + ξjt︸ ︷︷ ︸

δjt

+ [−αi × pjt] +
K∑
k=1

σkxkjv
k
i︸ ︷︷ ︸

µijt

+εijt (1)

The following notation is used: xjt is a K-vector of PC product characteristics observed by the

econometrician. These include a constant term, a laptop dummy variable, and dummy variables

for PC brands, CPU brands, and CPU speed ranges. I also include a time trend, which captures

the degree to which the utility from fixed PC characteristics changes (falls) over time. ξjt is

a quarter-specific demand shock which is unobserved by the econometrician. The product’s

22Gordon (2009) models the consumer replacement cycle with respect to CPU products. In order to keep the analysis of product
variety tractable, my framework abstracts from durable good aspects of the PC.
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price is pjt, and ζit ≡ (vi, {εijt}j∈Jt) are household-specific variables: vi is a (K + 1)-vector of

standard-normal variables (assumed IID across households, as well as across the (K+1) product

characteristics, one of which is price), and εijt are IID (across households and products) Type-I

Extreme Value taste shifters.

I define αi ≡ exp(α+σpvpi ), so that the price sensitivity is log-normal with parameters (α, σp).

The demand parameters are θd = (β′, α, σ′)′. Note that utility is separated into a mean-utility

component δjt, and a household-specific deviation µijt + εijt. I further define θ2 ≡ (α, σ′)′.

Conditioning on δ, the utility function can then be written as uijt(ζit, xj, pjt, δjt; θ2).

This specification allows households’ taste toward a characteristic k ∈ {1, 2, ..., K} to shift

about its mean, βk, with the heterogeneous term σkvki . For computational reasons, I restrict

many of the σk to equal zero in the empirical application. I do allow for heterogeneity in price

sensitivity, in the taste for portability, in the taste for the outside option, and in the degree

to which that taste changes over time. Heterogeneity along these dimensions governs firms’

incentives to provide product variety. I define the utility from the outside option by:

ui0t = εi0t (2)

The model-predicted market share of product j ∈ Jt is given by:

sjt(x, p, δ, v; θ2) =

∫
exp[δjt + µijt(xj, pjt, vi; θ2)]

1 +
∑

m∈Jt exp[δmt + µimt(xm, pmt, vi; θ2)]
dPv(vi) (3)

Where Pv(·) is the joint distribution of the taste shifters vi.

3.2 Supply

I assume that, in each quarter, each PC maker is endowed with a pre-determined set of PC

product lines. This assumption is justified by the fact that product lines (e.g. “Dell Inspiron

Notebook”) are typically well-established brands that do not frequently enter or exit the market.

PC makers also face a menu of CPU technologies which they can offer with their various product

lines. The timeline for a two-stage game, played by PC makers in each quarter, is:

1. PC makers observe realizations of shocks to fixed costs that are unobserved by the econome-

trician; they then simultaneously choose which CPU technologies to offer with each product

line, and incur fixed costs for each such offered configuration.

2. For each PC configuration chosen in Stage 1, PC makers observe realizations of demand and

marginal cost shocks that are unobserved by the econometrician; they then simultaneously

set PC prices for these configurations.
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As discussed below, the assumption that firms learn the realizations of the shocks to demand

and marginal cost only after committing to product choices makes it possible to overcome the

sample selection issue in the estimation of the variable profit parameters. Since I control for

brand-specific intercepts (for most brands), these errors should not capture any systematic brand

effects that the firms are likely to know prior to committing to their configuration choices.

I now turn to a formal description of the game, beginning with some notation. Denote by D

the set of active PC vendors (quarter indices suppressed), and define Sd as the set of product lines

for firm d ∈ D. Let H represent the menu of feasible CPU technologies. Denote by Ldm ⊆ H

the set of CPU technologies that firm d chooses to offer with product line m.23

Stage 1: In the beginning of this stage, firms observe realizations of shocks to fixed costs. I now

describe these fixed costs in detail; each potential PC configuration (i.e., CPU option) that firm

d could feasibly offer is associated with fixed costs that would be incurred, should the firm choose

to offer that configuration. These fixed costs may include physical production costs, inventory

management costs that are necessary to ensure that the product configuration is in stock, and

administrative, sales and marketing costs.

Let Jd represent the set of all firm d’s potential product configurations, i.e., both those config-

urations offered, and those which the firm chooses not to offer. This set has |Sd| × |H| elements.

The following specification is chosen for the fixed cost associated with firm d’s product j ∈ Jd:

Fj = F d + νj, with E
[
νj
∣∣j ∈ Jd

]
= 0 (4)

This specification implies that the fixed costs associated with firm d’s products are given

by adding together a mean, F d, viewed as a parameter to be estimated, and a mean-zero error

term. It allows for both heterogeneity in fixed costs across firms (via the mean), and for stochastic

fluctuations about that mean.24

In the empirical application, for reasons discussed below, I estimate only the fixed costs as-

sociated with the four leading notebook product lines (which account for over 70% of notebook

sales). I therefore allow the mean of these costs to be specific not only to the firm (e.g. Dell)

but also to the product line.25

Upon observing the shocks νj, firms proceed with simultaneous product configuration choices:

each firm d ∈ D determines the sets Ldm for each product line m ∈ Sd. Collecting these sets

23For instance, if d = “Dell′′, m ∈ Sd is Dell’s “Inspiron” notebook product line, and Ldm ={
Pentium 4 1-1.49 GHz, Pentium 4 1.5-1.99 GHz

}
, then Dell has chosen to sell two Inspiron configurations, based on Intel’s

Pentium 4 CPUs with the specified speed ranges.
24This specification does not allow for economies (or diseconomies) of scope. Such effects could be captured, however, if one would

assume instead that the firm’s total fixed cost depends non-linearly only on the total number of offered products. Such an extension
would require some alterations to the econometric procedures described below.

25There is one exception: I impose that two different notebook product lines by HP are characterized by the same mean (across
configurations) of fixed costs.
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across all firms yields the set J = {Ldm}d∈D, m∈Sd
of all PC products that would be offered in

the quarter. Firms then pay the fixed costs Fj associated with each configuration they offer.

Stage 2. I let the log of marginal costs for a PC product j depend linearly on observed cost

shifters, wj, and on an additive error term ωj:
26

log(mcj) = wjγ + ωj (5)

In the beginning of Stage 2, firms observe realizations of ej = (ξj, ωj)
′ for each configuration

chosen for production in Stage 1 (to re-iterate, these are demand and marginal cost shocks that

are unobserved by the econometrician, and appear in (1) and (5) above). After observing these

shocks, firms simultaneously set prices for products j ∈ J to maximize profits. Firm d’s profits

are given by:

πd =
∑
m∈Sd

∑
`∈Ldm

[pm` −mcm`]sm`(p)×M − TFd (6)

where pm`, sm`, and mcm` are the price, market share and the (assumed constant) marginal cost

associated with configuration ` of product line m ∈ Sd. M is market size, p is a |J |-vector of

prices, and TFd is firm d’s total fixed cost.

I assume that, given any Stage 1 history (and any parameter values), Stage 2 prices are

uniquely determined in a pure-strategy, interior Nash-Bertrand price equilibrium.27 Arranging

products in a |J |-dimensional vector, equilibrium prices satisfy a vector of first-order conditions:

p−mc = (T ∗∆(p; θ2))−1s(p) (7)

where T is a |J | × |J | PC product ownership matrix (i.e., Ti,j=1 if i, j are produced by the same

PC vendor, and is equal to zero otherwise), ∆i,j is the derivative of the market share of product

j with respect to the price of product i, and * represents element-by-element multiplication. It

is easy to show that the share derivatives depend on the non-linear demand parameters θ2.

Solution Concept and Multiple Equilibria. A Subgame Perfect Nash Equilibrium consists

of product choices and prices (J, p(J)) which constitute a Nash equilibrium in every subgame. I

assume the existence of a pure-strategy SPNE for the two-stage game. I do not, however, assume

uniqueness of the SPNE.

26In the empirical application I set wj = xj , i.e., I let the same observed characteristics shift both utility and marginal cost. Note
that the CPU price, charged by Intel or AMD, is a component of PC marginal costs. As a consequence, the γ coefficients on CPU
brand and speed provide reduced-form evidence with respect to the manner in which CPU prices vary with such attributes.

27This is a standard assumption (e.g. Nevo (2001)). The results of Caplin and Nalebuff (1991) guarantee a unique price equilibrium
under stronger restrictions than those imposed here.
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To gain intuition regarding the potential for multiple equilibria, consider the following simple

example: suppose we have only two heterogeneous PC makers, each with a single product line.

We may have one equilibrium in which only firm A caters to the value segment of the market by

offering a PC configuration with a slow CPU installed, and a second equilibrium, in which only

firm B chooses to do so.

Finally, recall that even though period indices were suppressed for convenience, the two-stage

game is assumed to be played in every quarter. This frequency is justified by the rapid entry

and exit of products in the PC market.

4 Identification and Estimation

The parameters to be estimated are the demand parameters θd = (β′, α, σ′)′, the marginal cost

parameters γ, and the fixed cost parameters F d, one such parameter for each firm.

Let θ = (θ′d, γ
′)′. The estimation strategy employed obtains an estimate of θ first, revealing

information on variable profits associated with product configurations. Given the estimate θ̂,

necessary equilibrium conditions are used to estimate bounds on the fixed cost parameters.

These tasks are explained in turn in sections 4.1 and 4.2 below. Both of these tasks involve

overcoming sample selection issues.

4.1 Estimating the Variable Profit Parameters θ = (β′, α, σ′, γ′)′

Intuitively, the demand parameters are identified from the joint distribution of prices, sales, and

observed PC characteristics. Marginal cost parameters γ are identified as follows: the pricing

FOCs in (7) identify markups, allowing us to identify marginal costs as the difference between

observed prices and these markups. The co-movement of these identified marginal costs with PC

characteristics identifies γ.

Identification of θ is jeopardized, however, by sample selection, as the set J of offered configu-

rations was selected by firms. The econometrician, therefore, does not observe a random sample

from the underlying distribution of product characteristics. In this section, I describe a standard

approach which allows point-identification of θ. It also allows me to consistently estimate θ

following the BLP method, and these estimates are reported in section 5 below.

The intuition for overcoming a selection bias in the estimation of θ is that, under the as-

sumption that firms do not observe the error terms ej = (ξj, ωj)
′ until after they have selected

their products, the selection does not depend on unobservables, and is therefore “ignorable”.28

Stating the point-identifying conditions requires a bit more notation. Let us collect all firms’

28See Wooldridge (2002), ch. 17, for a general discussion of the implications of selection mechanisms which depend on variables
observed by the econometrician.
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product lines in the set P = {Sd}d∈D. Denote by J the set of all |H| × |P | potential product

configurations. It is from this set that firms pick, in Stage 1, the subset J ⊆ J actually offered

to consumers. Let X denote a |J| × K matrix of product characteristics for all the potential

products, and let F denote the fixed costs of all PC makers. I make the following assumption:

Assumption 1. E[ej|X,F ] = 0 for each j ∈ J

Assumption 1 is very similar to the mean-independence assumption made by BLP, except

that the relevant population here is that of all potential PC configurations, rather than the

sub-population of products actually offered to consumers.

For each potential product configuration j ∈ J, I define a selection indicator, qj(X,F ), which

is equal to 1 if j was chosen for production, and is equal to zero otherwise. This indicator does

not depend on the error terms ej because firms do not know these values when making their

Stage 1 product choices. This allows for a standard identification approach: let zj(X) be a 1×L
vector of instrument functions pertaining to product j, where L ≥ dim(θ). By application of the

Law of Iterated Expectations, and using Assumption 1, we obtain:

E
[
qj(X,F )ejzj`(X)

]
= 0 for ` = 1, ..., L (8)

BLP show that a generic value for the parameter θ implies a unique solution ej(θ) for each

observed product j ∈ J . As a consequence, as long as Pr[qj = 1] > 0, condition (8) implies:

E
[
ej(θ0)zj`(X)

∣∣qj = 1
]

= 0 for ` = 1, ..., L (9)

where θ0 is the true parameter value. Equation (9) defines L moment conditions that provide

point identification of θ.29 Notice that we overcome the selection problem by obtaining a moment

condition that is defined over observed products only. GMM estimation of θ using the moment

conditions (9) follows the BLP method. Additional details regarding this estimation procedure

are provided in Appendix A.1.30

Since firms observe the errors e before setting prices, it is necessary to account for price

endogeneity. In choosing the instruments zj(X), I follow Berry (1994) and BLP by using variables

that should be correlated with markups, and, therefore, with prices. In addition to the xj vector

of PC characteristics, I use the number of product lines for both the vendor and competitors

in various data cells (e.g., formfactor-speed cells), the number of competitors’ Celeron-based

configurations, the squared time trend, and the ratio of average rivals’ speed to vendor’s average

29Additional regularity conditions are necessary for a formal identification argument.
30Note that this identification strategy for θ relies heavily on the assumption that firms observe the errors ej only after committing

to product choices. In the absence of this assumption, the selection indicator qj(·) would depend on these errors, and, as a consequence,
condition (8) could fail. Eizenberg (2009) provides the details of an alternative identification strategy (that was not implemented in
practical estimation) that relaxes this assumption, and uses the selection mechanism itself to generate bounds on the error terms of
“missing” products. This allows the construction of moment inequalities that are defined over the entire set J of potential products.
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speed.31 I also use interactions of observed PC characteristics (laptop, Pentium and Celeron

dummy variables) with a time trend to obtain additional instruments. These terms can be

viewed as cost shifters excluded from the demand side, since they capture the decrease in the

marginal costs of providing these PC characteristics over time.

4.2 Estimating the Fixed Cost Parameters F d

Given the point estimate θ̂ obtained in section 4.1, a set estimate can be obtained for the fixed cost

parameter F d, firm d’s mean fixed cost. I assume that the product choices and prices observed

in the data constitute an SPNE of the two-stage game. A necessary equilibrium condition

is, then, that no firm could increase its expected profit by unilaterally altering its first-stage

product choices, taking into account the impact of that deviation on second-stage prices (the

simultaneous-move nature of the first stage implies that the firm need not consider an impact of

its deviation on rivals’ product choices).

Such conditions imply bounds on expressions involving fixed cost parameters.32 In particular,

it will be shown that an upper bound can be derived on the fixed cost associated with each

offered product, and that a lower bound is available for the costs associated with each product

the firm does not offer. These bounds, in turn, are then used to construct bounds on the mean

fixed costs parameters Fd.

Let the vector Ad denote firm d’s observed product choices. Each entry in this vector is a

binary variable, which takes the value 1 if the relevant product configuration is offered. Since

firm d may have more than one product line, the general form of this vector is:

Ad =

{
0 1 1 0 1︸ ︷︷ ︸

Product Line 1

, 1 1 0 1 1︸ ︷︷ ︸
Product Line 2

, ...

}
I define the sets A1

d = {k : Ad(k) = 1} and A0
d = {k : Ad(k) = 0}, which collect the indices

corresponding to products offered and not offered, respectively. The set of all the entries in Ad

corresponds to Jd, defined above as the set of all firm d’s potential products.

Upper and lower bounds on Fj. Consider any product configuration j which belongs in the

set A1
d, i.e., firm d chose to offer this product. A necessary equilibrium condition implies an

upper bound on Fj, the fixed costs associated with such a product, at the true parameter values:

Fj ≤ E(e|θ0)

[
V Pd(Ad; e, θ0)− V Pd(Ad − 1jd; e, θ0)

]
≡ F j(θ0), ∀j ∈ A1

d (10)

31For the purpose of constructing this instrument I compute speed as the middle of the relevant speed range.
32See cf. Berry and Tamer for a discussion of the use of necessary equilibrium conditions in partially-identified entry models.
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where 1jd denotes a vector of the same length as Ad which jth entry is equal to 1, and all its other

entries are equal to zero. V Pd(·) denotes the variable profit firm d garners as a consequence

of choosing various product portfolios (taking into account the impact of such portfolios on

second-stage prices). E(e|θ0) denotes the firm’s expectation over the true joint distribution of the

error terms associated with all products. This notation reflects the fact that this distribution is

indexed by the parameter θ (see Appendix A.1).

In words, condition (10) states that a deviation by firm d which eliminates one of its observed

products must not be profitable. To ensure that, firm d’s savings in fixed costs cannot exceed

the expected drop in its variable profit. An analogous argument generates lower bounds on the

fixed costs associated with products the firm chose not to offer: a deviation that adds such a

product to the firm’s portfolio must not be profitable, implying that the added fixed costs must

exceed the expected variable profit gains:

Fj ≥ E(e|θ0)

[
V Pd(Ad + 1jd; e, θ0)− V Pd(Ad; e, θ0)

]
≡ F j(θ0), ∀j ∈ A0

d (11)

Using the bounds on Fj to identify Fd. The above arguments demonstrated that one can

obtain an upper bound on the fixed cost associated with each product offered by firm d, and a

lower bound on the costs associated with each product the firm chose not to offer.33 Our goal,

however, is to estimate F d, firm d’s mean fixed cost. Recalling that Fj = F d + νj, and applying

a conditional expectation to (10) implies:

F d + E
[
νj|j ∈ A1

d

]
≤ E

[
F j(θ0)|j ∈ A1

d

]
The expectation on the RHS is identified. If we could assert that E

[
νj|j ∈ A1

d

]
= 0, we would

have identified an upper bound on the parameter F d. However, this conditional expectation is

not zero: unlike the structural error ej, the structural error νj was known to the firm at the time

it committed to its product choices. While its unconditional mean is zero, its mean conditional

on the product being offered need not be zero. The term E
[
νj|j ∈ A1

d

]
, therefore, represents a

selection bias.34

To circumvent this problem, I proceed with a strategy that allows me to obtain bounds on Fj

for every potential product j ∈ Jd, which hold regardless of whether this product is offered or

not. It is then possible to obtain inequalities which involve the unconditional mean of νj, which

does equal zero. To that end, I impose a finite-support condition on firm d’s fixed costs:

33Note that additional necessary conditions could be exploited, e.g., conditions that involve multi-product deviations from the
firm’s observed portfolio. While this means that the procedure developed here does not exploit all the information provided by the
data and the model, the results section shows that the information used is sufficient to address the questions of interest.

34See Pakes, Porter, Ho and Ishii (2006) for a discussion of this type of selection problems in models involving inequalities.
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Assumption 2. supj∈Jd

{
Fj
}

= FU
d <∞, infj∈Jd

{
Fj
}

= FL
d > −∞

This assumption suggests that fixed costs associated with firm d’s products have a bounded

support given by [FL
d , F

U
d ]. The assumption that fixed costs are bounded from below is clearly

weak as they can be assumed to be nonnegative. The next assumption guarantees that we can

identify an interval which contains this support:

Assumption 3. [FL
d , F

U
d ] ⊂ supp

(
expected change in variable profit due to elimination

or addition of a single product by firm d
)

This assumption states that the support of the fixed costs is contained within the support

of the expected change in variable profit resulting from single-product changes to the firm’s

product portfolio. As indicated in (10) and (11) above, such expected changes in variable profit

are identified, and, as a consequence, so is their support, denoted by [V L
d (θ0), V U

d (θ0)].35

For each product j ∈ Jd, define the following two random variables:

Lj(θ0) =

V L
d (θ0) j ∈ A1

d

F j(θ0) j ∈ A0
d

Uj(θ0) =

F j(θ0) j ∈ A1
d

V U
d (θ0) j ∈ A0

d

The following bounds on Fj now apply to any potential product of firm d (i.e., without

conditioning on whether the product is offered):

Lj(θ0) ≤ Fj ≤ Uj(θ0) ∀j ∈ Jd (12)

We can now apply an unconditional expectation to obtain:

ELj(θ0) ≤ F d ≤ EUj(θ0) ∀j ∈ Jd (13)

The inequalities in (13) define the identified set for the firm-specific mean fixed cost parameter

F d, denoted [µ`, µu] where µ` = ELj(θ0) and µu = EUj(θ0) for all j ∈ Jd.

The estimated set is obtained by replacing the true variable-profit parameter vector θ0 with

its consistent estimator θ̂, described in section 4.1 above, and computing the appropriate sample

averages.36 That is, the estimated set is given by [`
d

n(θ̂), udn(θ̂)] where

35Assumption 3 is reasonable since adding or removing a popular product can have a substantial impact on variable profit, while
adding or removing a niche product could have a very minimal effect. This suggests that the length of the support [V L

d (θ0), V U
d (θ0)]

should be quite large. In contrast, the impact on fixed costs of adding or removing a product primarily involves the added (or saved)
per-product inventory management costs, or sales and marketing costs, which support can be assumed to be shorter than the support
of the changes to variable profit.

36Plugging in the estimator θ̂ for θ0 means that the confidence interval described below needs to be corrected to account for the
error in estimating θ. Formally this can be done by a bootstrap. I do not perform this adjustment since it would be computationally
expensive and, as discussed in the appendix, would not affect the findings of the paper.
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`
d

n(θ̂) = (1/nd)
nd∑
j=1

Lj(θ̂), udn(θ̂) = (1/nd)
nd∑
j=1

Uj(θ̂)

with nd = |Jd| denoting the number of firm d’s potential products. Following arguments in

Imbens and Manski (2004), we can construct a (1 − α) × 100% confidence interval for F d by

constructing appropriate one-sided intervals for the sample averages:

[
`
d

n(θ̂)− S`(θ̂)√
nd
z1−α, u

d
n(θ̂) +

Su(θ̂)√
nd

z1−α
]

(14)

where S`(θ̂), Su(θ̂) are estimators of the standard deviation of Lj and Uj, respectively.37

Additional details are available in Appendix A.2 which describes the manner by which the

expected variable profits are simulated using the estimated empirical distribution of the error

terms, provides details regarding a procedure that adjusts the estimated support bounds V L
d (θ0)

and V U
d (θ0) to correct a finite-sample bias, and offers a discussion of sufficient conditions for

consistency under possible dependence among the Lj (and the Uj) variables.

5 Estimation Results

5.1 Estimation Results: Variable Profit Parameters θ

It is instructive to begin with a simple, descriptive outlook on the demand system. Table 4

reports demand estimation results based on the simple logit model, which is obtained from the

demand model described in section 3.1 by setting all the σ coefficients to zero, so that consumer

heterogeneity is only allowed via the additive IID εijt term. Estimation is performed via linear

regressions following Berry (1994). The first column provides OLS estimates of the mean utility

parameters β, while the second column employs 2SLS to account for the endogeneity of price

using the instruments described in section 4.1 above.

These results demonstrate the importance of correcting for price endogeneity. While demand

is downward-sloping in both specifications, the price sensitivity coefficient is much larger (in

absolute value) in the IV case. The results suggest that households value CPU speed as well

as high-end CPU brands (the omitted CPU brand is Intel’s Celeron). The taste for portability

appears negative and insignificant, a point to which I return below. The negative sign on the

time trend reflects the fact that a fixed bundle of characteristics becomes obsolete over time, most

likely due to the emergence of advanced software applications which require better hardware.

37Imbens and Manski (2004) discuss an adjustment that accounts for the case where the length of the identified set is “small” such
that the estimators of the endpoints may cross due to sample variation. This case is assumed away in the current context, which
seems reasonable given the length of the estimated intervals reported in Table 8 below.
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Full-model (BLP) estimation results for θ. By contrast to the simple logit model, the

random-coefficient demand model described in section 3 allows for more realistic substitution

patterns (see the discussion in BLP), and captures consumer heterogeneity along important di-

mensions. Tables 5a-5b provide estimation results for θ obtained by following the BLP estimation

procedure. Table 5a reports the estimated coefficients on main PC characteristics, while Table 5b

reports estimated coefficients on a large number of dummy variables for PC vendors and brands.

Economic implications of these estimates are offered in Table 6. The estimated parameters in-

clude mean utility parameters (β), parameters which capture heterogeneity in household tastes

(σ), marginal cost parameters (γ), and the parameters of the distribution of price sensitivity.

The results in Table 5a reveal precise estimates of both the mean (α) and the variance (σp)

parameters of the log-normal price sensitivity. As in the simple logit results, households value

CPU speed, as well as CPU brands, and these effects are very precisely estimated. The mean taste

for laptop products is negative and imprecisely estimated, but significant heterogeneity in this

taste is captured by the precisely-estimated σ coefficient on the laptop dummy. Heterogeneity

along this dimension is to be expected.

As in the logit results, the negative β coefficient on the time trend implies that a fixed bundle

of characteristics is becoming obsolete over time. The random-coefficient model allows me to

precisely estimate, in addition, the degree of household heterogeneity in this important effect.

I return to this issue below in the discussion of the quantitative economic implications of the

estimated coefficients.

The marginal cost coefficients γ are all very precisely estimated and economically reasonable.

Producing a laptop is found to be 31.2% more expensive than producing a Desktop. Installing an

Intel Pentium 4 instead of a Celeron CPU drives PC marginal costs up by a similar magnitude

of 30.5%. The negative coefficient on the time trend implies that PC marginal costs fell at a rate

of 9% per quarter. This is consistent with the sharp decline in PC prices depicted in Figure 2.

Table 5b reports a large number of estimated coefficients on dummy variables for PC vendors

(e.g. Dell) and their various brands (e.g. Inspiron). Importantly, the coefficient on a given

vendor dummy captures the effect of brands of that vendor which were not included, and not an

“overall” vendor effect. Most of the effects are very precisely estimated. Controlling for brand

and vendor information is useful, as these should be strongly correlated with unobserved quality.

Moreover, had I not controlled for these brand effects, they would have showed up in the error

terms ej. This would have made it less reasonable to assume that firms do not observe these

errors until after they have committed to their configuration choices.38

Table 6 offers an insight into some important economic implications of the estimated coeffi-

38I do not, however, control for every brand, but rather for a large number of them.
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cients. Panel A of this table reports the willingness of the average household to pay for various

product characteristics. The average household is willing to pay up to �150.1 to upgrade from

CPU speed in the 2-2.99 GHz range to the next speed range, 3-3.99 GHz. It is also willing to

pay up to �171.5 for an upgrade from the Intel Celeron to the Intel Pentium 4 brand, and up to

�447.3 for an upgrade to Intel’s Pentium M.

These are considerable amounts, suggesting that CPU characteristics are important to the

average PC consumer. Recall also that an entire distribution of these figures was actually esti-

mated. One would expect some consumers (e.g., gamers, engineers) to be willing to pay much

more than the average consumer for a better CPU. Figure 3 plots the estimated distribution of

households’ willingness to pay for an upgrade from Intel’s Celeron to its Pentium M brand and

reveals significant heterogeneity along this dimension.

Households are also willing to pay considerable amounts for a familiar PC brand name. The

average household is willing to pay �107.8 to upgrade from a non-branded notebook computer

to Dell’s Inspiron brand, and �462.1 for IBM’s ThinkPad A series. These results indicate that

downstream PC makers possess powerful brand names, suggesting that their product choices

may have an important impact on welfare. This also suggests that it is important to take into

account both CPU and PC characteristics when modeling demand in this market.

An important aspect of PC demand is the pace at which households’ utility from a fixed

bundle of characteristics drops over time, as captured by the taste parameters associated with

the time trend. Table 6 reports that the average household is “willing to pay” a negative amount

of �(-257) for a passing of one year. This means that, holding everything else equal, the average

willingness to pay for fixed hardware drops by this amount every year, presumably since new

software applications require better hardware over time. A sizable household heterogeneity along

this dimension is displayed in Figure 4. Such heterogeneity is to be expected (for example, a

gamer’s utility from a fixed PC product may drop much faster than that of a basic user).

To summarize, the estimated demand parameters convey strong heterogeneity among house-

holds in terms of their willingness to pay for cutting-edge technology. This heterogeneity affects

both PC makers’ incentives to offer vertically-differentiated configurations, and the welfare im-

plications of such choices. Both these issues are investigated in Section 6 below.

Panel B provides some additional economic implications of the BLP estimates for θ. The

median markup for a PC manufacturer is �76.4, and the median price-cost margin (markup as

a percentage of price) is 7.8%. As expected, markups are positively and strongly correlated with

prices. Another intuitive finding is the positive correlation between the estimated demand and

marginal errors, ξj(θ̂) and ωj(θ̂).
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5.2 Estimation Results: Fixed Cost Parameters F d

Bounds on fixed cost parameters were estimated as explained in section 4.2 above. As described

there, this estimation involves computing the expected changes in variable profit associated with

single-product deviations from firms’ observed product portfolios.

I focus attention on the three major notebook producers: Dell, HP and Toshiba, and estimate

the mean fixed cost F d associated with notebook products of each of these firms. I include in this

procedure notebook product lines that mainly target the Home segment of the market. A total

of four such product lines are included (one from Dell, one from Toshiba, and two from HP).

These are also the four top-selling notebook brands, and the counterfactual analysis described

below focuses on the configurations offered with these four brands. Information from product

offerings in quarters 7 through 12 is used in the estimation of the F d parameters.39

A key step is the definition of the set H, i.e., the set of feasible CPU technologies which vendors

could offer with their product lines in the relevant quarter. This set defines the set Jd, i.e., the

set of firm d’s potential products. I include in this set Intel CPU technologies that satisfy the

following inclusion criteria: (i) the CPU technology must be offered by at least one of the four

leading brands mentioned above (ii) it must sell at least 10,000 units in the quarter, and (iii) it

must be offered by at least two firms. These criteria are designed to make sure that “marginal”

technologies (e.g. a CPU that Intel no longer offers to PC makers, but a small quantity of it may

still be in stock) are not included in this set. The sets H obtained by applying these criteria in

the various quarters are reported in Table 7.40

I report the estimation results for the mean-fixed cost parameters in Table 8. The table reports

estimated sets computed with and without an adjustment to the estimated support bounds of

variable profit differences, as explained in Appendix A.2. The adjustment widens the estimated

sets, but only in a modest fashion. The estimated sets (in � million) for the mean fixed costs

of a notebook configuration belonging to the included product lines of Dell and Toshiba appear

rather similar: [2.353, 4.559] and [2.555, 4.119], respectively. In contrast, the mean fixed costs

for HP’s included product lines appear lower, with an estimated set of [1.081, 2.795]. We cannot,

however, reject a null hypothesis according to which all these means of fixed costs are equal.

39Not using information from quarters 1 through 6 saves on computation time. It also avoids assuming that the mean fixed cost is
stable throughout the entire sample, and instead requires its stability in the second half of the sample only. The focus on the latter
part of the sample stems from the fact that the counterfactual analysis reported below, in which fixed cost estimates are utilized,
focuses on the last sample quarter, 2004Q2.

40A practical issue is that, as explained above, I exclude products that sold less than 100 units in a quarter from the sample due
to computational reasons, and I also consider such a product as “not offered” for the purpose of constructing bounds.
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6 Using the Estimated Model: Counterfactual Analysis

In this section I analyze the impact of Intel’s introduction of its Pentium M processor, which

is considered a major innovation in mobile computing. Section 6.1 provides background and

a description of the questions of interest. Section 6.2 describes the practical details of the

counterfactual experiment, and section 6.3 provides the results.

6.1 The Impact of Intel’s Pentium M: Background and Questions of Interest

Rather than offering a further increase in clock speed, Intel’s Pentium M chip introduced major

improvements in chip design that allowed chips to achieve top performance at modest clock

speeds. This resulted in a substantial reduction in power consumption and in longer notebook

battery life.41

Pentium M-based notebooks appear in the sample for the first time in the first quarter of 2003

(see Table 3b). The goal of my analysis is to answer the following questions: (1) what was the

impact of the Pentium M’s presence on product choices and prices in the notebook segment? (2)

what was the impact of this innovation on various consumer types? and (3) did the Pentium M

crowd out PC configurations based on older technologies, and, if so, was the elimination of such

technologies socially efficient?

The introduction of the Pentium M was accompanied by a gradual exit of older Intel mobile

CPUs such as the Pentium III. In the last sample period, i.e., the second quarter of 2004, only

2% of notebooks sold were Pentium III-based.42 Among the five top-selling notebook product

lines (i.e., notebook brands) in that quarter, only one recorded positive sales of a Pentium

III-based configuration.43 In the quarter immediately preceding the Pentium M’s introduction,

however, Pentium-III based notebooks enjoyed a market share of 14.1%, and were offered by the

two top-selling brands. While this could suggest that the Pentium M played a key role in the

elimination of the Pentium III, a more careful analysis is required in order to isolate the effect

of the Pentium M’s presence from the many other forces that operated in the market between

2003Q1 and 2004Q2.

Importantly, the Pentium M’s market share in the notebook segment reached 31.8% by 2004Q2.

This makes its analysis interesting at that point in time; an earlier analysis, at a point when this

chip was making more modest sales, would have been of limited interest.

41“Bigger Notebooks Still Using Older Mobile Chips”, Tom Krazit, IDG News Service, September 28, 2004.
42Excluding Apple products, PCs with CPUs not made by Intel or AMD, and products with negligible sales.
43That configuration had very small sales, and it is possible that it recorded positive sales simply because a small remaining stock

was cleared.
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6.2 Description of the Counterfactual Analysis

To identify the effect of the Pentium M on product offerings and prices in the PC market, I

perform the following counterfactual analysis for the 2004Q2 period: I remove the Pentium M

chips from the set H of CPU technologies available for installation. Then, I use the estimated

model to compute the set of PC configurations, and PC prices, that would have prevailed in the

market in the absence of the Pentium M. Comparing these predictions to the outcomes in the

observed equilibrium provides a measure of the Pentium M’s effect.44

Since I am especially interested in the effect of the Pentium M on the Pentium III, I include

in the set H a Pentium III option with speed in the 1.5-1.99 GHz range.45 This allows me

to ask how many Pentium III-based PC configurations would have been offered in the absence

of the Pentium M. Certain restrictions are imposed on the analysis to overcome the associated

computational burden, and they are described below.

Computing “potential equilibria”. We are interested in the set of SPNE outcomes of the

two-stage game under the “no Pentium M” scenario. No equilibrium selection mechanism is

imposed. Instead, I would like to compute the set of counterfactual equilibria, and use this set to

place bounds on welfare predictions. What I actually compute, however, is the set of outcomes

that cannot be ruled out as equilibria of the game. The reason for this approach is the partial

identification of the fixed costs, which implies that it is not always possible to unambiguously

rule out a particular outcome as an equilibrium.

Recall that Ad was used to denote a vector of binary indicators describing the observed product

choices of firm d ∈ D. I will now use this notation more generally to describe product choices by

firm d (not necessarily the observed ones). Let A = {Ad}d∈D be a long vector which describes

product choices by all firms, and let A be the set of all such vectors. The set A has 2|A| elements.

I define the subset Ae ⊆ A as the collection of product choice vectors that can be supported in

an SPNE of the two-stage game.

In order for a vector A to be an element of Ae, it must be the case that no firm has a

unilateral, profitable deviation from A. Fixed costs, however, are only partially-identified, and

so is the profitability of deviations. As a consequence, it may not be possible to unambiguously

determine whether A ∈ Ae. To deal with this issue, I define a set Ape ⊇ Ae which contains all

elements A ∈ A that cannot be unambiguously ruled out as elements of Ae. Once the set Ape is

computed, I can compute welfare measures at each of its elements, and use this information to

place bounds on the counterfactual welfare predictions.

44As explained below, I compare expected outcomes (i.e. expectations over the distribution of the error terms e) given the
counterfactual and observed sets of products.

45This is the fastest Pentium III chip observed in a mobile PC in the sample. It was actually offered in a handful of PC product
lines only.
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Computation of the set Ape, which I refer to as the set of “potential equilibria,” is a very

difficult computational task: in principle, one has to check for necessarily-profitable deviations

from each of the 2|A| vectors in A. This requires evaluating expected variable profits at the vector

examined, and at each of the possible deviations, with each such evaluation being expensive: as in

the estimation of fixed costs described above, expected variable profits are simulated by drawing

from the distribution of the error terms e, computing a price equilibrium and variable profits

at each such draw, and averaging over the simulated draws. For this reason I impose several

restrictions on the analysis.

First, I focus the analysis on configuration choices by the four top-selling notebook brands

in 2004Q2. This means that I only allow product configuration choices that pertain to these

notebook brands to vary in the experiment. I refer to these as the “participating” brands. At

the same time, all PC products (notebooks and desktops) are included in the experiment and

their prices are treated as endogenous.

Second, I restrict the set H of potential configurations by requiring that firms offer Pentium

4 configurations in the speed ranges 1.5-1.99 and 2-2.99 GHz. In the observed equilibrium, all

the participating brands offer these configurations. Fixing these choices allows me to reduce

the computational burden while still treating as endogenous the most interesting choices: those

which pertain to offering low-end configurations such as the Pentium III or the Celeron, and to

offering Pentium 4 chips with speed range above 3 GHz. The latter technology can be viewed as

a competitor of the Pentium M in the high-end segment of the market.46

These restrictions imply that the set of CPU technologies over which firms make endogenous

choices in this experiment (i.e., over which the choices are not fixed) is:{
P3 1.5 1.99, C 1.5 1.99, C 2 2.99, P4 3 3.99

}
With these four CPU technologies, and the four participating notebook brands, we have that

|A| = 16, that is, 16 product choices are treated as endogenous. I reduce this number to 9

by imposing that firms must make a single “Celeron” choice (i.e., they can either offer both

of the Celeron configurations, or none), and that HP, that owns two of the four participating

brands, must make the same configuration choices for both its brands. This leaves me with

the task of evaluating 29 = 512 vectors as candidates for inclusion in the set Ape of potential

equilibria. Additional details on computation, including a complete description of the algorithm,

are available in Appendix B. Specifically, I explain there how a “strategic substitutes” conjecture

helps reduce the computational burden by making it possible to a-priori rule out some product-

choice vectors as potential equilibria.

46The Pentium M emerged as the winning technology since improving the performance of the Pentium 4 required increasing amounts
of power consumption.
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6.3 The Impact of the Pentium M: Results

As explained above, the counterfactual experiment evaluates the impact of the presence of Intel’s

Pentium M in 2004Q2 by comparing outcomes in the observed equilibrium to counterfactual

predictions for a hypothetical “no Pentium M” scenario. Since firms make product choices prior

to observing the realizations of the demand and marginal cost errors e, I evaluate the welfare

measures in both the counterfactual scenario, and in the observed equilibrium, as simulated

expectations over the distribution of e.47 I answer, in turn, the three questions stated above:

what was the Pentium M’s impact on product choices and prices? What was its impact on

various consumer types? and finally, did it prompt inefficient product elimination?

1. The Pentium M’s impact on product offerings and prices. Table 9 reports the impact

of the presence of the Pentium M on expected 2004Q2 outcomes. Given the set of products in

the observed equilibrium, the expected total notebook sales are 1.707 million. In the absence

of the Pentium M, these sales are between 1.379 and 1.614 million.48 This suggests that the

Pentium M increases the expected total notebook sales by 5.8% to 23.8%. Some of this growth

comes at the expense of expected Desktop sales, which are depressed by 0.9% to 3.1%. The

expected sales-weighted average notebook price is between �829 and �872 in the absence of the

Pentium M, compared to �905 in its presence. These findings suggest that the Pentium M made

a significant contribution to the growth of the mobile market segment.

Table 9 continues to report the Pentium M’s impact on the product configurations offered by

the four top-selling notebook product lines. In the presence of the Pentium M, none of these

brands offered Pentium III configurations with speed in the 1.5-1.99 GHz range. In contrast, in

the absence of the Pentium M, between one and four of these brands would have offered such a

configuration. The Pentium M also crowds out configurations based on Intel’s Pentium 4 in the

3-3.99 GHz range. The prediction for the Celeron-based products is ambiguous: some potential

equilibria imply that they were crowded out, while others imply the opposite.

The bottom panel of Table 9 reports that the presence of the Pentium M reduces the total

expected share of the Pentium III in the notebook segment from 15.6%-23.9% to merely 7.7%,

suggesting that the Pentium M played a key role in eliminating the Pentium III technology.49

2. The Pentium M’s impact on various consumer types. Table 10 reports the impact

47To be clear, after computing the set of potential equilibria in the hypothetical scenario as explained in section 6.2 above, I
compute welfare measures at each such outcome, and then use these measures to place bounds on the welfare outcomes that would
have obtained had the Pentium M been absent from the market. These outcomes are then compared to the welfare outcomes which
obtain given the observed sample, i.e., in the presence of the Pentium M. All the compared quantities are computed in terms of
expectations over the distribution of the e error terms.

48To be clear, these values represent the highest and lowest values recorded over the set of potential equilibria Ape.
49These shares pertain to all Pentium III chips, and not just those at the 1.5-1.99 GHz range.
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of Intel’s Pentium M on the expected consumer surplus. With the observed set of products, the

expected total consumer surplus is �1.21 billion, whereas in the absence of the Pentium M, it is

between �1.14 billion and �1.18 billion. The expected consumer surplus is, therefore, boosted

by 3.18% to 6.29% as a consequence of the Pentium M’s presence.

The table continues to report a breakdown of the expected benefits from the Pentium M’s

presence that accrue to various consumer segments. That is, the impact on the total expected

surplus for quantiles of consumer price sensitivity is reported. The benefits from innovation are

not evenly distributed among different consumer types, with the vast majority of the benefits

garnered by the 20% least price sensitive consumers. The impact on other groups of consumers is

much smaller. Innovation may affect price-sensitive consumers via two channels: while they are

hurt by the elimination of basic technologies, they are also helped by the innovation’s competitive

pressure on the prices of surviving technologies.

3. Was the elimination of older technologies efficient? Having established that the

Pentium M played a key role in the crowding out of older technologies, we may ask if it was

actually efficient for such technologies to leave the market. To investigate whether the absence

of the Pentium III from the product lines of the major notebook producers in 2004Q2 reflected

a market failure, I consider a hypothetical action by a social planner: adding to the market

Pentium III-based configurations (with 1.5-1.99 GHz) of the four top-selling notebook brands.

Similarly, I also calculate the impact of adding Pentium 4 configurations in the 3-3.99 GHz

speed range (since one of the four brands had such a configuration in the observed sample, such

configurations were added to the other three brands).

The results of this analysis are presented in Table 11. Adding the Pentium III-based notebooks

to the market increases the total expected consumer surplus by �9.368 million, or by 0.77%. It

also increases total producer variable profit by �2.802 million. On the other hand, producers (and

hence society) would have also incurred additional fixed costs ranging between �7.071 million

and �14.267 million.50

Defining welfare as the sum of consumer and producer surplus, the total expected impact

on welfare ranges between a negative effect of �(-2.097) million, and a positive effect of �5.099

million. Since the lower bound is negative, we cannot affirmatively conclude that the absence of

the Pentium III-based notebooks reflects a market failure. While the positive upper bound does

suggest a potential inefficiency, the scope of the lost welfare appears modest.

Table 11 also reports that performing the same analysis for fast Pentium 4 chips yields sim-

ilar findings: adding such configurations increases the expected totals of consumer surplus and

variable profits, but does not necessarily increase the expected total welfare. A key difference

50Evaluated using the boundaries of the estimated set for the relevant firms’ mean fixed costs.
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between adding Pentium III and Pentium 4 based products, however, pertains to the distribution

of benefits to consumers: The benefits from adding Pentium 4-based configurations are almost

exclusively garnered by the 20% least price-sensitive consumers, whereas adding Pentium III

configurations benefits additional consumer segments in a more pronounced fashion.

In sum, adding the eliminated technologies back to the market could have improved consumer

welfare. Specifically, adding back the Pentium III technology can be beneficial to consumers who

are more price-sensitive than the group that enjoys the short-run benefits of innovation. Defining

total welfare as the sum of consumer and producer surplus, however, means that these benefits

would be largely offset by the impact on producer profits.

7 Concluding Remarks

This paper asks whether CPU innovation leads to an inefficient elimination of existing PC prod-

ucts. To address this question, I estimate a model in which PC makers endogenously choose

which CPU options to offer with their PC product lines. I relax strong assumptions which guar-

antee a unique equilibrium outcome, and exploit necessary equilibrium conditions to tackle the

resulting partial identification of fixed costs. The analysis provides identified sets for fixed cost

parameters that take a simple form: intervals which endpoints are defined by means of random

variables. As a consequence, I am able to employ rather simple techniques to perform inference

on the partially-identified parameters.

I provide a rich analysis of PC product variety by allowing for a large product space, and

develop techniques that alleviate the burden associated with predicting counterfactual outcomes.

A major challenge that arises in this framework is sample selection, which could potentially

impact both the point-estimators of variable profit parameters, and the set-estimators of fixed

cost parameters. Both issues are addressed to ensure consistent estimation.

I find strong evidence for consumer heterogeneity along key dimensions such as price sensitivity.

Using the estimated model in counterfactual analysis, I find that Intel’s introduction of its

Pentium M chip contributed significantly to the growth of the mobile segment of the PC market,

and to total consumer surplus, while crowding out older technologies. The scope for inefficient

product elimination appears to be very limited. I also find that the lion’s share of the short-run

effect of innovation is enjoyed by the 20% least price-sensitive consumers, while other consumer

segments are largely unaffected. Importantly, however, I do not account for long-term benefits

such as complementary software innovations, and some of these benefits are likely to be enjoyed

by price-sensitive consumers.

A couple of interesting issues are left for future research. While I do not impose an equilib-

rium selection mechanism, my framework could be used to investigate it. Ciliberto and Tamer

26



(2009) test (and reject) the hypothesis that firms coordinate on the equilibrium outcome which

maximizes total industry profits in their study of the airline industry. An interesting exercise in

the current framework could be to compute the set of potential equilibria in a given quarter, and

then ask what was special about the equilibrium that was actually played by firms.

An important aspect of CPU innovation is that it fosters complementary innovation in soft-

ware and hardware. Such complementary innovation prompts households to use more advanced

applications, which, in turn, increases the demand for advanced CPUs. A quantitative, dynamic

analysis of this “positive feedback loop” is likely to improve our understanding of the singular

contribution of CPU innovations to growth in the 21st century economy.
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A Estimation Details

A.1 Estimation Details for the Variable Profit Parameters θ

Estimating θ following the BLP method requires one to compute the errors ej(θ) = (ξj(θ), ωj(θ))
′

for any generic value of the parameter θ. The integral in (3) is approximated via simulation;

I draw the vi household-specific taste shifters for ns = 3000 households. To reduce the error

induced by simulation, I use antithetic draws.51 I then obtain the market share predicted by the

model for product j (quarter indices suppressed) as follows:

sj(x, p, δ, Pns; θ2) =
1

ns

ns∑
i=1

exp(δj + µij)

1 +
∑

m∈J exp(δm + µim)
(15)

where Pns is the distribution of the simulation draws. The market share equation, which should

hold exactly at θ0, is given in vector form:

s(x, p, δ, Pns; θ2) = S (16)

where S denotes observed market shares. Given a fixed value for θ2, we invert this equation to

retrieve a vector of mean utility levels, δ(θ2), using the BLP contraction mapping:

δh+1 = δh + ln(S)− ln[s(x, p, δh, Pns; θ2)] (17)

The vector of demand-side unobservables ξ can now be computed by:

ξ(θd) = δ(θ2)− xβ (18)

where x is a covariate matrix for the products observed in the sample. Marginal cost unobserv-

ables are computed from (7):

ω(θ) = log[p− (T ∗∆(θ2))−1s]− xγ (19)

Next, I define the GMM objective function. Recall that zj(X) is a 1× L vector, and define:

Zj =

[
zj 0

0 zj

]
2×2L

, gj(θ) = Z ′jej(θ)

Letting N denote the total number of products in the sample, the objective function is given by:

51See Train (2003). Antithetic draws are used in Goeree’s (2008) analysis.
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QN(θ) =

[ N∑
j=1

gj(θ)

]′
Φ−1

[ N∑
j=1

gj(θ)

]
(20)

where Φ−1 is a 2L × 2L PD weight matrix. The initial choice for this matrix is [
∑N

j=1 Z
′
jZj]

−1.

With an initial estimate for θ at hand, denoted θ̂1, I estimate the optimal weight matrix by

[
∑N

j=1 gj(θ̂
1)gj(θ̂

1)′]−1. Re-estimating θ using the updated matrix yields the estimates reported

in Tables 5a-5b.

A.2 Estimation Details for the Fixed Cost Parameters Fd

Computing the values Lj(θ̂) and Uj(θ̂) requires estimating the following quantities: F j(θ0) for

all j ∈ A0
d and F j(θ0) for all j ∈ A1

d, as well as the support bounds V L
d (θ0) and V U

d (θ0) of such

expected changes in variable profits. The upper bounds F j(θ0) for all j ∈ A1
d are estimated

as follows: the BLP estimate θ̂ implies empirical values ej(θ̂) for all the products observed in

the sample, a total of 2,287 (see Appendix A.1). From this empirical distribution, I draw 1000

vectors of error terms e for all the potential products j ∈ J in the relevant quarter. Recalling

that e = (ξ, ω), I am effectively drawing from the joint distribution of the shocks to demand and

marginal cost, which reflects their positive correlation.

At each such simulated error vector, I compute price equilibria under (Ad) and (Ad − 1jd)

(i.e., with and without product j), and compute the decrease in variable profit associated with

eliminating product j that appears in (10).52 Averaging over these simulated decreases in variable

profit yields the estimate of F j(θ0), denoted F j(θ̂). An analogous procedure yields estimates for

F j(θ0) for all j ∈ A0
d, by simulating the expected increase in variable profit associated with

adding product j to the firm’s portfolio from (11). Such estimates are denoted by F j(θ̂).
53

Estimating the support bounds. We can now collect all the estimated F j(θ̂) and F j(θ̂) in

a vector Vd, which jth element is given by:

Vd(j) =

F j(θ̂), j ∈ A1
d

F j(θ̂), j ∈ A0
d

A natural estimator for V L
d (θ0) is given by minj∈Jd

{
Vd(j)

}
, and an estimator for V U

d (θ0) is

given by maxj∈Jd

{
Vd(j)

}
. Such estimators, however, are likely to suffer from finite-sample bias.

A simple method of correcting this bias is discussed in Hall and Park (2002). Consider a

52Price equilibria are simulated by iterating on the first-order conditions (7) until convergence, which typically takes a few seconds
of computation time.

53A feature of this procedure is that the empirical distribution of the error terms includes some favorable values (e.g., high utility
shocks). Since profits are non-linear functions of these error terms, the simulations can overstate products’ variable profit potential.
I performed several robustness checks (e.g. setting the errors to zero or imposing a finite-support condition on the joint distribution
of the mean utility and marginal cost), and found that the qualitative findings of the paper are robust to this issue.
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random sample (X1, ...Xn) from the distribution of the random variable X, and order it as

X(1), ...X(n) where X(k) > X(k−1) for each k ∈ {2, ..., n}. A downward-biased estimator of the

upper bound of the support of X is X(n). The following correction for this estimator is suggested:

X(n) +

∑m
i=1(X(n−i+1) −X(n−i))K(i/m)∑m

i=1K(i/m)

where K(·) is a Kernel function.54 Using m = n2/3 provides a rate of convergence of n−1/3. The

results section below reports estimated sets for the fixed cost parameters F d with and without

such adjustment for finite-sample biases in the estimation of support boundaries. Reassuringly,

the impact of such adjustments on the estimated intervals is not large.

A second source of bias we may expect has to do with the fact that we do not observe realiza-

tions of the actual random variable in which we are interested (that is, variable profit differences),

but rather estimates of such quantities that contain sampling error. Estimates of the maximum

(minimum) of such quantities suffer from an upward (downward) bias as discussed in Haile and

Tamer (2003). However, this is an “outward” bias that does not invalidate the procedure, since

all that is required is that the true quantities are contained within the boundaries. This second

source of bias does imply, however, that the estimates of the bounds on F d would be conservative

in the finite sample.

Finally, note that the estimation approach for the fixed costs parameters is based on the sample

average being a consistent, asymptotically-normal estimator of the mean, which is guaranteed

for IID sequences. We can allow for dependence among the Lj variables for j = 1, ..., nd given

conditions which, heuristically, imply that the dependence decays at a fast-enough rate as ob-

servations become further apart from each other. For brevity, I focus the discussion on the Lj

variables, but it is understood that the same conditions need to be satisfied by the Uj variables

as well.

Following Lehmann (1999) (p. 60), consistency of the set estimator [`
d

n(θ̂), udn(θ̂)] is retained

with dependent variables if the variables Lj have finite second moments and satisfy

nd∑
i=1

nd∑
j 6=i

Cov(Li, Lj) = o
(
(nd)2

)
The asymptotic normality of the sample average `

d

n(θ̂) (and udn(θ̂)) is also retained with depen-

dent variables if appropriate conditions are satisfied. In particular, the confidence interval in (14)

would be valid with the following: (i) the variables Lj, j = 1, ..., nd have finite third moments

and are m-dependent.55 (ii) limp→∞(1/p)
∑p

h=1Ai+h = A exists, uniformly for all i = 0, 1, ...

54I set K(u) = (15/16)(1− u2)2I(|u| ≤ 1), as in the simulations performed by Hall and Park.
55This requires that for some positive integer m, s− r > m implies that the sets (L1, L2..., Lr), (Ls, Ls+1..., Lnd ) are independent.
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with Ai = var(Li+m) + 2
∑m

j=1 Cov(Li+m−j, Li+m). (iii) S`(θ̂) is a consistent estimator of
√
A.56

A HAC covariance matrix estimator can be used to estimate the covariance terms that adjust

the confidence interval for dependence. The intervals reported in this paper are not adjusted for

dependence in this manner. They also need to be adjusted to account for the variance in the

estimation of θ, as well as for the error due to the simulation of expected variable profits. These

adjustments can be performed using a computationally-expensive bootstrap approach. As the

results sections below indicate, performing this procedure would not change the findings of the

paper: it is sufficient to examine the estimated set of fixed costs to notice that one cannot reject

the null hypothesis which argues that the elimination of basic product configurations is efficient.

Using the confidence interval instead of the estimated set, whether adjusted or not, would not

change this.

B Computing Counterfactual Potential Equilibria: The Algorithm

For the purposes of the counterfactual analysis, I set the structural errors νj in the specification

for fixed costs to zero, which amounts to imposing that the firm’s fixed costs are the same for

each of its products. This identical per-configuration fixed cost is assumed to lie in the estimated

interval for F d, the firm’s mean fixed cost, reported in Table 8 and discussed above. For example,

Dell’s per-configuration fixed cost is assumed to be between �2.353 million and �4.559 million.

I denote this estimated interval by Cd.
57

Evaluating a product-choice vector A to determine whether it is a potential equilibrium (i.e.,

a member of Ape) requires computing, for each firm, an interval of its per-configuration fixed

cost under which it does not have a profitable deviation from A. Denote this interval, pertaining

to firm d, by IAd . If, for each firm d making endogenous product choices, this interval has a

non-empty intersection with the estimated interval of its fixed costs, Cd, the vector A cannot

be ruled out as supporting an equilibrium, and is deemed an element of Ape. Also note that IAd
itself may be empty, in which case A is clearly ruled out as a potential equilibrium.

Computing the interval IAd tends to be rather expensive, and, in many cases, unnecessary, since

one can often quickly verify that a necessarily-profitable deviation exists. For that reason, the

actual algorithm used to compute the set of potential equilibria Ape has the following three steps:

1. For each vector A ∈ A, check whether any firm has a necessarily-profitable single-product

deviation from A.
56This follows immediately from Theorem 1 in Hoeffding and Robbins (1948).
57Another potential approach could be to allow firm d’s per-configuration fixed costs to fluctuate about the mean Fd as suggested

by the model, and perform the counterfactual analysis by repeatedly drawing from the distribution of these fixed costs. But since Fd

is only partially-identified, it is not clear how to draw from the distribution.
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2. For each of the vectors that were not ruled out in step 1, check whether any firm has a

necessarily-profitable multi-product deviation.

3. For each vector A that survived step 2, compute IAd for each firm d. If, for every firm d,

IAd ∩Cd 6= ∅, determine that A ∈ Ape.

Given that steps 1 and 2 already examined each possible deviation and did not find any of

them to be necessarily-profitable, step 3 may seem redundant. However, it is possible that firm

d’s per-product fixed costs must lie in some interval, denoted I1, to prevent one deviation from

being necessarily profitable, and must also be inside some other interval, I2, to guarantee that

another deviation is not necessarily profitable. Suppose that both I1 and I2 have non-empty

intersections with Cd, but that I1∩ I2 = ∅. In this case, even though neither of these deviations

is necessarily profitable individually, one of them must be profitable. Due to this subtle point,

step 3 is necessary. Note that we could perform step 3 only - however, as explained above,

performing steps 1 and 2 first saves computation time.

I was able to reduce the computational burden (specifically, the number of vectors that need

to be evaluated to determine whether they qualify as potential equilibria) by application of the

following conjecture:

Conjecture 1. (Strategic Substitutes): The increase in firm d’s variable profit from adding a

product configuration at A = (Ad, A−d) is at least as large as at (Ad, A
∗
−d) where A∗−d ≥ A−d

where A−d denotes product choices by firm d’s competitors, and A∗−d ≥ A−d implies element-

by-element inequality. Conjecture 1 is very intuitive: it suggests that the benefit from adding a

product configuration is lower when the firm faces more competing products.58 The usefulness

of this conjecture is in that, once a certain deviation is found to be necessarily profitable (un-

profitable) at some vector A, it can be automatically considered to be profitable (unprofitable)

at many other vectors. This made it possible to avoid a direct computation of expected variable

profits in about 9% of the 512 vectors in A. In an earlier draft of this paper, which allowed for a

much larger space of potential outcomes (but saved on computation time with a “shortcut” that

set the error terms to zero, rather than repeatedly drawing from their estimated distribution as

performed in this version), this conjecture allowed me to evaluate 16, 384 vectors rather than

224 = 16, 777, 216 - an immesne reduction in computation time.

58This conjecture is difficult to prove. I did, however, test it directly in more than 20,000 simulations, and found that it was
validated in each of them.
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C Tables and Figures

Table 1: Top Vendors’ Market Shares, US Home PC Market

Year 1 Year 2 Year 3

Vendor Share Vendor Share Vendor Share

Dell 0.190 Dell 0.263 Dell 0.279
HP∗ 0.185 HP 0.234 HP 0.258
Compaq∗ 0.092 eMachines 0.076 eMachines∗ 0.070
Gateway 0.091 Gateway 0.070 Gateway∗ 0.053
eMachines 0.060 Toshiba 0.042 Toshiba 0.043

Top 5 vendors 0.618 Top 5 vendors 0.685 Top 5 vendors 0.704

Years: 01Q3-02Q2, 02Q3-03Q2, 03Q3-04Q2. *Compaq and HP merge in Year 1, eMachines and Gateway merge in Year 3.

Table 2: CPU Vendor Shares

Vendor Market Shares
Year 1 Year 2 Year 3

Intel 0.71843 0.72246 0.74496
AMD 0.24429 0.23643 0.22032
IBM 0.03230 0.03450 0.03048
Others 0.00477 0.00524 0.00323
Transmeta 0.00022 0.00135 0.00097
Via 0.00000 0.00002 0.00005

Years: 01Q3-02Q2, 02Q3-03Q2, 03Q3-04Q2, U.S. Home market.
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Table 3a: Adoption Rates of CPU Technologies by Desktop Product Lines

Quarter C 0.5-0.99 C 1-1.49 C 1.5-1.99 C 2-2.99 P3 0.5-0.99
2001Q3 0.89 0.00 0.00 0.00 0.93
2001Q4 0.46 0.42 0.00 0.00 0.46
2002Q1 0.35 0.58 0.00 0.00 0.31
2002Q2 0.13 0.57 0.00 0.00 0.17
2002Q3 0.09 0.39 0.48 0.13 0.13
2002Q4 0.07 0.04 0.44 0.41 0.11
2003Q1 0.04 0.04 0.41 0.41 0.04
2003Q2 0.04 0.04 0.37 0.41 0.04
2003Q3 0.04 0.04 0.24 0.48 0.04
2003Q4 0.04 0.04 0.20 0.52 0.04
2004Q1 0.00 0.04 0.15 0.54 0.00
2004Q2 0.00 0.00 0.17 0.54 0.00

Quarter P3 1-1.49 P4 1-1.49 P4 1.5-1.99 P4 2-2.99 P4 3-3.99
2001Q3 0.67 0.48 0.26 0.00 0.00
2001Q4 0.50 0.65 0.65 0.12 0.00
2002Q1 0.31 0.58 0.73 0.50 0.00
2002Q2 0.13 0.43 0.70 0.65 0.00
2002Q3 0.13 0.26 0.74 0.70 0.00
2002Q4 0.04 0.11 0.37 0.81 0.00
2003Q1 0.00 0.11 0.44 0.81 0.15
2003Q2 0.00 0.11 0.44 0.81 0.15
2003Q3 0.00 0.08 0.28 0.92 0.60
2003Q4 0.00 0.12 0.28 0.92 0.60
2004Q1 0.00 0.08 0.19 0.92 0.65
2004Q2 0.00 0.08 0.17 0.92 0.63

Home market, Intel technologies. Excluding vendors identified as “Others”, Apple products, and products with sales smaller than
100 units in a quarter. C=Celeron, P3=Pentium III, and P4=Pentium 4. P3 0.5-0.99=Pentium III with speed between 0.5-0.99 GHz.

Table 3b: Adoption Rates of CPU Technologies by Portable Product Lines

Quarter C 0.5-0.99 C 1-1.49 C 1.5-1.99 C 2-2.99 P3 0.5-0.99 P3 1-1.49
2001Q3 0.81 0.00 0.00 0.00 1.00 0.15
2001Q4 0.59 0.21 0.00 0.00 0.79 0.72
2002Q1 0.36 0.25 0.00 0.00 0.64 0.86
2002Q2 0.12 0.31 0.00 0.00 0.54 0.62
2002Q3 0.11 0.21 0.07 0.00 0.18 0.64
2002Q4 0.10 0.03 0.23 0.10 0.16 0.42
2003Q1 0.03 0.06 0.26 0.13 0.19 0.39
2003Q2 0.03 0.03 0.21 0.12 0.15 0.42
2003Q3 0.03 0.00 0.25 0.13 0.16 0.34
2003Q4 0.03 0.03 0.22 0.13 0.13 0.28
2004Q1 0.00 0.03 0.18 0.18 0.03 0.18
2004Q2 0.00 0.03 0.19 0.19 0.03 0.19

Quarter P4 1-1.49 P4 1.5-1.99 P4 2-2.99 P4 3-3.99 Pm 1-1.49 Pm 1.5-1.99
2001Q3 0.00 0.00 0.00 0.00 0.00 0.00
2001Q4 0.00 0.00 0.00 0.00 0.00 0.00
2002Q1 0.07 0.18 0.00 0.00 0.00 0.00
2002Q2 0.19 0.38 0.00 0.00 0.00 0.00
2002Q3 0.14 0.46 0.32 0.00 0.00 0.00
2002Q4 0.10 0.52 0.58 0.00 0.00 0.00
2003Q1 0.13 0.52 0.58 0.00 0.10 0.06
2003Q2 0.12 0.48 0.55 0.00 0.09 0.09
2003Q3 0.09 0.53 0.59 0.06 0.22 0.19
2003Q4 0.13 0.50 0.50 0.09 0.31 0.25
2004Q1 0.12 0.42 0.52 0.12 0.21 0.48
2004Q2 0.06 0.44 0.50 0.13 0.28 0.56

See notes for Table 3a. Pm stands for Intel’s Pentium M brand. CPU technologies with very small installation rates excluded.
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Table 4: Descriptive Results, logit Demand

β Logit OLS Logit IV

Price (00$) -0.0395*** -0.157**
(0.0135) (0.0649)

Laptop dummy -0.616*** -0.298
(0.0999) (0.199)

Trend -0.0398** -0.138**
(0.0171) (0.0567)

CPU Speed Range Dummies

1-1.49 GHz 0.200* 0.385**
(0.107) (0.152)

1.5-1.99 GHz 0.383*** 0.660***
(0.138) (0.208)

2-2.99 GHz 0.752*** 1.223***
(0.156) (0.303)

3-3.99 GHz 0.779*** 1.586***
(0.253) (0.508)

CPU Brand Dummies

AMD Duron 0.694*** 0.544**
(0.208) (0.254)

AMD Athlon 0.691*** 0.695***
(0.115) (0.133)

Intel Pentium III 0.227** 0.507***
(0.116) (0.189)

Intel Pentium 4 0.359*** 0.629***
(0.103) (0.176)

Intel Pentium M 0.724*** 1.554***
(0.215) (0.489)

Constant -10.66*** -9.441***
(0.183) (0.699)

Observations 2287 2287

R-squared 0.491 0.473

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. Dummy variables for PC vendors and brands included.
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Table 5a: BLP Estimates for θ, Main PC Characteristics

β SE σ SE γ SE

Constant 4.479 3.108 1.546 1.933 6.759 0.020

Laptop Dummy -0.690 1.158 3.785 0.518 0.312 0.013

Trend -1.444 0.263 0.430 0.081 -0.090 0.002

CPU Speed Range Dummies

1-1.49 GHz 2.390 0.386 0.156 0.013

1.5-1.99 GHz 3.621 0.521 0.232 0.016

2-2.99 GHz 6.212 0.809 0.412 0.017

3-3.99 GHz 9.584 1.374 0.709 0.030

CPU Brand Dummies

AMD Duron -0.915 0.443 -0.120 0.023

AMD Athlon 0.912 0.217 0.031 0.013

Intel Pentium III 3.517 0.484 0.272 0.014

Intel Pentium 4 3.855 0.487 0.305 0.010

Intel Pentium M 10.051 1.361 0.741 0.032

Price sensitivity α SE σp SE

0.810 0.179 0.301 0.060

Obs: 2287. Dummies for PC vendors and brands included, reported in 5b. Standard errors do not take into account simulation error,
which is mitigated via antithetic draws.
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Table 5b: BLP Estimates for θ, PC Vendor & Brand Dummies

β SE γ SE

Dell 12.332 2.603 0.774 0.062
dimension -10.426 2.813 -0.915 0.065
inspiron -9.908 2.732 -0.838 0.064
latitude -7.529 2.137 -0.488 0.071
optiplex -13.509 2.819 -0.903 0.064

HP -0.976 0.334 -0.049 0.021
evoipaq -1.651 0.519 -0.174 0.030
media 7.568 0.870 0.424 0.029
pavilion 2.625 0.385 -0.015 0.024
presario 2.593 0.355 0.026 0.020
cmpq notebook 1.841 0.653 0.175 0.033
cmpq ultprtbl 10.945 2.221 0.741 0.080

Gateway 0.309 0.399 0.068 0.025
gateway3 -2.619 0.730 -0.408 0.035
gateway5 1.755 0.865 -0.030 0.048
gateway7 2.159 0.690 0.077 0.035
essential 2.124 0.458 -0.098 0.030
performance 1.751 0.530 0.039 0.034
media 4.960 0.828 0.365 0.035
gateway4 -1.320 0.510 -0.139 0.031
gateway6 4.725 1.077 0.173 0.051
solo 0.185 0.868 -0.106 0.050

eMachines 0.389 0.602 -0.325 0.050
Toshiba 7.933 1.684 0.479 0.050

portege 0.593 1.018 0.093 0.059
port tablet 2.855 1.303 0.218 0.085
satellite -5.405 1.752 -0.517 0.055
satpro -2.628 1.141 -0.132 0.053

Sony 5.684 0.821 0.306 0.037
vaio ds -3.909 0.871 -0.265 0.043
vaio r 0.500 0.824 0.205 0.052
vaio w 3.163 0.979 0.283 0.059
vaio 505 1.288 0.963 -0.007 0.061
vaio fx 0.951 0.734 0.053 0.053

IBM 2.037 1.217 0.208 0.083
netvista -3.868 1.307 -0.244 0.087
thinkCentre 0.419 1.301 0.040 0.095
thinkpadA 8.348 2.084 0.452 0.097
thinkpadT 1.253 1.366 -0.016 0.092
thinkpadR -3.304 1.291 -0.233 0.085

Acer veriton -2.120 0.382 -0.120 0.016
Averatec 1.131 0.688 -0.034 0.048
Fujitsu -1.090 0.354 -0.018 0.023
MicroElectronics -1.585 0.236 -0.009 0.017

See notes for Table 5a. Bold-type entries represent a vendor dummy, followed by dummy variables for that vendor’s brands. The
coefficients on vendors (e.g. Dell) do not capture an “overall” vendor effect, but rather the effect of brands of that vendor that were
not included.
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Table 6: Economic Implications of BLP Estimates

A. Willingness to pay
Average Consumer WTP (�)

1-1.49 GHz → 1.5-1.99 GHz 54.8
1.5-1.99 GHz → 2-2.99 GHz 115.3
2-2.99 GHz → 3-3.99 GHz 150.1
Celeron → Pentium III 156.5
Celeron → Pentium 4 171.5
Celeron → Pentium M 447.3
HP (Compaq) Presario 71.9
Dell Inspiron 107.8
Sony VAIO R 275.2
IBM ThinkPad A 462.1
1 year forward* -257.0

B. Additional Information

Median Markup (�) 76.4
Median (p-mc)/p 0.078
Corr(markup, price) 0.912
Corr(ξ, ω) 0.820

*Change in willingness to pay over one year, see text

Table 7: The Sets H of Feasible CPU Technologies
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

P3 0.5-0.99 X X X
P3 1.0-1.49 X X X X X X X X X
C 0.5-0.99 X X X
C 1.0-1.49 X X X X
C 1.5-1.99 X X X X X X X X
C 2-2.99 X X X X X X X
P4 1.0-1.49 X X X X
P4 1.5-1.99 X X X X X X X X X X
P4 2-2.99 X X X X X X X X
P4 3-3.99 X X X
PM 1.0-1.49 X X X X
PM 1.5-1.99 X X X X X

The table reports, for each of the 12 data quarters, the set H of feasible CPU technologies. See text for the three criteria which
determine inclusion in this set.

Table 8: Bounds on Mean Fixed Costs F d (�M)

Estimated Set Estimated Set (adjusted*) 95% CI**

Dell [2.427, 4.529] [2.353, 4.559] [2.309, 4.914]

HP [1.094, 2.721] [1.081, 2.795] [0.983, 3.009]

Toshiba [2.622, 4.069] [2.555, 4.119] [2.295, 4.453]

This estimation utilizes information on specific notebook product lines of these firms (see text). The number of potential products,
nd, is 41 for Dell and Toshiba and 82 for HP. *With adjustment for support bounds (see Section 4.2). **The confidence interval does
not take into account the variance due to the estimation of θ and to the simulation of expected variable profits, see text.
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Table 9: Effect of Intel’s Pentium M on Expected 2004Q2 Outcomes

Observed* “No Pentium M” Counterfactual

Lower bound** Upper bound**

Total Notebook Sales (M) 1.707 1.379 1.614
Total Desktop Sales (M) 3.831 3.866 3.952
Mean Notebook price*** ($) 905 829 872

Impact on number of PC configurations (top 4 brands)

Observed “No Pentium M” Counterfactual

Lower bound** Upper bound**

# P3 1.5-1.99 0 1 4
# C 1.5-1.99 3 0 4
# C 2-2.99 3 0 4
# P4 3-3.99 1 2 4

Impact on Pentium III’s share of total Portables sales

Observed* “No Pentium M” Counterfactual

Lower bound** Upper bound**

Share P3 0.077 0.156 0.239

* As explained in the text, these are not outcomes observed in the sample, but rather simulated expected outcomes computed at the
set of products observed in the sample, which includes Pentium M based notebooks. This does not pertain to the reported observed
number of configurations, which is simply the observed sample quantity. ** The bounds represent the largest and smallest values
computed over the set of all potential counterfactual equilibria. *** Sales-weighted average.

Table 10: The Effect of Intel’s Pentium M on Consumers

Observed* ”No Pentium M” Counterfactual

Lower bound** Upper bound**

Total Expected Consumer Surplus 1213.7 1141.9 1176.3

Expected Surplus for Price Sensitivity Quantiles (see text)

0-20% Price sensitive 992.7 932.6 955.1
20%-40% Sensitive 130.3 123.1 129.9
40%-60% Sensitive 76.5 73.2 76.8
60%-80% Sensitive 12.6 11.9 12.8
80%-100% Sensitive 1.6 1.1 1.7

All figures in M�. * As explained in the text, these are not outcomes observed in the sample, but rather simulated expected outcomes
at the set of products observed in the sample. ** The bounds represent the largest and smallest values computed over the set of all
potential counterfactual equilibria.
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Table 11: Expected Welfare Effects of Adding Products Based on Older CPUs

Added Configurations

P3 1.5-1.99 P4 3-3.99
A. Total Welfare Components

Change to Expected CS: +9.368 +7.027

Change to PC makers’ Expected VP: +2.802 +1.705

Change to Fixed costs: [-14.267, -7.071] [-10.149, -4.515]

Total effect: [-2.097, +5.099] [-1.417, +4.216]

B. Effect on Different Consumer Segments (Quantiles of Price Sensitivity)

0-20% Price sensitive +6.018 +6.445
20%-40% Sensitive +2.060 +0.443
40%-60% Sensitive +0.978 +0.118
60%-80% Sensitive +0.213 +0.015
80%-100% Sensitive +0.099 +0.005

Configurations based on Intel’s Pentium III chips in the 1.5-1.99 GHz speed range were added to all four participating brands, while
configurations based on its Pentium 4 chips with speed above 3 GHz were added to three (see text). All figures in M�, evaluated at
expected 2004Q2 outcomes.
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Figure 1: CPU speed range shares, U.S. Home Market, over the three sample years
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Figure 3: WTP for an upgrade from Intel’s Celeron to its Pentium M chip (�)

-900 -800 -700 -600 -500 -400 -300 -200 -100 0
0

20

40

60

80

100

120

Figure 4: WTP for “1 year forward”(�) (see text)
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