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Abstract

This paper analyzes an infinite horizon dynamic duopoly with stochastic demand

in which firms face planning costs. In this set-up we derive the following results. First,

non-synchronized planning equilibria can only exist if products are strategic substi-

tutes while synchronized planning equilibria can only exist if products are strategic

complements. This result is in sharp contrast to the predictions obtained by models

that suppose commitment power of firms. In addition, we show that for both classes of

equilibria, alternating and synchronous planning, there exist multiple inattentiveness

lengths that can be supported as an equilibrium.
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1 INTRODUCTION

1 Introduction

It is a heavily discussed question in the economics literature whether oligopolistic firms

choose to synchronize the adjustment of their prices (or quantities) or if they adjust them at

different points in time. Since the seminal papers on dynamic duopoly by Maskin and Tirole

(1987; 1988a;b) this question attracted considerable attention by researchers. The main body

of this literature analyzed the question by considering how commitment power of firms shapes

this decision, see e.g., the papers by Maskin and Tirole, De Fraja (1993) or Lau (2001). In

these papers there is a physical friction that hinders firms from adjusting their plans each

period. Thus, firms are either exogenously equipped with commitment power or can decide to

be committed for some time period. The mechanism that then drives the results concerning

synchronization versus non-synchronization is rooted in the mode of strategic interaction,

that is, if firms’ strategy variables are strategic complements or substitutes.

However, the approach relying on commitment power is not satisfactory in three important

aspects: First, firms usually face a considerable amount of uncertainty with respect to

demand and/or costs, which heavily influences their adjustment decision. This uncertainty

is neglected in the above literature. Second, firms can often change their prices almost

costlessly, and so the commitment assumption is somewhat artificial in many markets. Third,

the length between two consecutive adjustments is prespecified in the above models to either

one or two periods. However, firms are usually more flexible in choosing this length.

In this article, we approach this question by drawing on recent developments in the theory

of rational inattention by Reis (2006b) and Hellwig and Veldkamp (2009). In particular,

we consider a model in which firms’ demand and costs, at each point in time, are hit by a

shock. As in Reis (2006b) and Hellwig and Veldkamp (2009) a firm can choose to become

informed about this shock and recalculate its optimal price. However, it has to incur a cost to

acquire, absorb and process this information, i.e., it is costly for a firm to replan its optimal

action.1 If a firm chooses to plan, it sets a price path until its next planning date. The prices

during this path are fully flexible, that is, they can differ at different points in time. This

implies that firms have no commitment power.2 Finally, a firm is free to choose the optimal

1This is a realistic assumption since, as e.g., Radner (1992) points out, absorbing and processing the
relevant information for decision making is an important goal of many managerial occupations.

2This is line with recent empirical work. For example, the work by Bils and Klenow (2004) seems to
contradict the finding that prices are adjusted only infrequently.
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1 INTRODUCTION

length for which it stays inattentive, i.e., the time period in which it does not plan. Overall,

this framework seems to fit many industries in a better way than the commitment model

since it is often much harder to determine the optimal price in an uncertain environment

than to change the price. For example, Zbaracki et al. (2004), using data from a large U.S.

manufacturing firm, find that the managerial planning costs of price adjustments are often

much larger than the physical costs of price adjustments.

More specifically, we consider an infinite horizon continuous time model of competition

between two firms who produce differentiated goods and – at each instant – face stochastic

demands and costs. At the beginning of the game both firms are informed about the state

of demand and costs and independently from each other choose an infinite sequence of dates

at which they choose to plan, where planning means that they acquire information about

demand and cost and re-optimize their prices. Since planning is costly, each firm chooses to

plan only at some points in time and stays (rationally) inattentive in the meantime. During

the inattentiveness period uncertainty builds up in the system. Thus, when choosing the

sequence of planning dates each firm balances the costs of planning and the gains from

having a re-optimized plan. At a planning date a firm observes the history of the game and

the current shock realizations. Given this information it chooses a price path up to its next

planning date. This implies that at each instant firms play a one-shot price competition

game with potentially imperfect and different information. As a consequence, there is no

commitment possibility. Instead, what matters for synchronization or non-synchronization

of planning decisions is how the decision of one firm to plan affects the other firm’s benefit

from planning.

In this set-up we derive the following results. First, non-synchronized planning equilibria

can only exist if products are strategic substitutes while synchronized planning equilibria

can only exist if products are strategic complements. This result is in sharp contrasts to

the predictions obtained by models that suppose commitment power of firms. As shown by

Maskin and Tirole (1987; 1988b) and Lau (2001), in these models strategic complementarity

leads to non-synchronization while strategic substitutability tends to lead to synchronization.

The reason is that in the case in which products are strategic complements and decisions

are synchronized each firm has an incentive to undercut the price of its rival which leads

to low prices and profits. By contrast, in a sequential game the overall level of prices is
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1 INTRODUCTION

higher. Thus, firms choose non-synchronization in equilibrium. The reverse argument holds

if products are strategic substitutes.

The intuition behind our result is rooted in two different effects, the strategic effect and

the externality effect. The strategic effect determines how a firm’s incentive to plan at some

instant changes if the rival plans at this instant. If firm i stays inattentive, its price is

inaccurate compared to the full information price due to the variance of demand and costs.

Now suppose that the rival firm j plans. If the demand realization is high, firm j sets a higher

price than in case of non-planning. If products are strategic complements, firm i’s optimal

price is then larger than in the case in which firm j did not plan. By the same argument, if

the demand realization is low, firm i’s optimal price is lower than without planning of firm

j. As a consequence, firm i’s price when being inattentive becomes more inaccurate, which

increases the incentive for firm i to plan. By the reverse argument, if products are strategic

substitutes, planning of firm j lowers the incentive for firm i to plan. As a consequence,

there is a tendency to synchronize planning decisions under strategic complementarity and

to non-synchronize these decisions under strategic substitutability.

In addition, there is an effect that occurs because by acquiring information firm j exerts an

externality on its rival. This is due to the fact that an informed firm’s price reacts to the

shocks and is thus a random variable. Now, by planning firm i induces firm j to change

its price and therewith firm i can influence this externality. We refer to this effect as the

“externality effect”. The absolute value of this externality is, in expectation, the higher the

larger is the difference between firm i’s last planning date and the next planning date of

firm j. Thus, firm i can reduce the extent of the expected externality by moving closer to

firm j’s planning date. This is the case because less time has elapsed since firm i’s last

planning date, which reduces the uncertainty about firm i’s demand and cost. Now suppose

that the externality is positive and products are strategic complements. In this case firm

i prefers to set its planning dates relatively far away from the ones of firm j to increase

the expected externality, thereby providing a tendency towards alternating planning. By

a similar argument, if the externality is negative and products are strategic substitutes,

there is a tendency towards synchronized planning decisions. In sum, we find that in our

framework both effects in combination exclude any non-synchronous planning equilibria in
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1 INTRODUCTION

case of strategic complementarity and any synchronous planning equilibria in case of strategic

substitutability.

Interestingly, we show that for both classes of equilibria, alternating and synchronous plan-

ning, there exist multiple inattentiveness lengths that can be supported as an equilibrium.

For synchronous planning this result is natural – and known from Hellwig and Veldkamp

(2009) – since if both firms plan at the same instant, the objective function of each firm

involves a discontinuity at this instant thereby giving rise to multiple equilibria. However,

the result is new for the class of alternating equilibria. In this type of equilibrium firm j

remains inattentive at a planning date of firm i. Thus, one may expect that firm i’s incentive

to exceed or shorten its inattentiveness period is the same. However, we show that this is

not the case. The reason is that firm j expects firm i to set different planning dates in the

future in the case in which firm i exceeded its inattentiveness lengths than in the case in

which it shortened its inattentiveness length. Due to this, firm j will in the future react

differently to the different changes of the inattentiveness length of firm i, which changes the

objective function of firm i in a discontinuous way. As a consequence, multiple equilibria

emerge even in the class of alternating equilibria.

We also characterize how the inattentiveness length changes with the degree of strategic

complementarity. Here we find that the period lengths become shorter, the larger the degree

of strategic complementarity. This is the case because if firm j chooses to plan it adjusts

its price in the direction of the shock realizations, i.e., if demand or costs are high, firm

j raises its price and vice versa. Now, by the argument explained above, if the degree of

strategic complementarity rises, firm i’s price when being inattentive becomes more inaccu-

rate, and therefore, it has an incentive to plan earlier. As a consequence, the equilibrium

inattentiveness lengths become shorter.

In our model we also characterize under which conditions an alternating planning equilibrium

arises endogenously without imposing this structure of planning dates. To do so we allow

one firm to set its first inattentiveness interval at a different length than the others which

enables firm to reach a non-synchronized equilibrium. Thus, in this respect we go beyond

most papers in the previous literature which impose that firms have already reached an

alternating move structure and focus on the stationary equilibrium.
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As mentioned, the previous literature on dynamic duopoly that analyzes if firms synchronize

their decisions is mainly concerned how commitment power affects this decision. The seminal

papers in this literature are the ones by Maskin and Tirole (1987; 1988a;b). The first two are

on quantity competition (strategic substitutability) while the last one is on price competition

(strategic complementarity). In the main parts of these papers Maskin and Tirole suppose

that firms are committed to a particular price or quantity for two periods, and that the firms

adjust their prices or quantities in a alternating manner. Maskin and Tirole then endogenize

the timing by analyzing if firms indeed choose to adjust their variables in an alternating

manner but keep the assumption that firms are committed for two periods. The authors find

that this is indeed the case for price competition but not for standard quantity competition.

The reason is that if products are strategic complements, the market is less competitive if

one of the firms acts as the Stackelberg leader and the other one as the follower compared

to the simultaneous move case. However, the reverse holds true for strategic substitutes.3

Lau (2001) extends the price competition model by first allowing for differentiated goods

and, second, by giving each firm the choice to set its commitment length for either one

or two periods. He shows that even in this case firms prefer to move alternatingly and to

be committed for two periods. By allowing for a commitment length of one period, Lau

(2001) shows how firms can endogenously reach this alternating structure, i.e., one firm

chooses a one-period commitment at the beginning and then sets a two-period commitment

forever while the second firm chooses a two-period commitment from the beginning. Although

the mechanism in these papers are very different to the ones we consider, the goal of the

analyses – i.e., finding conditions for synchronization and non-synchronization – is similar.

As mentioned, our framework yields opposing results compared to the literature relying on

commitment.4

There are other papers that also address the question of synchronization versus non-synchroni-

zation but consider a continuum of players. These papers identify different aspects that can

be of relevance for this decision. For example, Bhaskar (2002) develops a model with different

industries each comprised of a continuum of firms that act non-strategically. There is aggre-

3De Fraja (1993) and Lau (1996) reach a similar conclusion in a model of wage setting in which the wages
are fixed for two periods. Both papers find that the sum of the wage setters’ profits is larger under staggered
than under synchronized wage setting.

4For a general treatment of a dynamic duopoly with adjustment costs that provide an exogenous
commitment, see Jun and Vives (2004).
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gate strategic complementarity across industries but the degree of strategic complementarity

within an industry is larger. Firms are committed to their price levels for two periods.

Bhaskar (2002) shows that there is a (strict) Nash equilibrium that involves staggered price

setting in which some firms adjust their prices in odd and others in even periods. This is

the case since each firm prefers to set its price together with its industry rivals although the

aggregate number of firms that adjusts its price in this periods may be relatively small. In a

different framework Ball and Romer (1990) consider a model with aggregate and firm-specific

shocks in which the firm-specific shocks arrive at different times for different firms, and firms

can adjust their prices every two periods. They show that due to the difference in shock

arrival, staggered price setting is a Nash equilibrium in which each firm adjusts its price at

the time its demand is hit by a shock.5

The way we model rational inattentiveness of firms was developed by Reis (2006b).6 He

analyzes the optimal length of a monopolist’s inattentiveness period and derives an ap-

proximate solution in a general setting.7 He also tests the model’s prediction by using US

inflation data and finds that his recursive state-dependent approach fits the data better than

previous state-contingent models do. The paper that is closest to ours is the one by Hellwig

and Veldkamp (2009). They answer the question under which condition firms want to acquire

the same information as their rivals. To do so they analyze a model with a continuum of

firms in which costly information acquisition and processing is modeled as in Reis (2006b).

The objective of each firm is to set its price close to a target price that consists of a weighted

average of the shock realization and the average price of competitors. The higher is the

degree of strategic complementarity between firms, the larger is the weight on the average

price in this target price. In this framework Hellwig and Veldkamp (2009) show that there is

a unique staggered planning equilibrium for any degree of strategic complementarity while

there are multiple synchronized planning equilibria that only exist if prices are strategic

complements. In contrast to Hellwig and Veldkamp (2009), we consider a duopoly model

instead of a competitive monopolists model with a continuum of firms. In addition, the

objective function of firms in our model is substantially different since we consider a standard

duopoly model without a target price. Therefore, the strategic incentives in our model are

different, e.g., the externality effect described above cannot be present in their model due

5For a paper with a similar structure, see Ball and Cecchetti (1988).
6For a model that focusses on rational inattentiveness of consumers, see Reis (2006a).
7For an extension of this analysis, see Jinnai (2007).
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2 TWO-STAGE INFORMATION-CHOICE-THEN-PRICING GAME

to the assumption of a continuum of firms. We also obtain different results concerning the

alternating planning equilibrium, i.e., we find that there are multiple alternating planning

equilibria while in their model it is unique, and show that the comparative static result

concerning the degree of strategic complementarity are opposite to theirs. We will explain

the differences and similarities to work of Hellwig and Veldkamp (2009) in detail repeatedly

throughout this chapter.

This chapter proceeds as follows. The next section provides an easily accessible two-stage

information-choice-then-pricing game that sheds light on how the nature of product market

competition and uncertainty about the shocks determine whether the duopolists’ decisions

to acquire information are strategic substitutes or complements. Section 2.3 presents the

dynamic model in which firms first choose their planning dates and then compete on the

product market, and derives the conditions for existence of an alternating and a synchronous

planning equilibrium, respectively. Section 2.4 concludes.

2 Two-Stage Information-Choice-then-Pricing Game

There are two firms denoted by 1 and 2 that produce differentiated goods and compete in

prices. Each firm i faces the demand function

qi = α + θ − pi + γpj, i 6= j, i, j = 1, 2,

where the intercept α and the degree of strategic interaction γ are known constants, with

α > 0 and−1 ≤ γ ≤ 1. If γ > 0, firms produce substitutable goods and strategy variables are

strategic complements, if γ < 0, firms produce complementary goods and strategy variables

are strategic substitutes, and if γ = 0, firms’ demands are unrelated. Demand is stochastic,

which is captured by the random variable θ that represents a common shock to each firm’s

demand. Without loss of generality we assume that E[θ] = 0 and V ar[θ] = σ2
θ > 0. Each firm

faces marginal production costs that consist of a deterministic part, c, and a stochastic part,

ξ, which are also common to both firms.8 We assume that E[ξ] = 0 and V ar[ξ] = σ2
ξ > 0.

Thus, the production costs of firm i are given by of qi(c+ξ). The two shocks can be correlated

8Arguably, the situation of common demand and cost shocks is a relatively realistic scenario since both
firms are in the same market and are likely to procure the input from the same supply industry.
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2 TWO-STAGE INFORMATION-CHOICE-THEN-PRICING GAME

with correlation coefficient ρ. This implies that E[θξ] = ρσθσξ. Therefore, the profit function

of firm i for the case of full information, that is, when firm i knows the realization of both

shocks, is given by

Πi = (pi − c− ξ) (α + θ − pi + γpj) . (1)

Before competing in the product market each firm chooses whether to acquire information

about the realizations of the shocks. The decision to acquire information comes at a cost of

K > 0 for each firm.9

The timing of the game is as follows: In the first stage, both firms decide independently

of each other whether to acquire information or not, and these decisions become publicly

observable. In the second stage, firms choose their optimal prices conditional on the infor-

mation choices in the first stage.

This timing and information structure is suitable to elucidate the effects that are at work

in the dynamic game in an accessible way. In order to focus on the interplay of firms’

information acquisition decisions, we assume in this two-stage framework that a firm knows

the information status of its rival. A justification for the assumption in the two-stage game

is that planning is likely to be a process that may need consultation of outside agencies and

where, in large firms, several managerial layers are involved. Thus, firms may not be able

to keep this decision secret.10 It is important to note that this assumption is not needed in

the dynamic framework in which a firm (more realistically) observes the history of the game

when acquiring information but not the simultaneous planning choice of its rival.

We solve the game by backward induction and look for perfect Bayesian equilibria. In the

following we denote by Di the choice of firm i to acquire information in the first stage:

Di = 1 if firm i chooses to become informed and Di = 0 otherwise. In the second stage

three different scenarios can occur conditional on Di and Dj, i 6= j, i, j = 1, 2: both firms

are uninformed, (Di = 0, Dj = 0), both are informed (Di = 1, Dj = 1), and an asymmetric

situation where firm i is informed while firm j is not (Di = 1, Dj = 0). We consider these

9For a model that considers costless information acquisition but in which firms can share their acquired
information, see e.g., Raith (1996).

10This two-stage game structure is also standard in several oligopoly models. A prominent example is
Singh and Vives (1984) in which firms first publicly announce their strategy variable (price or quantity) and
then compete in the chosen strategy variables.
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2 TWO-STAGE INFORMATION-CHOICE-THEN-PRICING GAME

scenarios in turn. In the following we denote by pi(Di, Dj) and Πi(Di, Dj), the equilibrium

price and the equilibrium profit of firm i for given information choices.

Case 1: Di = 0, Dj = 0

First, consider the case in which no firm is informed. Since E[θ] = E[ξ] = 0 and E[θξ] =

ρσθσξ, from (1) we have that the expected profit of firm i can be written as

E[Πi] = (pi − c)(α− pi + γpj)− ρσθσξ.

Deriving the Nash equilibrium yields equilibrium prices of

pi(0, 0) = pj(0, 0) = p(0, 0) =
α + c

2− γ
.

Inserting these prices into the profit function, we obtain the expected profit in case that

both firms abstain from acquiring information in the first stage:

Πi(0, 0) = Πj(0, 0) = Π(0, 0) =
(α− c(1− γ))2

(2− γ)2
− ρσθσξ.

Case 2: Di = 1, Dj = 1

Second, we look at the case in which both firms choose to acquire information. In this case,

the realizations of θ and ξ are observed by both firms. Therefore, in the second stage each

firm maximizes

Πi = (pi − c− ξ)(α + θ − pi + γpj).

Deriving the Nash equilibrium yields equilibrium prices of

pi(1, 1) = pj(1, 1) = p(1, 1) =
α + c

2− γ
+
θ + ξ

2− γ
. (2)

Substituting these prices into the profit function, simplifying and taking expectations from

the perspective of stage 1 we obtain the expected profit in the case in which both firms

choose to acquire information:

Πi(1, 1) = Πj(1, 1) = Π(1, 1) =
(α− c(1− γ))2

(2− γ)2
+
σ2
θ + σ2

ξ (1− γ)2 − ρσθσξ(2− γ)

(2− γ)2
.
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2 TWO-STAGE INFORMATION-CHOICE-THEN-PRICING GAME

Case 3: D1 = 1, D2 = 0

Finally, we consider the asymmetric case in which one firm is informed while the other one is

not. Let us denote by firm 1 the firm that is informed and by firm 2 the one that abstained

from acquiring information. In the second stage the profit function of firm 1 is then given

by

Π1 = (p1 − c− ξ)(α + θ − p1 + γp2)

while the expected profit of firm 2 is

E[Π2] = E[(p2 − c− ξ)(α + θ − p2 + γp1)].

The reaction functions of firm 1 and firm 2 can then be written as

p1(p2) =
α + c+ θ + ξ + γp2

2

and

p2(E[p1]) =
α + c+ E[θ] + E[ξ] + γE[p1]

2
,

respectively. Since firm 1 is informed, it conditions its price on the shock realizations, while

firm 2 cannot do so due to its lack of information. As a consequence, firm 2 must form

expectations about the shock realizations and about the price of firm 1. This is due to

the fact that this price is a random variable for firm 2 because it depends on the shock

realizations which firm 2 cannot observe. Solving for the Nash equilibrium and using that

E[θ] = E[ξ] = 0 we obtain

p1(1, 0) =
α + c

2− γ
+
θ + ξ

2
(3)

and

p2(0, 1) =
α + c

2− γ
.

Thus, from the perspective of firm 2 the expected equilibrium price of firm 1 is E[p1] =

(α + c)/(2− γ).
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2 TWO-STAGE INFORMATION-CHOICE-THEN-PRICING GAME

We can now determine the profits of both firms. Inserting the equilibrium prices into the

profit function of firm 1 and taking expectations we obtain

Π1(1, 0) =
(α− c(1− γ))2

(2− γ)2
+
σ2
θ + σ2

ξ − 2ρσθσξ

4
.

Since firm 2 is the uninformed firm its profit can be written as

E[Π2] = (p2 − c) (α− p2 + γE[p1])− E[ξ(θ + γp1)]. (4)

It is evident from the last term on the right-hand side, E[ξ(θ + γp1)], that the covariance

between ξ and p1 affects firm 2’s expected profits. This is due to the fact that p1 depends

on the realizations of θ and ξ and, therefore, E[ξp1] depends on the variance of ξ and the

covariance between θ and ξ. Inserting the equilibrium prices into (4) yields the expected

profit of firm 2:

Π2(0, 1) =
(α− c(1− γ))2

(2− γ)2
+
γ(σθσξρ+ σ2

ξ ) + 2ρσθσξ

2
. (5)

We are now in a position to proceed to the information acquisition stage.

Information acquisition stage

We set out by determining the benefit from acquiring information for a firm conditional

on the information acquisition decision of its rival. Let ∆(1) := Πi(1, 1) − Πi(0, 1) and

∆(0) := Πi(1, 0) − Πi(0, 0). Suppose that firm j is informed. Then firm i′s benefit from

acquiring information is

∆(1) =
2(σ2

θ + ρσθσξ + σ2
ξ )− γ2(2− γ)(ρσθσξ + σ2

ξ )

2(2− γ)2
. (6)

If instead firm j is not informed, firm i′s benefit is given by

∆(0) =
σ2
θ + σ2

ξ + 2ρσθσξ

4
> 0. (7)
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2 TWO-STAGE INFORMATION-CHOICE-THEN-PRICING GAME

Taking the difference between (6) and (7), we see that the benefit of information acquisition

is larger in the case in which the other firm is also informed if and only if

γ
(
4(σ2

θ + 2ρσθσξ + σ2
ξ )− γ(σ2

θ + 6ρσθσξ + 5σ2
ξ ) + 2γ2(ρσθσξ + σ2

ξ )
)

4(2− γ)2
> 0. (8)

Rearranging (8) yields the following result:

Proposition 1 Information acquisition decisions are strategic complements, i.e., ∆(1) −

∆(0) > 0, if and only if

γ > 0 and ρ > max

[
−
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
,−1

]
(9)

or

γ < 0 and ρ < max

[
−
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
,−1

]
. (10)

Information acquisition decisions are strategic substitutes, i.e., ∆(1)−∆(0) < 0, if and only

if neither (9) nor (10) hold.

Proposition 1 implies that, if (9) or (10) hold, there is strategic complementarity in infor-

mation acquisition decisions. This implies that there exists a range of acquisition costs K,

i.e.,
σ2
θ + σ2

ξ − 2ρσθσξ

4
< K <

2σ2
θ + σ2

ξ (2− 2γ2 + γ3)− ρσθσξ(4− 2γ2 + γ3)

2(2− γ)2
, (11)

such that either both firms are informed or no firm is informed.11 If none of the two conditions

hold, then information acquisition decisions are strategic substitutes. In this case there is a

range of K, i.e.,

2σ2
θ + σ2

ξ (2− 2γ2 + γ3)− ρσθσξ(4− 2γ2 + γ3)

2(2− γ)2
< K <

σ2
θ + σ2

ξ − 2ρσθσξ

4
, (12)

in which an asymmetric equilibrium emerges, that is, one firm acquires information while

the other one does not.

11Clearly, if K is larger than the term on the right-hand side of (11), it is optimal for both firms not
to acquire information, while if K is smaller than the term on the left-hand side, acquiring information is
optimal for both firms.
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2 TWO-STAGE INFORMATION-CHOICE-THEN-PRICING GAME

Whether an asymmetric equilibrium emerges or not depends on how a firm’s decision to

acquire information changes the other firm’s incentive to become informed. There are two

effects that change this incentive.

We first turn to the effect to which we will refer as the “strategic effect” in the remainder.

Suppose that firm j has acquired information. Firm j adjusts its price in direction of the

shock realizations, that is, it sets a high price if the shock to the demand or to the cost is

high and a low one if the reverse holds true. This can be seen from the equilibrium prices of

an informed firm, which are given by

p(1, 1) =
α + c

2− γ
+
θ + ξ

2− γ
and p(1, 0) =

α + c

2− γ
+
θ + ξ

2
, (13)

where p(1, 1) is the price for the case in which the other firm is informed as well while p(1, 0)

is the price for the case in which the other firm is not informed. Now suppose for the sake

of exposition that the shock to the cost is relatively small. Thus, firm j’s price follows the

demand shock. Since the shock is a common shock, firm i when being informed would also

set a high price if θ is large and a low one if θ is small. Now, if products are strategic

complements, i.e., γ > 0, firm i’s optimal price is higher if θ is large compared to the case

without strategic interaction because firm j sets a high price if θ is large. Similarly, if θ is

low, firm i’s optimal price with strategic interaction is lower than without. Taken together,

this implies that the variance of firm i’s full information price has gone up. As a consequence,

firm i’s price when being uninformed becomes more inaccurate, which renders information

acquisition more profitable for firm i. Thus, if products are strategic complements, firm

i’s incentive to acquire information increases if firm j chooses to become informed due to

the strategic effect. By a similar argument, if product are strategic substitutes, the reverse

holds true, i.e., firm i’s benefit from becoming informed is lower if firm j chooses to acquire

information.

In addition to this strategic effect, there is a second effect that we will refer to as the

“externality effect”. This effect occurs because a firm exerts by acquiring information an

externality on its rival. In the remainder we refer to this externality as the “information-

induced externality”. In order to illustrate it, suppose that firm j does acquire information.

In this case firm j exerts – by planning – an externality on firm i. This is due to the fact that

14
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now firm j′s price is a random variable. Thus, in the profit function of firm i firm j induces a

covariance between ξ and pj, E[ξpj], and therewith an information-induced externality that

is given by −γE[ξpj].

We first characterize how the sign of E[ξpj] is determined by the sign of the correlation

coefficient and the relation between σξ and σθ. The next corollary follows immediately from

inspection of an informed firm’s optimal price.

Corollary 1 Suppose that firm j acquires information. Then, E[ξpj] > 0, if either ρ > 0

or ρ < 0 and σθ < σξ. If ρ < 0 and σθ > σξ, then E[ξpj] < 0. If the shocks are uncorrelated,

i.e., ρ = 0, then E[ξpj] = 0.

By acquiring information firm i can alter the information-induced externality that firm j

exerts. If firm i acquires information it affects firm j’s price. As can be seen from comparing

the two prices in (13), for γ > 0 the denominator of the second term in both expressions is

smaller for p(1, 1) than for p(1, 0). This implies that firm j’s equilibrium price reacts more

strongly to the realization of the shocks if firm i is informed than if firm i is not informed.

This is the case because, as explained above, if products are strategic complements each firm

amplifies the reaction of the other firm. The opposite holds true for strategic substitutes.

We can now determine how this effect changes firm i’s expected profit. Suppose for example

that γ > 0 and that E[ξpj] < 0. Since the expected externality is given by −γE[ξpj],

it is positive in this case. Now if firm i acquires information, we know from above that

firm j’s optimal price reacts more strongly on the realizations of the shocks. Since, from

Corollary 1, E[ξpj] < 0 can only occur if σθ > σξ and ρ < 0, we have that E[ξpj] becomes

more negative if firm i acquires information. Thus, firm i increases the positive information-

induced externality if it acquires information. Therefore, in this case the strategic and the

externality effect go in the same direction.

However, as can be seen from Proposition 1 if ρ is sufficiently negative, information acquisi-

tion decision are strategic substitutes although γ > 0. Thus, in this case both effects have

to work in opposite directions and the externality effect has to dominate the strategic effect.
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To see this note first that the situation

−1 ≤ ρ < −
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)

can only occur if σξ > σθ. From Corollary 1 we know that the covariance between ξ and pj

is positive if ρ < 0 and σξ > σθ. This implies that the information-induced externality is

negative. Now, if products are strategic complements, firm i can ameliorate this externality

by choosing to stay uninformed. In addition, if the correlation between the two shocks is

highly negative, an informed firm’s price in each state is relatively close to the optimal price

of an uninformed firm. But this implies that the component on which the strategic effect

operates is relatively small. Therefore, the externality effect dominates the strategic effect

in this case, and information acquisition decision are strategic substitutes. A similar effect

occurs if γ < 0, σξ > σθ and ρ is highly negative. Then, information acquisition decision are

strategic complements although prices are strategic substitutes.

The strategic effect of information acquisition is at the heart of the analysis of

Hellwig and Veldkamp (2009). This is due to the fact that their framework considers a

continuum of players which implies that the information-induced externality that a planning

firm exerts on all other firms is negligible. Therefore, the externality effect cannot arise in

their environment and it is solely the strategic effect that determines the mode of strategic

interaction in the information choice stage.

We will now go on and analyze a fully dynamic model with an infinite number of planning

dates and show that the main insights obtained in this simple two-stage game carry over and

how the interplay between strategic and externality effect plays out in a dynamic framework.
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3 Dynamic Information Choices

3.1 The Model

We consider two firms, each producing a non-storable good in continuous time. Each instant

firms face the linear demand system

qi(t) = α + θ(t)− pi(t) + γpj(t), (14)

qj(t) = α + θ(t)− pj(t) + γpi(t), (15)

where again α and γ are known constants, with α > 0 and −1 ≤ γ ≤ 1. The random

variable θ(t) follows a Brownian motion with zero drift. More specifically, we assume that

θ(t) = σθZ(t), (16)

where σθ > 0 and Z(t) is a standard Wiener process. Without loss of generality, we set

θ(0) = 0. The instantaneous profit function of firm i is given by

Πi(t) =
(
α + θ(t)− pi(t) + γpj(t)

)(
pi(t)− (c+ ξ(t))

)
, (17)

where c > 0 denotes the firm’s constant marginal cost of production and ξ(t) denotes a cost

shock. The cost shock’s evolution is described by

ξ(t) = σξY (t), (18)

where σξ > 0 and Y (t) is a standard Wiener process. Again we set ξ(0) = 0 without loss

of generality. The processes Z(t) and Y (t) are (potentially) correlated and we denote the

instantaneous correlation coefficient by ρ, where −1 ≤ ρ ≤ 1. The statistical properties of

the processes θ(t) and ξ(t) are common knowledge.12

We follow Reis (2006a;b) and Hellwig and Veldkamp (2009) in the way in which we incorpo-

rate the feature of costly information processing into our setting: A firm incurs a fixed cost

12For reasons that will become clear when we turn to a firm’s objective function we do not impose non-
negativity constraints on (expected) prices or (expected) quantities.

17
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K > 0 each time it chooses to process the available information, i.e. to plan, in order to

(re-)compute its optimal actions. As a consequence, time will be endogenously partitioned

into planning and non-planning dates. Let Di(n) : N0 → R+ denote the process that

determines the dates at which firm i chooses to process information, with Di(0) = 0, i = 1, 2.

We distinguish between firm 1 and firm 2. At the outset of the game both firms simultane-

ously and irrevocably choose the length of their inattentiveness periods. This choice cannot

be observed by the rival. Firm 1 chooses its inattentiveness interval d1 ∈ R+ which induces

an infinite sequence of planning dates, given by {d1, 2d1, 3d1, ...}. Firm 2 also chooses its

inattentiveness interval d2 ∈ R+ and, simultaneously, has to decide between two planning

modes:

(A)

{
d2

2
,
3d2

2
,
5d2

2
, ...

}
,

(S) {d2, 2d2, 3d2, ...}.

A planning mode translates d2 into a sequence of planning dates.

Thus, we restrict each firm to a once-and-for-all decision about the length of its respec-

tive inattentiveness interval. As will become clear below this restriction does not alter the

equilibrium outcome of the game. This is due to the fact that we formulate the model so

that it is stationary. Hence, it would indeed not be profitable for a firm to vary its optimal

inattentiveness period, even if it had the possibility to do so at the outset.

The reason for giving firm 2 the opportunity to choose between two planning modes is the

following. We are particularly interested whether equilibria exist in which firms plan in an

alternating and sequential order. In our setting firms can only attain this planning pattern

if firm 2 chooses planning mode (A) since we assume that both firms acquire information

simultaneously at t = 0. In this mode, the first inattentiveness period of firm 2 is exactly

half as long as its future ones. A consequence of the assumptions concerning the planning

modes is that we require the firms to reach the alternating planning scenario in a single step.

Therefore, if (stationary) alternating and sequential planning equilibria exist in this setting,

they will very likely exist as well if we allow for more sophisticated convergence patterns.

At a planning date a firm sets a sequence of prices for each instant until its consecutive

planning date. These prices are set so that they are measurable with respect to the available
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information. At a non-planning date a firm does not process information and sets the

previously determined price.

Now, we characterize the information that is available for firm i at a planning date Di(n).

We denote by HDi(n) the set of all possible histories up to, but not including instant Di(n).

An element hDi(n) ∈ HDi(n) includes all past prices p(s) = (p1(s), p2(s)), 0 ≤ s < Di(n), all

past planning dates Di(m) < Di(n) and Dj(k) < Di(n), and all past shock realizations θ(s)

and ξ(s), 0 ≤ s < Di(n). The information available to a firm i which plans at instant Di(n)

is

ΞDi(n) =
(
hDi(n), θ(Di(n)), ξ(Di(n))

)
.

Put differently, at a planning date the planning firm observes the current shock realizations

in addition to the complete history. Since a firm is inattentive in between its planning dates,

it cannot update its available information. Hence, Ξ(t) = Ξ(Di(n)) at any instant t, such

that Di(n) ≤ t < Di(n + 1). As a consequence, the firms’ histories are of unequal length if

the latest planning dates of the firms differ.

We restrict firms to (pure) stationary Markov strategies with the firms’ beliefs about the

realizations of θ(t) and ξ(t) as the state variables since these variables are the only payoff

relevant ones. Because the latest planning dates of both firms determine their beliefs about

the realization of the shocks at date t, the economy is at each instant t characterized by

these planning dates. If firm i last planned at date Di(n), it enters date t > Di(n) with

the information set It = IDi(n) =
(
θDi(n), ξDi(n)

)
. If firm i plans at the current date t, its

new information set contains the shock realizations of the current date: It = IDi(n+1) =

{θDi(n+1), ξDi(n+1)}. Thus, given that the latest planning dates of firm i and j are Di(n) and

Dj(m), respectively, the Markov state of firm i is

ωi =


(
IDi(n), IDj(m)

)
if Di(n) > Dj(m),

IDi(n) if Di(n) ≤ Dj(m).
(19)

If firm i is better informed than firm j, i.e., if Di(n) > Dj(m), firm j’s information set is

included in the Markov state of firm i since firm i can observe the complete history. Instead,

if firm i and firm j are equally informed or if firm i is worse informed than firm j, i.e.,

Di(n) ≤ Dj(m), only the information set of firm i constitutes its Markov state. Let Ωi be
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the set of all possible Markov states. Then, a stationary Markov strategy pi for firm i is

defined as pi : Ωi → R, that is, it maps the state space into actions.

We adopt the solution concept of Markov Perfect Bayesian Equilibrium (MPBE). The reason

for using this solution concept is that it is inherent in the assumption of costly information

processing that a firm cannot observe its rival’s actions while it is inattentive. A feature of

the MPBE is that a firm’s beliefs about the future behavior of its rival are arbitrary once it

observed an out-of-equilibrium action of its competitor. By restricting each firm’s strategies

to irrevocably choosing one inattentiveness interval at the outset of the game we get a grip

on the arbitrariness of out-of-equilibrium beliefs to a certain degree. This is due to the fact

that once firm i observes that firm j has chosen an inattentiveness length of d′j, although

the equilibrium called for a length of dj, firm i knows that firm j will set d′j forever.

However, this construction cannot restrict the firm’s beliefs at the planning dates at which it

detects a deviation but does not observe its rival’s actual out-of-equilibrium strategy. This

happens, if e.g., firm i plans at some instant and observes that firm j has not planned yet

although firm j should have done so in equilibrium. At these planning dates we assume

that firm i believes that firm j chose an inattentiveness interval that induces the same

consecutive planning date as the inattentiveness interval that was prescribed in equilibrium.

Although, this is only one possible belief, we argue that it is among the most reasonable.

This is due to the fact that this out-of-equilibrium belief formalizes mistakes of the following

kind: in equilibrium the planning unit is supposed to meet every Wednesday. However, the

announcement is mistaken and states that the meeting takes place every other Wednesday.

The objective of firm i is to minimize the loss function

Li = E0

{
∞∑
n=0

(∫ Di(n+1)

Di(n)

e−rt
(
ΠFI
i (t)− Πi(t)

)
dt+ e−rDi(n+1)K

)}
, (20)

via prescribing an infinite sequence of planning dates at the outset of the game, taking as

given the sequence of its rival. It follows from our formulation of the strategy space that

firms differ in the way in which they determine their respective sequences: firm 1 induces

its infinite sequence of planning dates by choosing one inattentiveness interval, denoted by

d1. Firm 2 establishes its sequence by simultaneously setting a planning mode in addition

to an inattentiveness interval, denoted by d2. In (20), ΠFI
i (t) denotes the (hypothetical) full
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information profit that firm i would earn if it planned at instant t, for given actions of firm

j. The firms’ common discount rate is denoted by r > 0.

We set up the firms’ problem in terms of a loss function which we construct by scaling a

firm’s instantaneous expected profit by the firm’s (hypothetical) instantaneous expected full

information profit. This objective function delivers the same results in terms of instantaneous

optimal prices and the equilibrium pattern of planning dates as a formulation which considers

only the firm’s profit function. This is due to the fact that ΠFI
i (t) is a constant at a given

instant. One way to think about the instantaneous loss function is that it measures, for given

actions of its rival, a firm’s expected instantaneous opportunity cost of choosing its prescribed

actions, i.e., information status and associated price, relative to processing information.

The merit of working with the loss and not with the profit function is that the former

specification guarantees that the model is stationary. This is the case because a firm’s

expected loss is zero at any planning date, irrespective of the absolute time that elapsed

between a planning date and t = 0. Thus, a firm’s expected loss depends at each instant

only on the time that passed since its latest planning date and its rival’s actions. Therefore

a firm’s incentive to plan is invariant with respect to absolute time. To the contrary, a firm’s

expected instantaneous profit at a given instant depends on the absolute time distance

between this instant and the starting point of the model. This is due to the fact that at the

outset firms have to evaluate the sequence of expected profits that their respective sequence

of planning dates delivers. Thus, firms have to form expectations from the perspective of

instant t = 0. Since the second moments of the stochastic processes increase linearly in time,

expected instantaneous profits and therewith the firms’ incentive to plan depend on absolute

time.

The fact that the model is stationary makes the analysis tractable. In addition, it implies that

we can, without loss of generality, restrict the strategy space so that each firm irrevocably

chooses exactly one inattentiveness interval. As mentioned before, given the stationarity of

planning incentives, a firm would not find it optimal to set inattentiveness periods of unequal

length, even if we explicitly allowed for this.

To sum up, at the outset, both firms observe the initial state θ0 = 0 and ξ0 = 0. Each firm can

then calculate the per-instant price equilibrium for any combination of planning dates. Given

21



3.2 Equilibrium Prices and Loss Functions 3 DYNAMIC INFORMATION CHOICES

this, firm 1 chooses it inattentiveness interval d1 to minimize the loss function L1, taking as

given the sequence of firm 2, while firm 2 simultaneously chooses its inattentiveness interval

d2 and its planning mode in order to minimize the loss function L2, taking as given the

sequence of firm 1.

3.2 Equilibrium Prices and Loss Functions

We solve the model by backward induction. First, we determine the optimal prices and

corresponding expected losses for any combination of planning dates chosen by the firms

at the outset. Second, we derive the equilibrium planning pattern and the respective

inattentiveness intervals.

We set out by characterizing the firms’ equilibrium prices. As will become evident below, each

firm’s best response is linear in the shock realizations. In conjunction with our assumption

that the stochastic processes have zero drift, it will turn out that each firm’s optimal price

is constant over time until the subsequent planning date of any firm.

We start with the case in which firms’ planning dates are asynchronous. Denote by v the

latest and by v′ the subsequent planning date of firm i, i.e., v := Di(n) and v′ := Di(n+ 1),

and by w the latest and by w′ the next planning date of firm j, i.e., w := Dj(m) and

w′ := Dj(m+ 1).

Lemma 2 Suppose that firm i planned for the last time at v and that firm j planned for

the last time at date w, where w < v. Firm j believes (correctly) that firm i plans at v. In

the Markov Perfect Bayesian Equilibrium, prices at v ≤ t < min{v′, w′} are

p?i (t) =
α + c+ θ(v) + ξ(v)

2− γ
− γ

2(2− γ)

(
θ(v)− θ(w) + ξ(v)− ξ(w)

)
, (21)

p?j(t) =
α + c+ θ(w) + ξ(w)

2− γ
. (22)
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The firms’ full information prices are

pFIi (t) =
α + c+ θ(t) + ξ(t)

2− γ
− γ

2(2− γ)

(
θ(t)− θ(w) + ξ(t)− ξ(w)

)
, (23)

pFIj (t) =
α + c+ θ(t) + ξ(t)

2− γ
− γ

2(2− γ)

(
θ(t)− θ(v) + ξ(t)− ξ(v)

)
+

+
γ2

4(2− γ)

(
θ(v)− θ(w) + ξ(v)− ξ(w)

)
. (24)

Proof We start with the optimization problem of firm i. Firm i′s expected instantaneous

profit for v ≤ t < min{v′, w′} is

E
[(
α + θ(t)− pi(t) + γpj(t)

)(
pi(t)− (c+ ξ(t))

)∣∣∣Iv, Iw],
which can be written as

(α + θ(v)− pi(t) + γpj(t))(pi(t)− c)− ξ(v)(α− pi(t) + γpj(t))− E[θ(t)ξ(t)|Iv, Iw]. (25)

From (25) it becomes evident that pj(t) is, from the perspective of firm i at v, a non-random

variable. This is due to the fact that firm j′s optimal price is based on information that

is known to firm i at v. Differentiating (25) with respect to pi(t) yields firm i′s reaction

function

pi(t) =
α + c+ γpj(t) + θ(v) + ξ(v)

2
. (26)

Now we turn to firm j. The expected instantaneous profit of firm j at date t is

E
[(
α + θ(t)− pj(t) + γpi(t)

)(
pj(t)− (c+ ξ(t))

)∣∣∣Iw]. (27)

Firm j′s information set contains all shock realizations up to and including its latest planning

date w. Now, taking into account that firm j observed θ(w) and ξ(w) when it planned for

the last time, it follows from (16) and (18) that E[θ(t)|Iw] = θ(w) and E[ξ(t)|Iw] = ξ(w).

Thus (27) can be represented as

(
α+ θ(w)− pj(t) + γE[pi(t)|Iw]

)(
pj(t)− c

)
− ξ(w)

(
α− pj(t)

)
−E

[
ξ(t)

(
θ(t) + γpi(t)

)∣∣∣Iw].
(28)
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From the perspective of firm j with information set Iw, the price that firm i sets at time t

is a random variable. This is due to the fact that firm i updated its information set for the

last time at v > w. Thus, firm i acts on more recent information which firm j has to infer.

Differentiating (28) with respect to pj(t) and rearranging yields

pj(t) =
α + c+ γE[pi(t)|Iw] + θ(w) + ξ(w)

2
. (29)

Now, we derive the belief that firm j holds about firm i′s price at date t. Though firm j does

not observe θ(t) and ξ(t), it knows that firm i′s reaction function is given by (26). Forming

expectations about θ(t) and ξ(t) reveals that firm j expects the following reaction function

of firm i at date t:

E[pi(t)|Iw] =
α + c+ γpj(t) + θ(w) + ξ(w)

2
. (30)

Solving (29) and (30) for E[pi(t)|Iw] and pj(t) yields

E[pi(t)|Iw] = p?j(t) =
α + c+ θ(w) + ξ(w)

2− γ
, (31)

which is (22). Firm i knows firm j′s rationale which implies that firm i knows that firm j

sets its price according to (31). Then, inserting (31) in (26) yields (21).

Finally, we derive the full information prices. We start with pFIi (t), the price that firm i

would optimally set, if it planned at t. The full information profit of firm i at date t is given

by

(α + θ(t)− pi(t) + γpj(t))(pi(t)− (c+ ξ(t))) (32)

Differentiating (32) with respect to pi(t) and rearranging yields

pi(t) =
α + c+ γpj(t) + θ(t) + ξ(t)

2
. (33)

Now, inserting p?j(t) as given in (22) yields (23).

By the same logic the full information price of firm j is given by

pj(t) =
α + c+ γpi(t) + θ(t) + ξ(t)

2
. (34)
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Inserting p?i (t) as given in (21) yields (24). �

Next, we characterize prices for the case of synchronous planning.

Lemma 3 Suppose that firm j and firm i planned for the last time at date v, and each firm

believes that the other also planned at v. Then, in the Markov Perfect Bayesian Equilibrium,

prices at v ≤ t < min{v′, w′} are

p?i (t) = p?j(t) =
α + c+ θ(v) + ξ(v)

2− γ
, (35)

while full information prices are

pFIi (t) = pFIj (t) =
α + c+ θ(t) + ξ(t)

2− γ
− γ

2(2− γ)

(
θ(t)− θ(v) + ξ(t)− ξ(v)

)
. (36)

Proof Firm i′s expected instantaneous profit at t is given by (25). Thus, firm i′s reaction

function is (26). Solving (26) for pi(t) using symmetry yields (35). Similarly the full

information price is derived analogously to (23). �

Before we move on with the analysis we point out an important observation that follows

immediately from Lemma 2 and Lemma 3.

Corollary 2 Suppose that the latest planning dates of firms i and j are v and w,

respectively, with v ≥ w. Then, firm j′s optimal price path {p?j(t) : v ≤ t < w′} remains

constant until firm j′s consecutive planning date.

Put differently, a firm sets identical prices in two situations that are informationally not

equivalent: equal and worse information. The reason is the following: If firm j has more

outdated information than firm i, it forms expectations about the shock realizations that

firm i will observe at its next planning date. Since the stochastic processes have zero drift,

firm j′s best estimates of future shock realizations are the ones that it observed at its latest

planning date. Thus, from the perspective of firm j, the firms’ information sets are identical

in expectation. In addition, the optimal price of each firm is linear in the shock realizations.
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Therefore, firm j expects firm i to set the same price as in the case in which firm j has the

same information as firm i. This implies that firm j sets the same price in both situations.

After having characterized the optimal and full information prices, we are in a position to

derive the instantaneous expected losses under synchronous and asynchronous planning. We

obtain the following result:

Lemma 4 Suppose that firm i planned for the last time at v and that firm j planned for

the last time at w, where w ≤ v. Firm j (correctly) believes that firm i plans at v. The

instantaneous expected loss of firm i at instant t with v ≤ t < min{v′, w′} is given by

Li := E
[
ΠFI
i (t)− Πi(t)|Iv, Iw

]
=

1

4

(
σ2
θ + 2ρσθσξ + σ2

ξ

)
(t− v), (37)

and the instantaneous expected loss of firm j for v ≤ t < min{v′, w′} is given by

Lj := E
[
ΠFI
j (t)−Πj(t)|Iw

]
=

1

4

(
σ2
θ+2ρσθσξ+σ

2
ξ

)
(t−w)+

γ(4 + γ)

16

(
σ2
θ+2ρσθσξ+σ

2
ξ

)
(v−w).

(38)

Proof First, we derive firm i′s profit under full information. Using (23) and (21) in (32)

yields

ΠFI
i (t) =

1

4

(
α− c+ θ(t)− ξ(t) +

γ(a+ c+ θ(w) + ξ(w))

2− γ

)2

.

Thus, the expected full information profit of firm i at instant t with v ≤ t < min{v′, w′} is

given by

E
[
ΠFI
i (t)|Iv, Iw

]
=

1

4

(
σ2
θ − 2ρσθσξ + σ2

ξ

)
(t− v) + χ, (39)

where

χ :=

(
α + θ(v)− c− ξ(v) + γc− γ

2

(
θ(v)− ξ(v)− (θ(w) + ξ(w))

)
2− γ

)2

.

Next, using (21) and (22) in (25) yields firm i′s expected profit if it planned for the last time

at v ≤ t:

E
[
Πi(t)|Iv, Iw

]
= −ρσθσξ +

(θ(v)− ξ(v))2

4
+ χ. (40)

Subtracting (40) from (39) yields (37).
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Now we turn to firm j. Using (21) and (24) in the full information profit that is given by

(α + θ(t)− pj(t) + γpi(t))(pj(t)− (c+ ξ(t)))

and taking expectations from the perspective of date w yields

E
[
ΠFI
j (w)|Iw

]
=

1

4

(
σ2
θ − 2ρσθσξ + σ2

ξ

)
(t− w) +

γ

4

(
σ2
θ − σ2

ξ +
γ

4

(
σ2
θ + 2ρσθσξ + σ2

ξ

))
(v − w)

+

(
α + θ(w)− c− ξ(w) + γ(c+ ξ(w))

2− γ

)2

. (41)

If instead firm j planned for the last time at w, then its expected profit at t is given by

E
[
Πj(t)|Iw

]
=

(
α + θ(w)− pj(t) + γE[pi(t)|Iw]

)
(pj(t)− c)

− ξ(w)
(
α− pj(t)

)
− E

[
ξ(t)

(
θ(t) + γpi(t)

)
|Iw
]

(42)

We already derived that

Ej[pi(t)|Iw] = pj(t) =
α + c+ θ(w) + ξ(w)

2− γ
.

Using

pi(t) =
α + c+ θ(v) + ξ(v)

2− γ
− γ

2(2− γ)

(
θ(v)− θ(w) + ξ(v)− ξ(w)

)
,

in (42) and taking expectations delivers that

E
[
Πj(t)|Iw

]
= −ρσθσξ(t− w)− γ

2

(
σ2
ξ + ρσθσξ

)
(v − w)

+

(
α + θ(w)− c− ξ(w) + γ(c+ ξ(w))

2− γ

)2

. (43)

Subtracting (43) from (42) yields (38). �

After having characterized the expected instantaneous loss functions, we can determine how

a firm affects the loss of its rival via planning. A comparison of (37) and (38) then reveals

the following result:
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Corollary 3 Suppose that the latest planning dates of firms i and j are v and w,

respectively, with w ≤ v, and that firms i and j plan for the next time at v′ and w′,

respectively, with v < w′ < v′. At w′ firm i′s instantaneous expected loss increases discretely

if the firms’ strategy variables are strategic complements, i.e., if γ > 0. If firms compete

in strategic substitutes, i.e., γ < 0, the instantaneous expected loss of firm i decreases by a

discrete amount at w′.

The intuition for this result is that in the considered situation only the strategic effect

is at work. This is the case because the strategic effect, unlike the externality effect, is

triggered solely by the rival’s planning decision: when firm j plans, it changes its price in

accordance with the realizations of the shocks. Whether this move decreases or increases the

inaccurateness of the price that the uninformed firm i sets at this instant depends on the

mode of strategic interaction: the inaccurateness increases if γ > 0, whereas it decreases if

γ < 0. Suppose for example that γ > 0. In this case firm j raises its price if the realizations

of θ and ξ are large. But since the shocks are common to both firms, this implies that, due to

the strategic complementarity, firm i’s full information price is now even larger as compared

to the case in which firm j did not plan. By a similar argument, if the realizations of θ and

ξ are low, firm i’s full information price is lower than in the case in which firm j did not

plan. Thus, the price that firm i sets when being uninformed becomes more inaccurate. The

reason why the externality effect does not appear is that by construction of the loss function

the action of the rival is held constant. Thus, firm i does not change the information-induced

externality.

3.3 Structure of Planning Dates

After having determined the expected instantaneous losses for every pattern of planning

dates, we now derive the equilibrium structure of planning dates and the respective inatten-

tiveness periods. Here our aim is to characterize the conditions under which an alternating

or synchronized equilibrium in planning dates exist. First, we turn to the analysis of an

alternating planning equilibrium.
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3.3.1 Alternating Planning

In our framework the issue of existence of an alternating planning equilibrium is particularly

interesting. This is due to the fact that each firm’s first planning date is at t = 0. Thus, in the

beginning firms are by assumption in a synchronous planning pattern. As a consequence, we

characterize under which conditions an alternating planning equilibrium arises endogenously

without imposing this structure of planning dates.13 Given that an alternating planning

equilibrium exists, we determine whether it is unique.

We restrict our attention to the case of symmetric alternating planning equilibria, that is,

to equilibria in which the inattentiveness period denoted by d is the same for both firms

and each firm plans exactly in the middle of the inattentiveness period of the other firm.

Put differently, the time that elapses between a planning date of firm i and a planning date

of firm j is d/2.14 Given our assumption on the strategy space such an equilibrium can

only arise if firm 1’s sequence of planning dates is given by {d, 2d, 3d, ...} and firm 2 chooses

planning mode (A), that is, its sequence of planning dates is

{
d

2
,
3d

2
,
5d

2
, ...

}
.

Before we proceed with the analysis we introduce some notation. Let

Λ1 :=
σ2
θ + 2ρσθσξ + σ2

ξ

4
,

Λ2 :=
σ2
θ + 2ρσθσξ + σ2

ξ

(2− γ)2
,

Γ1 :=
2(σ2

θ + 2ρσθσξ + σ2
ξ )− γ2(2− γ)(ρσθσξ + σ2

ξ )

2(2− γ)2
,

Γ2 := Λ2

(
1− γ

2

)
−
γ2
(
2(1− γ)(σ2

ξ + ρσθσξ) + σ2
ξ − σ2

θ)
)

8(2− γ)2
.

13The only other paper that pursues a similar goal is Lau (2001). However, as mentioned above, he uses
a deterministic framework in which each firm can choose to be committed to a price for one or two periods.
Thus, an asynchronous equilibrium implies that each firm chooses a commitment length of two periods and
adjusts its price exactly in periods when the rival does not.

14Most papers in the literature focussed on this equilibrium adjustment pattern. For example, Hellwig
and Veldkamp (2009) consider a similar planning structure in their model. Maskin and Tirole (1988a;b) and
Lau (2001) also confine their attention to the case of symmetric commitment lengths.

29



3.3 Structure of Planning Dates 3 DYNAMIC INFORMATION CHOICES

Now, suppose that d?a is the length of an inattentiveness interval in an alternating planning

equilibrium. We first analyze for which d?a neither firm 1 nor firm 2 have an incentive to

deviate by marginally shortening or extending this interval to d?a − ε or d?a + ε.

Lemma 5 Suppose that an alternating planning equilibrium exists and let d?a denote the

common equilibrium inattentiveness period. Firm 1 has no incentive to deviate marginally

from d?a if and only if d1
a ≤ d?a ≤ d̄1

a, where d1
a is the unique solution to

d′aΛ2(8− 4γ + γ2)

8erd
′
a

− rerd
′
aK

(erd
′
a − 1)2

− Λ1e
rd′a/2 + Γ1

r(erd
′
a − 1)(erd

′
a/2 + 1)

+
Γ2d

′
a(2e

rd′a − 1)

erd
′
a(erd

′
a − 1)2

= 0, (44)

and d̄1
a is the unique solution to

d̄′aΛ1(8 + 4γ + γ2)

8erd̄′a
− rerd̄

′
aK

(erd̄′a − 1)2
− Λ1e

rd̄′a/2 + Γ1

r(erd̄′a − 1)(erd̄′a/2 + 1)
+

Γ2d̄
′
a(2e

rd̄′a − 1)

erd̄′a(erd̄′a − 1)2
= 0. (45)

Firm 2 has no incentive to deviate marginally from d?a if and only if d2
a ≤ d?a ≤ d̄2

a, where d2
a

is the unique solution to

Λ1d
′
a

2erd
′
a
− Λ1e

rd′a/2(erd
′
a/2 − 1)

r(erd
′
a − 1)

− rKerd
′
a

erd
′
a − 1

− Γ1(erd
′
a/2 − 1)

r
(
erd
′
a − 1

) − (46)

−Γ2d
′
a

(
1

erd
′
a(erd

′
a − 1)

+
ln(1− e−rd′a/2)− ln(1 + e−rd

′
a/2)

e−rd
′
a/2

)
= 0,

and d̄2
a is the unique solution to

Λ1d̄
′
a

2erd̄′a
− Λ1e

rd̄′a/2(erd̄
′
a/2 − 1)

r(erd̄′a − 1)
− Γ1(2erd̄

′
a/2 − 2− rd̄′a)

2rerd̄′a/2(erd̄′a − 1)
− rKerd̄

′
a

erd̄′a − 1
= 0. (47)

Proof See the Appendix.

In Lemma 5 we derive for each firm lower and upper bounds on the potential equilibrium

inattentiveness period d?a. More specifically, d?a must be larger than dia since otherwise firm i

would have an incentive to deviate to d?a+ε. Similarly, the upper bound d̄ia prevents deviations

to d?a − ε. Since the two firms have to choose different planning sequences in order to attain

the alternating pattern, the bounds for firm 1 and firm 2 differ.
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An interesting observation is that for each firm the conditions that determine the upper and

the lower bound on potential equilibrium inattentiveness lengths differ. Due to fact that firm j

is inattentive at a planning date of firm i one may expect that firm i′s incentive to marginally

shorten or extend its inattentiveness length are identical. However, the proposition shows

that this is not the case. The reasons for this result are inherent in the dynamic nature of

the model and in the fact that firms are strategic players in our set-up. Consider the case in

which firm 1 deviates from an inattentiveness length d to d+ε. This deviation is detected by

firm 2 at its next planning date. Due to our assumption on the firms’ strategy spaces, firm 2

knows that firm 1’s inattentiveness length will be d+ ε for the rest of the game. This implies

that the time that elapses between a planning date of firm 2 and the next planning date of

firm 1 becomes longer and longer over time. Thus, after firm 2 detected firm 1’s deviation,

it knows that it will be the better informed firm over a longer time horizon, i.e., one which is

longer than d/2. As a consequence, firm 2 is the worse informed firm for a shorter time. The

reverse is true in the case in which firm 1 deviated to d − ε. As can be seen from (21) and

(22), a firm sets different prices when it is better informed than when it is worse informed

than the competitor. This implies that firm 2 reacts, after it detects a deviation at its next

planning date, differently to the two deviations. Hence, marginally shortening or prolonging

the inattentiveness period are differently profitable for firm 1. In other words, the streams of

expected losses that both deviations induce differ discretely. Therefore, the inattentiveness

length that prevents one or the other deviation must differ as well.

A necessary condition for the existence of alternating planning equilibria is that for each

firm dia ≤ d̄ia. The following lemma states the conditions under which this is the case.

Lemma 6 For firm 1, d1
a < d̄1

a for all ρ and γ 6= 0, while d1
a = d̄1

a if γ = 0. For firm 2,

d̄2
a T d2

a if ρ T max [ρ̂,−1] ,

where ρ̂ is the unique solution to

− Λ1

2(1− e−rda)
−

Γ2

(
ln(1 + e−rda/2)− ln(1− e−rda/2)

)
e−rda/2

= 0, (48)

and da is the solution to (46) and (47) at ρ = ρ̂.15

15Note that the left-hand side of (48) depends on ρ since Λ1 and Γ2 depend on ρ.
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Proof See the Appendix.

The result stated in Lemma 6 shows that unless γ = 0 there exists a range of potential

equilibrium inattentiveness periods for firm 1 that are robust against a marginal deviation.

This is not true for firm 2: If ρ is sufficiently negative, this range might be empty. The reason

for this result is the following. Generally, a negative correlation implies longer equilibrium

inattentiveness intervals because the shocks partially offset each other. Now, this effect has

a different impact on the bounds of firm 2 since its first planning interval is only half the

length of its future ones under planning mode (A). Thus, firm 2 has a stronger incentive

to extend its planning period than to reduce it. This implies that the lower bound shifts

upward more strongly than the upper bound as the correlation between the shocks decreases.

Now, if the correlation is sufficiently negative, it may happen that the range of potential

equilibrium inattentiveness intervals is empty.

Moreover, it is important to note that for γ = 0, i.e., the case in which the firms’ demands

are unrelated, there is a range of potential optimal inattentiveness periods for firm 2, whereas

for firm 1 there is a unique optimal solution. For firm 1 this result is a natural implication of

the fact that γ = 0. Since the firm is a monopolist, there is no interaction with firm 2 on the

product market. Therefore, its deviation incentives are the same for marginally extending

or shortening its inattentiveness period. In this situation, i.e., for γ = 0, the firms are in

principle alike. Thus, we should expect the same result for firm 2. However, in order to reach

the alternating planning pattern we oblige firm 2 to choose planning mode (A). This implies

that for firm 2, even though there is no strategic interaction with firm 1, there are multiple

inattentiveness periods that are robust against a marginal deviation. This finding highlights

the importance of considering non-marginal deviations in our set-up. In this particular case,

i.e. γ = 0, we get the result that firm 2 will choose the same inattentiveness period as firm

1 and the planning mode (S).

Finally, we combine the existence conditions for both firms. This is done in the next lemma:
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Lemma 7 Marginal deviations do not preclude the existence of an alternating planning

equilibrium if and only if ρ ≥ max [ρ̌,−1] where ρ̌ ≥ ρ̂ solves

Γ2da

(
2

erda(erda − 1)2
+

ln(1− e−rda/2)− ln(1 + e−rda/2)

e−rda/2

)
−Λ1da(8 + 4γ + γ2 − erda(2 + γ)2)

8erda(erda − 1)
= 0, (49)

and da is the solution to (46) and (47) at ρ = ρ̌.

Proof See the Appendix.

So, when only considering marginal deviations, we obtain that an alternating planning

equilibrium exists if ρ is not too negative. The reason is the same as the one explained

after Lemma 6. However, the critical ρ is now given by ρ̌, which is weakly larger than ρ̂ as

determined in Lemma 6. This is due to the fact that the upper bound of firm 1′s equilibrium

range, d̄1
a, is strictly below firm 2′s upper bound, d̄2

a. As shown in Lemma 6, if ρ is sufficiently

negative, d2
a may become larger than d̄2

a. But the fact that d̄1
a < d̄2

a implies that d2
a is larger

than d̄1
a as well. Thus, the requirement that an alternating planning equilibrium exists if and

only if the ranges [d1
a, d̄

1
a] and [d2

a, d̄
2
a] overlap implies a tighter lower bound on ρ compared

to the condition that ensures that firm 2′s range is non-empty.

So far we only considered marginal deviations. Now, we turn to the analysis of non-marginal

deviations. Here we consider deviations for firm 1 to period lengths of d[1 ± (l/m)], for

natural numbers l ≤ m. The reason why we confine the analysis to fractional deviations

is the following. With fractions l/m, we can approximate any real number between zero

and one arbitrarily closely. In addition, the stream of expected losses that is induced by

the fractional deviations allows us to concisely characterize the bounds on the range of

equilibrium inattentiveness periods. Similarly, for firm 2, we consider deviations to period

lengths of d[1 ± (l/m)] both in the (S) and the (A) mode.

The following lemma states that for r close to 0 we can without loss of generality concentrate

on one particular type of non-marginal deviation: firm 2 deviates to planning mode (S) but

keeps d?a. In the remainder, we will refer to this type of deviation as the “RTS deviation”.16

16The acronym RTS abbreviates “return to synchronous” planning.
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Lemma 8 Any non-marginal deviation by firm 1 and firm 2 in which firm 2 remains in

the (A) planning mode does not exclude potential alternating planning equilibria for r close

to 0. Denote by S the set of potential alternating planning equilibria that survive the RTS

deviation and by S′ the set of potential alternating planning equilibria that survive deviations

of the following type: Firm 2 deviates to the (S) planning mode and chooses (1 + l/m)d.

Then, S = S′ for r close to 0.

In particular, the RTS deviation does not exclude d?a if

rK ≤ d?a
8e3rd?

a(2− γ)2

(
e5rd?

a/2
(
4γ2(σ2

θ + ρσθσξ) + 2γ3(σ2
ξ + ρσθσξ)− 4Λ1(γ4 + 4)

)
(50)

+8Λ1e
2rd?

a(2− γ)2 + 4(1 + erd
?
a/2 − erd?

a)γ2
(
Λ1γ

2 − (σ2
ξ + ρσθσξ)γ + σ2

ξ − σ2
θ

))
.

Proof See the Appendix.

The result stated in Lemma 8 allows us, in case r is sufficiently close to 0, to concentrate

on the deviation to the sequence {d?a, 2d?a, 3d?a, ...} by firm 2 when considering non-marginal

deviations. This allows us to characterize the conditions for equilibrium existence in a concise

way. It is intuitive that the deviation of firm 2 to the planning mode (S) with the optimal

inattentiveness length of firm 1 eliminates many potential equilibria. This is due to the

combination of the following two facts: First, firm 2 is per se more prone to deviate from

the alternating planning equilibrium as its first inattentiveness period is only half the length

of its future ones. Second, the RTS deviation constitutes the only possibility for firm 2 to

unilaterally implement a synchronous planning pattern at a potential alternating equilibrium

planning frequency.

The result that we can concentrate on the RTS deviation can be shown analytically for

r → 0 and, by continuity, this argument extends to r in a neighborhood of zero. However,

computations suggest that even for r > 0 the RTS deviation excludes the largest set of

potential equilibria.

Before we proceed we define ρ+ as the ρ for which (50) holds with equality. Now, we combine

the marginal and non-marginal “no-deviation” conditions in order to state the main result

of this subsection:
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Proposition 2

(i) For r close to zero, an alternating planning equilibrium does not exist if γ ≥ 0.

(ii) Suppose γ < 0. For r close to zero, an alternating planning equilibrium exists if ρ ≥

max[ρ̌, ρ+], and the maximum range of equilibrium inattentiveness periods is given by d?a ∈

[d1
a, d̄

1
a].

(iii) For r → 0, the alternating planning equilibrium is unique, that is d1
a = d̄1

a = d?a, and

exists if and only if γ < 0 and

ρ ≥ max

[
−
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
,−

4(4− γ)(σ2
θ + σ2

ξ )− γ2(11σ2
ξ − σ2

θ) + 6γ3σ2
θ

2σθσξ(16− 4γ − 5γ2 + 3γ3)
,−1

]
.

Proof See the Appendix.

The proposition consists of three parts. First, it states that an alternating planning equi-

librium cannot exist if products are strategic complements. This is the case because the

non-marginal deviation characterized in Lemma 8 eliminates all potential equilibria with

γ ≥ 0. The reason for this closely resembles the strategic effect described above, i.e., that

an uninformed firm’s optimal price becomes more inaccurate when the rival plans. Thus, for

γ > 0 there is a tendency to synchronize planning decisions. This is particularly pronounced

if the degree of strategic complementarity is large. In addition, if γ is relatively small in

absolute value, firm 2 prefers a planning sequence with equal period lengths, that is, it

prefers the (S) to the (A) mode since this would be its optimal choice if it was a monopolist.

In conjunction, these two effects imply that for γ > 0 there exists no alternating planning

equilibrium.

Parts (ii) and (iii) of the proposition state that if products are strategic substitutes, an

alternating planning equilibrium exists if the correlation between the shocks is not too

negative. The intuition behind this result is a combination of the strategic and the externality

effect, similar to the one explained in Section 2.2. First, due to the strategic effect, if γ < 0

an uninformed firm’s price becomes more accurate when the rival plans. Thus, there is

an inherent tendency towards alternating planning. Second, by planning, firm j induces an

externality on firm i. Suppose for example that σθ > σξ. In this case the informed firm

j adjusts its price (in expectation) in the direction of the shock to the intercept. Thus,

the covariance between pj and the realization of the cost shock is negative, which implies,
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together with γ < 0, that firm j exerts a negative (expected) externality on firm i. Since

the variance of the shocks increases linearly in the time that elapses after a planning date

of firm i, this externality is the larger the longer the time distance between firm i’s latest

planning date and the next planning date of firm j. In order to reduce this externality, firm

i is inclined to move closer to the planning date of firm j. Thereby, it destroys the potential

equilibrium.

Interestingly, as can be seen from statement (iii), in the limit as r tends to zero, one of

the conditions that ρ has to meet so that an alternating planning equilibrium exists is

precisely the one for which information acquisition decisions are strategic substitutes in the

example presented in Section 2.2. This shows that the interplay between the strategic and the

externality effect is present in the dynamic game as well and that its implications resemble

the ones given in the example.

Part (iii) of the proposition also states that the alternating planning equilibrium is unique

for r → 0. In this case the two marginal “no-deviation” conditions of player 1 are identical.

The reason for this is the following: If the future is undiscounted, the difference between

marginally extending and shortening the inattentiveness period vanishes since the time

period for which this difference matters – the present – becomes negligible relative to the

future. Of course, this is not the case if r > 0, i.e., in this case there are multiple alternating

planning equilibria as stated in Part (ii) and the maximum range is the one that is bounded

by the marginal “no-deviation” conditions of player 1.

The proposition also implies that γ < 0 is only a necessary but not a sufficient condition for

the existence of an alternating planning equilibrium. For example, one can check numerically

that if γ is close to zero, such an equilibrium does not exist since (50) can never be satisfied.

However, our numerical computations confirm that the range of γ for which alternating

planning equilibria exist is quite sizeable, even if r is strictly positive, and often starts at

relatively small absolute values of γ, such as −0.1.

Having characterized the equilibria of the game and under which conditions they exist we

are now in a position to determine how the equilibrium inattentiveness lengths change with

the degree of strategic substitutability. This is of interest since it helps to discuss in more

detail how strategic interaction shapes the equilibrium outcome given that there is a finite
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number of players. In the exposition we focus on the equilibria in which the bounds of the

equilibrium range are determined by the marginal deviations of player 1. We obtain the

following results:

Proposition 3 Suppose that γ < 0 and ρ are so that the range of alternating planning

equilibria is non-empty and bounded by the marginal “no-deviation” conditions of firm 1.

(i) For r → 0, d?a is strictly increasing in |γ|.

(ii) For r positive but small the equilibrium range of inattentiveness periods, [d1
a, d̄

1
a], becomes

strictly larger as |γ| increases.

Proof See the Appendix.

The first result states that, in the limit as r tends to zero, d?a increases as |γ| increases. Put

differently, if the degree of strategic substitutability rises, i.e., γ becomes more negative,

firms choose longer inattentiveness lengths in equilibrium. Although we can only show this

analytically for r → 0, the result that the equilibrium range of inattentiveness periods shifts

upward as |γ| increases is for r > 0 computationally robust for most parameter constellations.

The comparative static effect with respect to the degree of strategic substitutability differs

from the one in Hellwig and Veldkamp (2009). They find that an increase in the degree

of strategic substitutability decreases equilibrium inattentiveness lengths. This difference

stems from the fact that the degree of strategic substitutability has different implications

on the impact of uncertainty in the two models. In their model a firm’s objective is to

minimize the expected distance between its price and a target price. The latter is a weighted

average of the shock realization and the average of the other firms’ prices where the weights

are determined by the substitutability parameter. Now, as the degree of substitutability

increases, the target price puts more weight on the shock realization. Ultimately, this implies

that in the alternating planning equilibrium inattentiveness periods become shorter. To

the contrary, in our model the equilibrium inattentiveness periods become longer as the

degree of strategic substitutability increases. The intuition behind our result is the following.

At its planning date firm j will adjust its price to the realization of the shocks. Since

γ < 0 the strategic effect is so that firm j′s planning decision renders an uninformed firm’s

price less inaccurate which reduces firm i′s incentive to plan. This effect increases in the
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degree of strategic substitutability. As a consequence, the firms’ inattentiveness length in an

alternating planning equilibrium increases in the degree of strategic substitutability.

As mentioned above, one can demonstrate computationally that even if r is strictly positive,

an increase in |γ| increases both d1
a and d̄1

a. The only exception can occur in the case in which

both ρ and γ are sufficiently negative and σξ << σθ. In this case d?a decreases in |γ|. This

result is driven by the externality effect. By planning firm j exerts a negative (expected)

externality on firm i, and firm i can ameliorate this externality by moving closer to the

planning date(s) of firm j. Thus, firm i has a stronger incentive to set a marginally shorter

inattentiveness length, and this incentive increases in |γ|. As a consequence, the lower bound

falls as |γ| increases.

Finally, the second result of Proposition 3 states that the range of equilibria widens as the

degree of strategic substitutability increases. Thus, although both d1
a and d̄1

a usually increase

as |γ| increases, d̄1
a increases by a larger extent than d1

a. The intuition behind this result can

be easily gained from the discussion following Lemma 5. As pointed out there, the difference

between the two bounds stems from the fact that firm j reacts in the future in a different way

if firm i shortens or extends its inattentiveness interval. Clearly, the extent of this difference

depends on the degree of strategic interaction, i.e., on |γ|. If |γ| becomes larger, firm j reacts

more strongly to each deviation. Ultimately, this increases the difference between the two

bounds.

After having characterized the conditions for existence of an alternating planning equilib-

rium, we now turn to the analysis of synchronous planning equilibria.

3.3.2 Synchronized Planning

In order to characterize the set of inattentiveness intervals for which synchronous planning

is potentially an equilibrium we set out by considering unilateral marginal deviations. More

specifically, we analyze whether a firm has an incentive to deviate from a synchronous

planning pattern with an inattentiveness interval of length d by either marginally shortening

or extending the current inattentiveness period. The set of synchronous inattentiveness

periods for which marginal deviations are not profitable is characterized in the following

lemma.
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Lemma 9 Suppose that a synchronized planning equilibrium exists and let d?s denote a

common synchronous equilibrium inattentiveness period. Then d?s is bounded above by d̄s,

where d̄s solves

d̄sΛ1 − rK −

(
erd̄s − 1

rerd̄s

)
Γ1 = 0, (51)

and d?s is bounded below by ds, where ds solves

e−rds

(
dsΛ2 −

Λ1

r

)
− rK

erds − 1
+
dse
−rds

erds − 1
Γ1 = 0. (52)

Proof See the Appendix.

It is evident from Lemma 9 that a synchronous planning equilibrium may exist only if d̄ ≥ d.

We formulate the condition that has to be met so that a synchronous planning equilibrium

potentially exists in terms of a threshold correlation stated in the following lemma.

Lemma 10 If strategy variables are strategic substitutes and the intercept shock is more

volatile than the cost shock, i.e., γ < 0 and σθ > σξ, then d̄s ≥ ds if −1 ≤ ρ ≤ ρ̂, where ρ̂ is

bounded above by

ρ′ = −
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
. (53)

If strategy variables are strategic complements and the intercept shock is less volatile than

the cost shock, i.e., γ > 0 and σθ < σξ, then d̄s ≥ ds if ρ ≥ max{−1, ρ̂}.

If γ > 0 and σθ > σξ then d̄s ≥ ds for all ρ ∈ [−1, 1].

Finally, if γ < 0 and σθ < σξ then d̄s ≤ ds for all ρ ∈ [−1, 1].

Proof See the Appendix.

Put differently, Lemma 10 states that if strategy variables are strategic complements and

the intercept shock is less volatile than the cost shock, the synchronous equilibrium does

not exist for a sufficiently negative correlation, that is for −1 ≤ ρ ≤ ρ̂. In addition, if

strategy variables are strategic substitutes and the intercept shock is more volatile than the

cost shock, simultaneous planning can be an equilibrium if −1 ≤ ρ ≤ ρ̂.
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The reason for our result can be most easily seen by alluding to the two-stage game analyzed

in Section 2.2: the upper bound of the threshold correlation coincides with the condition that

identifies the parameter regions in which the externality effect overcompensates the strategic

effect. Thus, if firms compete in strategic complements, the expected negative externality

that firms exert on each other when planning jointly may be so large that one firm is, for

every inattentiveness interval, better off by acquiring information either shortly before or

after the other firm. To the contrary, if strategy variables are strategic substitutes, it may

be profitable for a firm to synchronize its planning decision because this reduces the expected

negative externality that it has to endure.

Lemma 9 and Lemma 10 identify and characterize the candidates for a stationary synchro-

nized planning equilibrium. As mentioned before, the prerequisite in deriving the bounds on

the optimal inattentiveness period was that for a given behavior of one firm the other firm

may only deviate marginally from the candidate inattentiveness interval. Thus, it remains

to analyze whether the candidate equilibria are robust to non-infinitesimal deviations.

Combining the marginal and non-marginal “no-deviation” conditions allows us to state the

main result of this subsection:

Proposition 4 A synchronized planning equilibrium exists for r close to zero if and only

if γ > 0 and d̄s > ds. In such an equilibrium, any (common) inattentiveness period is given

by d?s ∈ [dls, d
u
s ], where

dls =
2
√

6(2− γ)
√
Km?√

Θ(m? + 1)
, (54)

dus =
8
√

6
√
Km?√

Θ(m? + 1)
, (55)

with

Θ = (ρσθσξ + σ2
ξ )(2 +m?)2γ3 − ((7 + 5m?)σ2

ξ + 6ρσθσξ(m
? + 1) + σ2

θ(m
? − 1))γ2

+4(σ2
θ + 2ρσθσξ + σ2

ξ )(m
? − 1)(γ(m? − 1) + 3),

m? =

[√
4(ρσθσξ + σ2

ξ )γ
3 + (σ2

θ − 6ρσθσξ − 7σ2
ξ ) + 4(σ2

θ + 2ρσθσξ + σ2
ξ )(3− γ)

γ(2(ρσθσξ + σ2
ξ )γ

2 − (σ2
θ + 6ρσθσξ + 5σ2

ξ )γ + 4(σ2
θ + 2ρσθσξ + σ2

ξ ))

]
,(56)

that is, m? is the closest integer to the right-hand side of (56).
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Proof See the Appendix.

Proposition 4 states that a synchronous planning equilibrium cannot exist if products are

strategic substitutes. Here, the non-marginal deviations eliminate all potential synchronous

planning equilibria for γ < 0. Reversely, when products are strategic complements, the

proposition implies that for r → 0 the non-marginal deviations do not exclude the existence

of a synchronous planning equilibrium whenever it is robust against the marginal deviations.

Instead, the non-marginal deviations only tighten the upper and lower bounds of the range

of equilibrium inattentiveness periods, that is, the range of synchronous equilibria shrinks

from [ds, d̄s] to [dls, d
u
s ]. By continuity, this argument extends to discount rates that lie in a

neighborhood of zero.

Though we can show existence of the synchronous planning equilibrium analytically only for r

in a neighborhood of zero, numerical simulations suggest that the result stated in Proposition

4 is robust for r strictly larger than zero. More specifically, it turns out that even for r > 0,

dls and dus remain to be the tightest bounds on the range of common inattentiveness periods

that constitute synchronous planning equilibria.

To sum up, our analysis shows that after combining marginal and non-marginal deviations

synchronous planning equilibria exist only if γ > 0 while alternating planning equilibria

exist only if γ < 0. Thus, the prediction of this model for the existence of synchronous and

alternating planning equilibria is clear-cut. In addition, both types of equilibria only exist

if the correlation between the demand and the cost shock is not too negative.

4 Conclusion

In this paper we considered an infinite-horizon dynamic duopoly model in which firms can

choose to costly acquire and process information about the realization of a common demand

and a common cost shock. We identify the effects that are decisive for the firms’ choice

to synchronize or stagger their planning decision. These are the strategic effect and the

externality effect. The strategic effect determines if a firm’s price, when being inattentive,

becomes more or less inaccurate when the rival plans at the same instant. The externality

effect determines how a firm, via planning, can change the expected externality that its
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rival induces. This externality effect is inherent in the nature of a model with a discrete

number of players and cannot occur with a continuum of players. We show that due to

the combination of these two effects, alternating planning equilibria exist only if products

are strategic substitutes while synchronous planning equilibria exist only if products are

strategic complements. In addition, we find that in both classes multiple equilibria with

different inattentiveness lengths exist. Finally, we show that the equilibrium inattentiveness

length tends to be shorter, the larger is the degree of strategic complementarity. This is the

case because if firm j plans and adjusts its price in accordance with the shocks, firm i’s price

when staying inattentive becomes more incorrect, and so it has an incentive to plan earlier.

We restricted our attention to the case of common demand and cost shocks. As mentioned

above, this is reasonable if firms operate in the same market area and procure inputs from the

same suppliers. However, in some markets firms may face idiosyncratic shocks, i.e., because

they buy inputs from different suppliers or, due to location differences, their demands are

affected in different ways. An interesting direction for future research would be to allow

for such idiosyncratic shocks. In this case, when planning, a firm observes its own shock

realizations but cannot fully infer the shock realizations of its rival from this information. It

is of interest to analyze how this affects the extent of the strategic and the externality effect

and, more specifically, if the equilibrium inattentiveness lengths become shorter or longer,

and how this is affected by the degree of strategic complementarity.

A second extension of our analysis could be to consider the case in which firms can coordinate

their planning decisions. One could imagine for example that firms are still rivals at the

product market at each instant but have sourced out their planning decisions to a third

party that acts as a consultant and is payed according to profits. In this case, the third

party may act as a collusion device in planning dates. It is then possible to determine if and

how the structure of planning dates that maximizes joint profits differs from the equilibrium

one. This can give new insights into the interplay of the strategic and the externality effect,

in particular, if the effects are favorable or detrimental to firms.

As mentioned in the introduction, the analysis presented in this paper is the first to study

the implications of rational inattention in a model with a finite number of players. To do

so we used the formulation of inattentiveness developed in Reis (2006b). In this formulation

firms, when deciding to be attentive, become aware of all relevant information. Although
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extreme, this feature has the advantage of making the model highly tractable. However, a

different theory of rational inattention was proposed by Sims (2003). In his model agents

cannot attend to all information because of limited capacity. This model was used e.g., by

Moscarini (2004) to study optimal sampling of a decision maker and by Mackowiak and

Wiederholt (2009) who analyze a model with an infinite number of firms which face an

aggregate and an idiosyncratic shock but cannot fully absorb both shocks due to limited

capacity. A similar idea as in Mackowiak and Wiederholt (2009) can also be incorporated

in our structure, i.e., firms can only absorb the cost or the demand shock at each instant

but not both. It is then possible to analyze to which shock firms pay more attention and

how this is affected by the competitiveness of the market. However, such a model does not

allow us to draw conclusions about the optimal inattentiveness period. Nevertheless, it is

of interest to compare the two approaches and to determine if the results concerning the

mode of strategic interaction and the equilibrium structure of planning dates obtained in

this chapter are also valid under this alternative formulation of rational inattention.
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5 Appendix

Proof of Lemma 5

Let us consider the following candidate equilibrium in which firms plan in an alternating

and sequential order: The inattentiveness length of each firm is given by d ∈ R+ and firm i

plans exactly in the middle of firm j’s inattentiveness period, that is the time that elapses

between a planning date of firm i and a planning date of firm j is d/2. This sequence of

planning dates can only be an equilibrium if an infinitesimal deviation is not profitable for

firm i. There are two forms of infinitesimal deviations. The first is that firm i chooses a

longer inattentiveness period, that is it deviates to d′ = d +4, with 4 > 0. The second

infinitesimal deviation is that firm i chooses a shorter inattentiveness period d′′ = d−4.

Firm 1

We start with firm 1. In order to derive the “no-deviation” conditions we have to compare

firm 1′s expected loss from following the proposed equilibrium sequence with the expected

losses from the sequences D′ = {d′, 2d′, 3d′, ...} and D′′ = {d′′, 2d′′, 3d′′, ...}.

Expected loss for D

When determining the expected loss from following the equilibrium strategy we have to

distinguish between the case where firm 1 is the better informed firm since it was the last

one that planned, and the case where it is the worse informed firm since firm 2 was the last

to plan. In the first case we know from Lemma 4 that firm 1′s expected instantaneous loss

at any instant t, with nd ≤ t < (n+ 1/2)d, for all n ∈ N0, is given by

E[Le1|I0] = Λ1τ,

where τ denotes the time that elapsed since the last planning date, that is τ = t − nd, for

all n ∈ N0. In the second case, we know from Lemma 4 that firm 1′s expected instantaneous

loss at any instant t, with (n+ 1/2)d ≤ t < (n+ 1)d, for all n ∈ N0, is given by

E[Le2|I0] = Λ1τ +
(2 + γ)2

4
Λ1
d

2
,
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where τ denotes the time that elapsed since the last planning date of firm 2, that is τ =

t− (n+ 1/2)d, for all n ∈ N0.

Calculating the expected loss implied by the candidate equilibrium inattentiveness interval

we obtain

E[L(D)|I0] =
8erd + rdγ(4 + γ)(erd/2 − 1)− 8(1 + rd)

8r2(erd − 1)
Λ1 +

K

erd − 1
. (57)

Expected loss for D′

In order to consistently transform expected profits into expected losses we have to scale the

expected stream of profits under the infinitesimal deviations by the equilibrium expected

full information profits. For that reason we first write out these full information profits. In

case firm 1 is the better informed firm, that is, it has planned at nd, n ∈ N while firm 2 has

planned at (n− 1/2)d, n ∈ N, and we look at an instant t with nd ≤ t < (n+ 1/2)d the per

instant full information profit can be written as

E[ΠFI(t) |nd ≤ t < (n+ 1/2)d] =
(α− (1− γ)c)

(2− γ)2
+ Λ1(nd+ τ) (58)

+ γ
(4(σ2

θ − σ2
ξ ) + 2γρσθσξ + γ(3σ2

ξ − σ2
θ)

4(2− γ)2

)nd
2
,

where τ = t−nd. Similarly, in case firm 1 has planned at nd, n ∈ N while firm 2 has planned

at (n+ 1/2)d, n ∈ N, and we look at an instant t with (n+ 1/2)d/2 ≤ t < (n+ 1)d the per

instant full information profit can be written as

E[ΠFI(t) | (n+ 1/2)d/2 ≤ t < (n+ 1)d] =
(α− (1− γ)c)

(2− γ)2
+ Λ1((n+ 1/2)d+ τ) (59)

+ γ
(σ2

θ − σ2
ξ + Λ1

4

)(2n+ 1)d

2
+ γ2

(2(σ2
θ − σ2

ξ ) + 2γ(σ2
ξ + ρσθσξ) + γ2Λ1

4(2− γ)2

)
nd,

where τ = t− (n+ 1/2)d.

Before we turn to the different intervals we introduce some notation. Let m̃ ∈ N denote a

natural number for which m̃ ≤ d/(24) and (m̃+ 1) > d/(24).
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In the following we derive the expected loss from the sequence D′. First, we turn to the

expected instantaneous loss that firm 1 incurs in the interval [d, d′] if it deviates to the

sequence D′.17

From d to d′ = d+4

If firm 1 deviates to D′ then its expected profit function at instant d+ τ , τ ∈ [0,4) is given

by

E[Π(d+ τ)|I1
0 ] = (α− p1(d+ τ) + γE[p2(d/2 + τ)|I1

0 ])(pi(d+ τ)− c)

− E[ξ(d+ τ)(θ(d+ τ) + γp2(d/2 + τ))|I i0]. (60)

In this interval firm 1 is the firm that has more outdated information. However, since firm 2

has last planned at d/2, it has not yet detected firm 1′s deviation. Thus, firm 2 still believes

that firm 1 plans after d periods and, therefore, 2 thinks that the information set of firm 1

is Id. Hence, as shown in Lemma 3 firm 2′s optimal price at d+ τ is given by

p?2(d+ τ) =
α + θ(d/2) + c+ ξ(d/2)

2− γ
. (61)

Therefore, since firm 1 has worse information than firm 2 at instant d + τ , τ ∈ [0,4), firm

1’s optimal price is

p?1(d+ τ) = E[p?2(d+ τ)|I1
0 , I

2
0 ] =

α + c

2− γ
. (62)

Using (62) and (61) in (60) yields that firm 1′s expected instantaneous profit under D′ in

the interval t ∈ [d, d′] is given by

E[Π?(d+ τ)|I1
0 , I

2
0 ] = −

γ(2ρσθσξ + σ2
ξ )

2− γ
d− ρσθσξτ +

(α− (1− γ)c)

(2− γ)2
. (63)

Subtracting (63) from (58) with n = 1 yields that firm 1′s expected instantaneous loss in

the period [d, d+4) is

E[L′1|I0] = Λ1(d+ τ) +
γ(4− γ)

4
Λ2
d

2
, (64)

17Note that the expected loss from the candidate equilibrium sequence D and from the deviation sequence
D′ in the interval t ∈ [0, d) is the same since D′ means that planning is postponed by 4.
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with τ ∈ [0,4).

From d′ to 3d/2

In this time interval firm 2 still believes that firm 1 sticks to the proposed equilibrium

strategy. Thus, its optimal price is at each instant given by (61). Firm 1 acquires new

information at instant d′ = d+4. Therefore, its expected profit function in this interval is

given by

E[Π(d′ + τ)|I1
d′ ] = (α− p1(d′ + τ) + γp2(d/2 + τ))(p1(d′ + τ)− c)

− E[ξ(d′ + τ)(θ(d′ + τ) + γp2(d/2 + τ))|I1
d′ ], (65)

with τ ∈ [0, d/2−4). Proceeding in the same way as before, we obtain that

p?1(d′ + τ) =
α + θ(d′) + c+ ξ(d′)

2
+
γ
(
α + θ(d) + c+ ξ(d)

)
2(2− γ)

(66)

Using (66) and (61) in (65), taking expectations and subtracting the resulting expression

from (58) with n = 1 yields for the interval [d′, 3d/2) the following instantaneous loss function

E[L′2|I0] = Λ1τ, (67)

with τ ∈ [0, d/2−4).

From 3/2d to 2d

At 3d/2 firm 2 detects that firm 1 deviated to the sequence D′. This implies that firm 2

knows that firm 1′s consecutive planning dates will be at nd′, for n ∈ N \ {1}. As firm 2 is

better informed in the interval [3/2d, 2d) than firm 1, the latter’s expected profit function

equals

E[Π(3d/2 + τ)|I1
d′ ] = (α− p1(3d/2 + τ) + γE[p2(3d/2 + τ)|I1

d′ ](p1(3d/2 + τ)− c)

− E[ξ(3d/2 + τ)(θ(3d/2 + τ) + γpj(3d/2 + τ))|I1
d′ ], (68)
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with τ ∈ [0, d/2). As a consequence the firms’ optimal prices in this period are given by

p?2(3d/2 + τ) =
α + θ(3d/2) + c+ ξ(3d/2)

2
+
γ
(
α + θ(d′) + c+ ξ(d′)

)
2(2− γ)

, (69)

p?1(3d/2 + τ) = E[p?2(3d/2 + τ)|I1
d′ ] =

α + θ(d′) + c+ ξ(d′)

2− γ
. (70)

Using (70) and (69) in (68), taking expectations and subtracting the resulting expression

from the corresponding full information profit, which is given by (59) with n = 1, yields the

instantaneous expected loss in this interval, which is given by

E[L′3|I0] = Λ1
(2 + γ)2

4

d

2
− Γ14+ Λ1τ, (71)

with τ ∈ [0, d/2).

Due to the fact that firm 2 knows firm 1′s consecutive planning dates, the instantaneous

expected loss in each interval [(n+ 1/2)d, (n+ 1)d] is given by

E[L′3|I0] = Λ1
(2 + γ)2

4

d

2
− Γ1n4+ Λ1τ,

with τ ∈ [0, d/2) and n ∈ {2, ..., m̃}.

From 2d to 2d′ = 2(d+4)

Since firm 2 detects at 3d/2 that firm 1 deviated and firm 2 does not acquire new information

between 2d to 2d′, the expected profit that firm 1 earns between 2d to 2d′ is again given by

(68) and the optimal prices are as in (69) and (70). However, when determining the expected

loss in this interval, we need to use the full information profit in (58) with n = 2. Doing so

we obtain

E[L′4|I0] = Γ2d− Γ14+ Λ1τ, (72)

with τ ∈ [0, 24).

As above, since firm 2 knows firm 1′s consecutive planning dates, the instantaneous expected

loss in each interval [nd, nd′], for n ∈ {2, ..., m̃}, is given by

E[L′4|I0] = Γ2d− Γ1n4+ Λ1τ,
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with τ ∈ [0, n4) and n ∈ {2, ..., m̃}.

From nd′ = n(d+4) to (n+ 1/2)d, for n ∈ {2, ..., m̃}

In these intervals firm 2′s information set is more outdated. This was also the case in the

interval between d′ and 3d/2. But from Lemma 2 and Lemma 3 we know that the firm

with the worse information sets the same price independent of the exact planning date of

the better informed firm. Therefore, the expected instantaneous loss of firm 1 is in every

interval [nd′, (n+ 1/2)d), for n ∈ {2, ..., m̃}, given by

E[L′5|I0] = Λ1τ, (73)

with τ ∈ [0, d− n4) and n ∈ {2, ..., m̃}.

We can now compare the expected loss from the sub-sequence D′m̃ = {d′, ..., m̃d′} with the

one of the equilibrium sequence. The expected loss from the sub-sequence D′m̃ is given by

E[L′(D′m̃)|I0] = e−rd
∫ 4
τ=0

e−rτ
(

Λ1(d+ τ) +
γ(4− γ)

4
Λ2
d

2

)
dτ +K

m̃∑
n=1

e−rnd
′

+
m̃∑
n=1

(
e−rnd

′
∫ d/2−n4

τ=0

e−rτΛ1τdτ

)

+
m̃∑
n=1

(
e−r(n+1/2)d

∫ d/2

τ=0

e−rτ
(

Λ1
(2 + γ)2

4

d

2
− Γ1n4+ Λ1τ

)
dτ

)

+
m̃∑
n=2

(
e−rnd

∫ n4

τ=0

e−rτ
(

Γ2d− Γ1n4+ Λ1τ
)
dτ

)
. (74)

Subtracting the expected loss implied by the equilibrium sub-sequence Dm̃ = {d, ..., m̃d},

denoted by E[L(Dm̃)|I0], from (74) yields

e−rd
∫ 4
τ=0

e−rτ
(

Λ1d+
γ(4− γ)

4
Λ2
d

2

)
dτ +K

( m̃∑
n=1

e−r(nd
′) −

m̃∑
n=1

e−r(nd)
)

−
m̃∑
n=1

(
e−rnd

′
∫ d/2−n4

τ=0

e−rτΛ1n4dτ

)
−

m̃∑
n=1

(
e−r(n+1/2)d

∫ d/2

τ=0

e−rτ
(

Γ1n4
)
dτ

)

+
m̃∑
n=2

(
e−rnd

∫ n4

τ=0

e−rτ
(

Γ2d− Γ1n4
)
dτ

)
+ e−rm̃dΥ, (75)
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where Υ denotes the difference in expected losses beyond date m̃d. This difference in

expected losses is at each instant t > m̃d bounded below by the expected instantaneous loss

implied by the sequence D. We get this by assuming the best possible case for the deviation,

that is, the expected instantaneous loss that is implied by the sequence D′ is zero from date

m̃d onwards. In addition, we know that the instantaneous loss from the sequence D is finite

since firm i optimally chooses to plan after some time length. Thus, at each instant t > m̃d

the difference in expected losses is bounded below by

−e−rτ
(

1 +
(2 + γ)2

4

)
Λ1
d

2

for τ ∈ (0, d] and by

−e−rdK

at a planning date d. Both expressions are finite because d is finite.

In order to determine the per instant difference in expected losses in the time period before

date m̃d, we divide the first five terms in (75) by n4, where n is chosen appropriately for the

different intervals. Then, we take the limit 4 → 0. The last term in (75) e−rm̃dΥ vanishes

as 4 → 0 implies that m̃ → ∞ since the future is discounted at rate r > 0. Therefore, we

can concentrate on the first five terms when determining the critical inattentiveness length

such that deviating to the sequence D′ is profitable.

We obtain that the loss from deviating to D′ is lower than the lifetime expected loss from

the proposed equilibrium sequence D if d ≤ d1
a, where d1

a solves

d′aΛ2(8− 4γ + γ2)

8erd
′
a

− rerd
′
aK

(erd
′
a − 1)2

− Λ1e
rd′a/2 + Γ1

r(erd
′
a − 1)(erd

′
a/2 + 1)

+
Γ2(2erd

′
a − 1)

erd
′
a(erd

′
a − 1)2

= 0. (76)

We now turn to existence and uniqueness of d1
a. Consider first the case of d′a → 0. In this

case the second and the fourth term of the left-hand side of (76) are the dominating terms.

Since rK > 0, the second term goes to −∞ as d′a → 0 while the fourth term goes to ∞ or

−∞ dependent on the sign of Γ2. So we have to determine which of the two terms tends to

the extreme value at a faster rate. To do so we differentiate the two terms with respect to

d′a. Here we obtain
r2Kerd

′
a(erd

′
a + 1)

(erd
′
a − 1)3

(77)
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for the second term and

−
Γ2

(
3erd

′
a − 2e2rd′a − 1 + rd′a(1 + 4e2rd′a − 3erd

′
a)
)

8erd
′
a(erd

′
a − 1)3

(78)

for the fourth term. Since the numerator of (78) goes to zero as d′a → 0 while this is not the

case for (77), we have that the second term tends to −∞ at a faster rate than the fourth

term to ∞ or −∞. As a consequence, the left-hand side of (76) goes to −∞ as d′a → 0.

Conversely, if d′a → ∞, the left-hand side of (76) goes to 0 from above. This is the case

because the last three terms go to zero at a faster rate than the first term, and the first term

is strictly positive since Λ2 > 0. Thus, there exists a solution to (76) at which d′a > 0. It

remains to show that this solution is unique. To do so we differentiate (76) with respect to

d′a to get

− d′aΛ2(8− 4γ + γ2)(rd′a − 1)

8erd
′
a

+
r2Kerd

′
a(erd

′
a + 1)

(erd
′
a − 1)3

+
Λ1e

rd′a/2
(
erd
′
a + e3rd′a/2

)
2(erd

′
a − 1)2(erd

′
a/2 + 1)2

(79)

+
Γ1e

rd′a/2
(
3erd

′
a/2 − 1

)
2(erd

′
a − 1)2(erd

′
a/2 + 1)

−
Γ2

(
3erd

′
a − 2e2rd′a − 1 + rd′a(1 + 4e2rd′a − 3erd

′
a)
)

8erd
′
a(erd

′
a − 1)3

.

Now, for d′a → 0, (79) goes to ∞ since the second term dominates the remaining terms,

while for d′a → ∞, (79) goes to 0 from below. This is the case because the first term goes

to zero at a slower rate than the other terms, and this term is negative. We now look at

the five terms of (79) in turn. The first term changes its sign from positive to negative as

d′a increases. This, occurs at d′a = 1/r. The second and the third are strictly positive and

strictly decrease as d′a rises. The fourth and the fifth term are either positive or negative

for any d′a, depending on the signs of Γ1 and Γ2. As the second and the third terms, they

become strictly smaller in absolute value as d′a rises, and they do so at a faster rate than

the second term. Thus, we have that the first term is the only term in (79) that changes

its sign as d′a increases. In addition, this term becomes the dominant one as d′a gets larger

and larger. This is the case because the numerator of the first term includes (d′a)
2 and the

denominator is erd
′
a . This is not the case for any other term. As a consequence, there exists

a unique value of d′a at which (79) changes its sign from positive to negative. But this, in

combination with the fact that the left-hand side of (79) is negative at d′a = 0 and positive

at d′a →∞, implies that there must exist a unique solution to (79).
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As a consequence, we have that if d ≥ d1
a then the loss from deviating to D′ is larger than

the lifetime expected loss from the proposed equilibrium sequence D.

Expected loss for D′′

From d′′ = d−4 to d

In this interval, firm 2 believes that firm 1 will acquire new information at d. However, firm 1

updates its information set at d′′ and is therefore the better informed firm. As a consequence

the firm 1′s expected profit function in this interval is given by

E[Π(d′′ + τ)|Id′′ ] = (α− p1(d′′ + τ) + γp2(d′′ + τ))(p1(d′′ + τ)− c)

− E[ξ(d′′ + τ)(θ(d′′ + τ) + γp2(d′′ + τ))]. (80)

Proceeding in a similar way as before, we derive the firms’ optimal prices

p?1(d′′ + τ) =
α + c+ θ(d′′) + ξ(d′′)

2− γ
+
γ((2− γ)(θ(d/2) + ξ(d/2)− 2(θ(d′′) + ξ(d′′)))

4(2− γ)
, (81)

p?2(d′′ + τ) =
2(α + c+ θ(d/2) + ξ(d/2))− γ(τ(d/2) + ξ(d/2))

2(2− γ)
. (82)

Using (81) and (82) in (80), taking expectations and subtracting the resulting expression

from the corresponding expected full information profit, which is obtained by replacing n by

0 in (59), yields that the expected instantaneous loss in this interval is given by

E[L′′1|I0] = Λ1τ. (83)

From d to 3/2d

In this interval firm 2 expects that firm 1 has planned at d—although firm 1 in fact plans

at d′′—and so it expects to be the worse informed firm. Therefore, the profit of firm 1 is the

same as in (74) but the price of firm 2 has changed. Here we get that

p?1(d′′ + τ) =
α + c+ θ(d′′) + ξ(d′′)

2− γ
+
τ(d/2) + ξ(d/2)− θ(d′′)− ξ(d′′

2(2− γ)
, (84)

p?2(d′′ + τ) =
α + c+ θ(d/2) + ξ(d/2)

2− γ
. (85)
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In the same way as above we can calculate the expected instantaneous loss to get

E[L′′2|I0] = Λ1(τ +4). (86)

From (n+ 1/2)d to (n+ 1)(d−4), with n ∈ N

In this intervals firm 2 realized that firm 1 deviated. The profit function of firm 1 is then

given by

E[Π(d′′ + τ)|Id′′ ] = (α− p1(d′′ + τ) + γE[p2(d′′ + τ)|Id′′ ])(p1(d′′ + τ)− c)

− E[ξ(d′′ + τ)(θ(d′′ + τ) + γp2(d′′ + τ))|Id′′ ]. (87)

Optimal prices in this case are

p?1 =
α + c+ θ(n(d−4)) + ξ(n(d−4))

2− γ
(88)

and

p?2(d′′ + τ) =
α + c

2− γ
+
θ(n(d−4)) + ξ(n(d−4)) + θ((n+ 1/2)d) + ξ((n+ 1/2)d)

2(2− γ)
, (89)

which gives an expected loss of

E[L′′3|I0] = Γ1n4+ Λ1τ +
(2 + γ)2

4
Λ1
d

2
. (90)

From (n+ 1)(d−4) to (n+ 1)d, with n ∈ N

In contrast to the interval from d′′ to d, in the intervals from (n+ 1)(d−4) to (n+ 1)d firm

2 realized that firm i deviated. The profit function of firm 1 can then be written as

E[Π((n+ 1)(d−4) + τ)|I(n+1)(d−4)] =

= (α− p1((n+ 1)(d−4) + τ) + γp2((n+ 1)(d−4) + τ))(p1((n+ 1)(d−4) + τ)− c)

− E[ξ((n+ 1)(d−4) + τ)(θ((n+ 1)(d−4) + τ) + γp2((n+ 1)(d−4) + τ))]. (91)
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Calculating optimal prices in the same way as above yields

p?1 =
α + c

2− γ
+
τ((n+ 1/2)d) + ξ((n+ 1/2)d) + θ((n+ 1)(d−4)) + ξ((n+ 1)(d−4))

2(2− γ)
(92)

and

p?2(d′′ + τ) =
α + c+ θ((n+ 1/2)d) + ξ((n+ 1/2)d)

2− γ
. (93)

We then obtain an expected instantaneous loss of

E[L′′4|I0] = Λ1τ + γ2
(
γ2 Λ2

16
+
σ2
ξ − σ2

θ − γ(σ2
ξ + ρσθσξ)

2(2− γ)2

)d
2
. (94)

From (n+ 1)d to (n+ 3/2)d, with n ∈ N

The difference in these intervals to the interval from d to 3/2d is just that firm 2 knows

that firm 1 has deviated. However, since firm 2 always expects to be the worse informed

firm in these intervals, we know from Lemma 2 and 3 that the price of firm 2 is the same

independent of the fact that it is aware of the deviation or not. As a consequence, the

expected instantaneous loss is given by

E[L′′5|I0] = Λ1(τ + (n+ 1)4). (95)

In the same way as in the case of D′ we can now calculate the expected loss from the sequence

D′′. Subtracting the expected loss of the equilibrium sequence from the expected loss from

the sequence D′′, dividing the difference by n4 and taking the limit 4 → 0 yields that

the expected loss from deviating to D′′ exceeds the lifetime expected loss from the proposed

equilibrium sequence D if d ≤ d̄1
a, where d̄1

a solves

d̄′aΛ1(8 + 4γ + γ2)

8erd̄′a
− rerd̄

′
aK

(erd̄′a − 1)2
− Λ1e

rd̄′a/2 + Γ1

r(erd̄′a − 1)(erd̄′a/2 + 1)
+

Γ2(2erd̄
′
a − 1)

erd̄′a(erd̄′a − 1)2
= 0. (96)

We can show existence and uniqueness in exactly the same way as they were shown for da.

Firm 2

We now turn to firm 2. In an asynchronous equilibrium, firm 2 chooses the sequence D =

{d/2, 3d/2, 5d/2, ...}. Thus, when considering marginal deviations we need to check that the
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firm has no incentive to deviate to the sequences D′ = {(d+4)/2, 3(d+4)/2, 5(d+4)/2, ...}

and D′′ = {(d−4)/2, 3(d−4)/2, 5(d−4)/2, ...}. We can now proceed in the same way as

above, namely first calculating the instantaneous expected loss if firm 2 chooses the sequence

D and compare it with the one of the sequences D′ and D′′ and then let 4→ 0.

Again we start with the equilibrium candidate sequence D. By calculations in the same way

as for firm 1 we obtain that the expected instantaneous loss between time 0 and d/2 is given

by

E[Le1|I0] = Λ1τ, (97)

where τ denotes the time that elapsed since date 0. Similarly, the expected instantaneous

loss at t with (n+1/2)d ≤ t < (n+1)d, n ∈ N0 is also given by (97) with τ = t− (n+1/2)d.

Finally, the expected instantaneous loss at t with (n + 1)d ≤ t < (n + 3/2)d, n ∈ N0 for all

n ∈ N0, is given by

E[Le2|I0] = Λ1τ +
(2 + γ)2

4
Λ1
d

2
,

where τ denotes the time that elapsed since the last planning date of firm 1, that is τ =

t− (n+ 1)d.

Now let us look at the deviation sequence D′. As above in this case the expected instan-

taneous loss between time 0 and (d +4)/2 is given by E[L′1|I0] = Λ1τ with τ = t and the

expected instantaneous loss at t, with (d +4)/2 ≤ t < d is given by E[L′2|I0] = Λ1τ with

τ = t − 1/2(d +4). Now at t = d firm 1 observes that firm 2 has deviated to (d +4)/2.

Thus, is it will update its belief that the new sequence of firm 2 is D′ and sets its prices

accordingly. As was calculated above the instantaneous expected loss of firm 2 from d to

3d/2 is given by

E[L′3|I1
d′ , I

2
3d/2] = Λ1

(2 + γ)2

4

d

2
− Γ1

4
2

+ Λ1τ, (98)

with τ ∈ [0, d), and, more generally, the instantaneous expected from nd to (n+1/2)d, n ∈ N

can be written as

E[L′3|I0] = Λ1
(2 + γ)2

4

d

2
− Γ1

(
n+

1

2

)
4+ Λ1τ. (99)
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Finally, from (n+ 1/2)d to (n+ 1/2)(d+4), n ∈ N, the instantaneous expected loss of firm

2 is given by

E[L′4|I0] = Γ2d− Γ1

(
n+

1

2

)
4+ Λ1τ, (100)

with τ ∈ [0, (n+ 1/2)4).

We can now compare the difference between the expected loss from the sequence D with

the one of D′. As above, dividing the respective losses by (n + 1/2)4, where n ∈ N0

is appropriately chosen for the respective intervals, and then taking the limit 4 → 0, we

obtain that the loss from deviating to D′ exceeds the lifetime expected loss from the proposed

equilibrium sequence D if d ≥ d2
a, where d2

a solves

Λ1

(
d′ar(e

rd′a − 1)− 2erd
′
a/2
(
erd
′
a/2 − 1

))
2r(erd

′
a − 1)

− rKerd
′
a

erd
′
a − 1

− Γ1(erd
′
a − 1)

r
(
erd
′
a/2 − 1

)− (101)

−Γ2d
′
a

(
1

erd
′
a(erd

′
a − 1)

+
ln(1− e−rd′a/2)− ln(1 + e−rd

′
a/2)

e−rd
′
a/2

)
= 0.

Existence and uniqueness of d2
a follow from similar arguments as in the case of firm 1.

Turning to the comparison of D with D′′ we can proceed exactly in the same way as in above,

i.e., first calculating the expected instantaneous losses for the two sequences, then dividing

the respective losses by (n + 1/2)4, where n ∈ N0 and then taking the limit 4 → 0. Here

we obtain that the expected loss from deviating to D′′ exceeds the expected loss from the

proposed equilibrium sequence D if d ≤ d̄2
a, where d̄2

a solves

Λ1d̄
′
a

2erd̄′a
− Λ1e

rd̄′a/2(erd̄
′
a/2 − 1)

r(erd̄′a − 1)
+

Γ1(2 + rd̄′a − 2erd̄
′
a/2)

2rerd̄′a/2(erd̄′a/2 − 1)
− rKerd̄

′
a

erd̄′a − 1
= 0. (102)

Existence and uniqueness of d̄2
a follow from similar arguments as in the case of firm 1. �

Proof of Lemma 6

Suppose first that d1
a = d̄1

a = d. Subtracting the left-hand side of (45) from the left-hand

side of (44) we obtain
γ2dedr(8− γ2)(σ2

θ + 2ρσθσξ + σ2
ξ )

32
.
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Thus, the two sides are equal if and only if γ = 0 or ρ = −(σ2
θ + σ2

ξ )/(2σθσξ), where

−(σ2
θ + σ2

ξ )/(2σθσξ) ≤ −1. But the latter equality can never be fulfilled since ρ ≥ −1, and

for ρ = −1 and σ2
θ = σ2

ξ , i.e., the case in which −(σ2
θ +σ2

ξ )/(2σθσξ) = −1. we have that firms

never plan since their profit at each instant is certain due to the perfect negative correlation

of the shocks. Since planning only incurs costs, they have no incentive to plan. Hence,

d1
a = d̄1

a if and only if γ = 0.

Now let us look at the case in which γ 6= 0. Here we know that the left-hand side of (45)

is lower than the left-hand side of (44) if d1
a = d̄1

a. From the proof of Proposition 1 we also

know that the derivatives of the left-hand sides of (44) and (45) at their respective solutions

are strictly positive. But from this it follows that d̄1
a > d1

a for all γ 6= 0.

We can conduct a similar analysis for firm 2. Suppose that d2
a = d̄2

a = d. By subtracting the

left-hand side of (46) from the left-hand side of (47) and simplifying we obtain that this can

only occur if

− Λ1

2(1− e−rd)
−

Γ2

(
ln(1 + e−rd/2)− ln(1− e−rd/2)

)
e−rd/2

= 0, (103)

The first term on the left-hand side of (103) is negative while the second one is negative if

Γ2 is positive. Solving Γ2 = 0 for ρ wo obtain that Γ2 ≥ 0 if

ρ ≥ −
4(σ2

θ + σ2
ξ )(2− γ) + γ2(σ2

θ − 3σ2
ξ + 2γσ2

ξ )

2σθσξ(8− 4γ − γ2 + γ3)
. (104)

It is easy to check that the right-hand side of (104) is larger than −1 if and only if σξ > σθ.

Thus, for σθ > σξ, (104) is for sure fulfilled which implies that the second term on the

left-hand side of (103) is negative. Thus, in this case d2
a can not be equal to d̄2

a. Since the

left-hand side of (47) is increasing in d̄2
a and the left-hand side of (46) is increasing in d2

a, we

obtain that in this case d̄2
a > d2

a because the difference between (47) and (46) at d̄2
a = d2

a is

negative. If, on the other hand, σξ > σθ, (104) may not fulfilled. Then, the left-hand side of

(103) consists of two countervailing terms. In this case d̄2
a is smaller than d2

a if ρ < ρ̂, where

ρ̂ is the solution to (103). Since ρ is bounded below by −1, the result stated in the lemma

follows.

It remains to show that ρ̂ is the unique solution to (103). To do so we first use equations

(47) and (46) the build the implicit functions dd̄2
a/dρ and dd2

a/dρ. Then subtracting dd2
a/dρ
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from dd̄2
a/dρ and evaluating it at d2

a = d̄2
a = d, we obtain

σθσξd(1− e−rd)
Λ1(2e−rd + rd (3− e−rv))

(105)

+
d(1− e−rd)(σθσξ(8− 4γ − γ2 + γ3))

(
ln(1 + e−rd/2)− ln(1− e−rd/2)

)
4Γ2(2− γ)2 ((ln(1 + e−rd/2)− ln(1− e−rd/2)) (1 + rd)(e−rd − 1)− rde−rd/2)

.

The first term of (105) is positive while the second term is positive only if Γ2 < 0. But

we know from above that d2
a = d̄2

a can only occur if (104) is not fulfilled which implies that

Γ2 < 0. Therefore, at d2
a = d̄2

a we have that both terms of (105) are positive which implies

that dd̄2
a/dρ > dd2

a/dρ. It follows that ρ̂, i.e., the value of ρ at which d1
a = d̄1

a, is unique. �

Proof of Lemma 7

We start with a comparison of d̄1
a with d̄2

a. To simplify this comparison we first multiply

(47) by (erd̄
2
a − 1)−1. Clearly, this does not change the optimal solution of this equation.

However, it is helpful because it eliminates K when comparing the left-hand sides of (47)

and (45). Suppose now that d̄1
a = d̄2

a = d. Then, subtracting the left-hand side of (47) from

the left-hand side of (45), we obtain

Λ1d(8− 4γ − γ2 + erd(2 + γ)2)

8erd(erd − 1)
+

Γ2d(2erd − 1)

erd(erd − 1)2
+

Γ1d

(erd − 1)2
, (106)

where the terms involving K are eliminated since (47) was multiplied by (erd̄
2
a − 1)−1. One

can easily check that (106) is strictly positive. Since we know that the left-hand sides of

(47) and (45) are strictly increasing at their respective solutions d̄1
a and d̄2

a, it follows that

d̄1
a < d̄2

a.

From Lemma 6 we know that d̄2
a < d2

a if ρ is sufficiently negative. Since d̄1
a < d̄2

a, there must

exist a critical ρ such that for all ρ below this critical ρ we have d̄1
a < d2

a. To determine this

critical ρ we multiply the left-hand side of (46) by (erd
2
a − 1)−1 and then set it equal to the

left-hand side (47). We obtain that the two sides are equal if and only if (49) holds where da

is the solution to (46) and (47) at the critical ρ. In the same way as in the proof of Lemma

6 we can show that the critical ρ is unique. Finally, denoting the maximum of the critical ρ

and −1 by ρ̌, it follows that ρ̌ ≤ ρ̂, since d̄1
a < d̄2

a. �
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Proof of Lemma 8

Firm 1

We start with firm 1. We confine our attention to the case of a non-marginal deviation of the

form in which firm 1 lowers (or extends) the inattentiveness period by 1/m. We will show

later that m→∞ yields the tightest bounds in the case in which firms plan in an alternating

manner. Thus, even if firm 1 deviates to an inattentiveness period of the form l/m, we obtain

the same result. It is therefore without loss of generality to consider deviations of the form

d(1− 1/m) instead of d(1− l/m), l > 1.

Suppose that firm 1 deviates to a sequence d−d/m, where m is an odd number, whereas firm

2 sticks to the equilibrium sequence {d/2, 3/2d, 5/2d, ...}. Before we proceed, we introduce

some notation. We define

Γ3 :=
γ2(γ2(σ2

θ + 2ρσθσξ + σ2
ξ )− 8γ(σ2

θ + ρσθσξ + σ2
ξ ) + 8(σ2

ξ − σ2
θ))

32(2− γ)2
,

and k ∈ N0.

The deviation of type d(1− 1/m) where m is an odd number induces a stream of expected

losses that is composed of seven different instantaneous expected losses:

µ1 := Λ1

(
τ +

d(2 + γ)2

8

)
, (107)

µ2 := Λ1τ, (108)

µ3 := Λ1τ + Γ3d, (109)

µ4 := Λ1

(
τ +

(m− 1)d

2m

)
, (110)
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µ5 := Λ1

(
τ +

d(2 + γ)2

8

)
+ Γ1

dk

2m
, (111)

µ6 := Λ1τ + Γ1
dk

2m
− d

(
Λ2

32
(16− γ4)

)
(112)

−d

(
γ2
(
3σ2

ξ + 2ρσθσξ − σ2
θ + 8γ(σ2

ξ + ρσθσξ)
)

4(2− γ)2

)
,

µ7 := Λ1τ + Γ1
dk

2m
− γd

(
Λ2

2
− γ

σ2
θ + 6ρσθσξ − 4σ2

ξ − 2γ(σ2
ξ + ρσθσξ)

8(2− γ)2

)
. (113)

Here µ1 is the expected instantaneous loss in periods in which firm 2 was the last to plan,

e.g., at d/2, up to the next planning date of firm 1 under deviation, that is, at d(1− 1/m).

The component µ2 captures the instantaneous expected loss in periods in which firm 1 is

better informed under the deviation than on the equilibrium path, e.g., at d(1−1/m), up to

the next planning date under non-deviation, e.g., at d. However, firm 2 has not yet detected

the deviation of firm 1. Similarly, µ3 captures the same instantaneous expected loss but in

periods in which firm 2 has detected the deviation. µ4 displays the instantaneous expected

loss in which firm 1 is better informed than firm 2 on the equilibrium and also under deviation

but its latest planning date after deviation was before the one on equilibrium. This occurs

between the periods ((m− 1)/2− 1)d and ((m− 1)/2)(1− 1/m)d.

The instantaneous expected loss µ5 occurs in periods in which firm 1 is worse informed after

a deviation but was also worse informed on the equilibrium path. However, the firm’s latest

planning date after a deviation was before the one on the equilibrium path. This occurs

for example in periods between 3/2d and 2(1 − 1/m)d, in which firm 1 on the equilibrium

path last planned at d but after deviation at (1 − 1/m)d. The instantaneous expected

loss µ6 is similar to µ5, i.e., firm 1 is worse informed both on the equilibrium and after a

deviation, but in this case firm 1 latest planning date in the deviation case was after the one

on equilibrium. This occurs in periods from ((m − 1)/k − 1/2 + k)d to ((m − 1)/2 + k)d.

Finally, µ7 captures the loss in periods in which firm 1 is worse informed after deviation but

better informed on the equilibrium path. This occurs in periods from ((m − 1)/2 + k)d up

to ((m− 1)/2 + k)(1− 1/m)d.
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We can now turn to the expected stream of losses. Given the expected instantaneous losses

(107) to (113) a deviant’s expected stream of losses is given by

E[D1|θ0, ξ0] = e−rd/2
∫ ( 1

2
− 1

m)d

τ=0

e−rτµ1dτ + e−r(1− 1
m)d

∫ d/m

τ=0

e−rτµ2dτ

+
m−2∑

k= m−1
2

(
e−r(k+1)(1− 1

m)d
∫ (k+ 1

2
−(k+1)(1− 1

m))d

τ=0

e−rτµ2dτ

)

+

m−1
2
−1∑

k=1

(
e−r(k+1)(1− 1

m)d
∫ ( k+1

m )d

τ=0

e−rτµ3dτ

)

+

m−1
2
−1∑

k=1

(
e−r(k+ 1

2)d
∫ (k+1)(1− 1

m
−k− 1

2)d

τ=0

e−rτµ5dτ

)
+

m−2∑
k= m+1

2

(
e−r(k−

1
2)d
∫ d/2

τ=0

e−rτµ6dτ

)

+
∞∑
n=1

(
e−r(n(m−1)+ 1

2)d

(∫ ( 1
2
− 1

m)d

τ=0

e−rτµ1dτ

))
+
∞∑
n=1

(
e−rn(k−1)d

(∫ d/2

τ=0

e−rτµ2dτ

))

+
∞∑
n=0

m−1∑
k= m−1

2
+1

(
e−r(n(m−1)+(1− 1

m)k)d

(∫ ( 1
2

+k−1−k(1− 1
m))d

τ=0

e−rτµ2dτ

))

+
∞∑
n=0

m−3
2∑

k=0

(
e−r(n(m−1)+(1− 1

m)(k+1))d

(∫ ( k+1
m )d

τ=0

e−rτµ3dτ

))

+
∞∑
n=0

(
e−r(m−1)(1/2+n)d

(∫ (1− 1
m
−m−1

2m )d

τ=0

e−rτµ4dτ

))

+
∞∑
n=0

m−1
2
−1∑

k=0

(
e−r(n(m−1)+ k

2 )d

(∫ ( 1
2
− k+1

m )d

τ=0

e−rτµ5dτ

))

+
∞∑
n=0

m−2∑
k= m+1

2

(
e−r(n(m−1)+k− 1

2)d

(∫ d/2

τ=0

e−rτµ6dτ

))

+
∞∑
n=0

m−2
2
−2∑

k=0

(
e−r((m−1)(n+ 1

2
)+1+k)d

(∫ ((1− 1
m)(m− 1

2
+k+2)−(m− 1

2
+k+1))d

τ=0

e−rτµ7dτ

))

+K
∞∑
n=1

(
e−rn(1− 1

m)d
)
. (114)

Now, we subtract from this fractional-deviation induced expected stream of losses the equi-

librium expected stream of losses which is appropriately adapted to the considered time

horizon. This yields

E[D1|θ0, ξ0]− E[S1|θ0, ξ0], (115)
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where

E[S1|θ0, ξ0] = Λ1
erd/2(8 + rd(2 + γ)2)− 8− rd(8 + 4γ + γ2)

16r2(erd − 1)
+Λ1

2erd/2 − 2− rd
4erd/2r2(erd − 1)

+
K

erd − 1
.

Thus, it is profitable for a firm to deviate from a proposed alternating equilibrium inatten-

tiveness period d in a non-marginal way if (115) is negative for at least one m ∈ N.

Now building the difference quotient by dividing the respective terms of (115) by x/m, where

x is chosen appropriately for the different intervals, and then letting r → 0, we obtain that

(115) is negative if

K < d2

(
Λ2

4− γ
8

+
γ2
(
6γ(σ2

ξ + ρσθσ
2
ξ ) + σ2

θ − 10ρσθσξ − 11σξ
)

32

)
× (116)

(
8Λ1(40 + 12γ)m3 + Λ1(4− γ)m2Γ1(36− 24γ)m

8Λ1(40 + 12γ)m3 + Λ2(8− 4γ + γ2)m2 + Γ1(132− 42γ)m+ Λ2 + γ2(σ2
ξ + ρσθσξ)

)
.

Differentiating the second term of the right-hand side of (116) with respect to m, we obtain

24Λ1(40 + 12γ)Λ2(4− 3γ + γ2)m4 + 16Λ1(40 + 12γ)Γ1(32 + 6γ − 11γ2 + 2γ3)m3

+
(
24Λ1(40 + 12γ)(Λ2 + γ2(σ2

ξ + ρσθσξ)) + 6Γ1(152− 122γ + 46γ2 − 7γ3)
)
m2

+ (2Λ1(4− γ)m+ Γ1(36− 24γ))
(
Λ2 + γ2(σ2

ξ + ρσθσξ)
)
.

It is easy to see that this term is strictly positive. Thus, (116) is strictly increasing in m.

Therefore, letting m → ∞ is the most profitable deviation for firm 1. We can then write

(116) as

K < d2

(
Λ2

4− γ
8

+
γ2
(
6γ(σ2

ξ + ρσθσ
2
ξ ) + σ2

θ − 10ρσθσξ − 11σξ
)

32

)
. (117)

Now letting r → 0 in (45), i.e., in the condition that gives the upper bound for any potential

equilibrium from the marginal deviations of firm 1, d̄1
a, we obtain that d̄1

a is (implicitly) given
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by

K = (d̄1
a)

2

(
Λ2

4− γ
8

+
γ2
(
6γ(σ2

ξ + ρσθσ
2
ξ ) + σ2

θ − 10ρσθσξ − 11σξ
)

32

)
. (118)

But since only d ≤ d̄1
a are potential equilibria, combining (117) and (118), we obtain that

(117) can never be satisfied for any d ≤ d̄1
a. This implies that the non-marginal deviation

of firm 1 to a period length of d − d/m with m being an odd number does not eliminate

potential equilibria.

We can proceed in the same way for non-marginal deviations in which firm 1 chooses a period

length of d − d/m with m being an even number, and also for non-marginal deviations in

which firm 1 sets a period length of d + d/m with m being an odd or even number. In all

cases we obtain that in the limit as r → 0, the deviation to m → ∞ excludes the largest

set of inattentiveness periods, and that this set is equivalent to the one that is excluded by

the marginal deviations. Thus, non-marginal deviations of firm 1 do not exclude potential

equilibria in the limit as r → 0. By continuity, if r is positive but sufficiently close to 0, the

result applies as well.

Firm 2

Now, we turn to firm 2. Here we derive the expected stream of losses for the case in which firm

2′s deviates to an inattentiveness interval of length d + d/m, where m is an even number,

but sticks to the (A) mode. Before we proceed, we introduce some notation. We define

k ∈ {0, .., (m− 2)/2}.

The considered deviation of firm 2 induces a stream of expected losses that is composed of

nine different expected instantaneous losses:

ϑ1 := Λ1

(
τ +

d

2

)
, (119)

ϑ2 := Λ1τ, (120)

ϑ3 := Λ1τ + Γ3d, (121)

ϑ4 := Λ1

(
τ +

(
1

2
− 1 + 2k

2m

))
, (122)

ϑ5 := Λ1

(
τ +

(2 + γ)2

4

d

2

)
− Γ1

(
1 + k

2m

)
d

2
, (123)

63



5 APPENDIX

ϑ6 := Λ1τ − Γ1

(
1 + 2k

m

)
d

2
+ Γ2d, (124)

ϑ7 := Λ1τ + Γ1

(
1− 2k

m

)
d

2
+ Γ2d, (125)

ϑ8 := Λ1

(
τ +

(2 + γ)2

4

d

2

)
+ Γ1

(
d

2m

)
, (126)

ϑ9 := Λ1τ + Γ1

(
d

2m

)
+ Γ2d, (127)

The first four expected instantaneous losses—(119) to (122)—capture firm 2′s losses when

it is the better informed firm. The expected instantaneous loss in the period that elapses

between the first planning date on the equilibrium path and the first planning date under

the deviation is given by (119). In this period, firm 2′s deviation is undetected by firm 1.

The component (120) captures firm 2′s expected instantaneous losses in the time period in

which it is better informed, irrespective of whether the deviation was detected or not.

If firm 2 deviates to a frequency of (1 + 1/m) d then it happens that firm 1 plans twice

between two consecutive planning dates of firm 2. This takes place for the first time between

the m/2th and the (m+ 2)/2th planning date of firm 2 and occurs thereafter between every

m(1/2 + (n+ 1))th and ((m+ 2)/2 + (n+ 1)m)th, n ∈ N0, planning date of firm 2. At this

point, firm 1 has already detected firm 2′s deviation. Moreover, the ((m+ 2)/2)th planning

date of firm 2 happens at an instant at which it would have been the worse informed firm if

it followed the equilibrium planning horizon. The corresponding expected instantaneous loss

is captured by (121). After (1/2− (1 + 2k)/(2m)) periods firm 2 is still the better informed

firm but now in a time period in which it would have also been the better informed firm on

the equilibrium path. The corresponding loss is captured by (122).

Note that after each mth repetition of firm 2′s planning horizon the relative time distance

to firm 1′s planning dates is the same. Thus, in the following we refer to this as a cycle.

The components (123) and (124) capture firm 2′s losses from being worse informed in the

first half of the cycle, i.e. the (1/2 + k + nm)th to the ((m − 1)/2 + nm)th repetition of

the planning horizon (1 + 1/m)d. The difference between (123) and (124) is that the former

captures the losses in a time period in which firm 2 was the worse informed and the latter

the losses in which it was the better informed firm on the equilibrium path. In this part of

the cycle, firm 2 is relative to the equilibrium path worse informed for a shorter time.
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After firm 1 repeated its planning horizon d for the ((m− 1) + k + n(m+ 1))th time, firm

2 is the worse informed firm in a time period in which it was already worse informed on the

equilibrium path until it repeated its planning horizon for the ((m+ 1)/2 + k+nm)th time.

The expected instantaneous losses in this periods are caught by (125). The cycle is completed

after firm 2 repeated its inattentiveness interval for the (m + 1/2 + n(m + 1))th time. In

this last repetition the components (126) and (127) pick up firm 2′ expected instantaneous

losses from being the worse informed firm. Again, the former component captures the losses

in a time period in which firm 2 was the worse informed and the latter the losses in which

it was the better informed firm on the equilibrium path.

Given the expected instantaneous expected losses (119) to (127) firm 2′s expected stream of

losses from a deviation to (1 + 1/m)d can be written as

E[D 2|θ0, ξ0] = e−r
d
2

∫ d
2m

0

e−rτϑ1dτ +
∞∑
n=0

m−2
2∑

k=0

e−rd(n(m+1)+ (1+2k)(1+m)
2m )

(∫ (m−(1+2k)
2m )d

τ=0

e−rτϑ2dτ

)

+
∞∑
n=0

m−2
2∑

k=0

e−rd(n(m+1)+ (1+m+2k)(1+m)
2m )

(∫ (m−(1+2k)
2m )d

τ=0

e−rτϑ3dτ

)

+
∞∑
n=0

m−2
2∑

k=0

e−rd(n(m+1)+1+ 1+m+2k
2 )

(∫ d
2

τ=0

e−rτϑ4dτ

)

+
∞∑
n=0

m−2
2∑

k=0

e−rd(n(m+1)+k+1)

(∫ d
2

τ=0

e−rτϑ5dτ

)

+
∞∑
n=0

m−4
2∑

k=0

e−rd(n(m+1)+k+ 3
2)

(∫ d
2

3+k(2−m)
m

τ=0

e−rτϑ6dτ

)

+
∞∑
n=0

e−rd(n(m+1)+ m−1
2 )

(∫ d
2

τ=0

e−rτϑ6dτ

)

+
∞∑
n=0

m−2
2∑

k=0

e−rd(n(m+1)+ m+2
2

+k)

(∫ d
2

τ=0

e−rτϑ7dτ

)

+
∞∑
n=1

e−rd(n(m+1))

(∫ d
2

τ=0

e−rτϑ8dτ + e−r
d
2

∫ d
2m

τ=0

e−rτϑ9dτ

)

+K
∞∑
n=1

(
e−rd(

1
2

+n(1+ 1
m))
)
. (128)
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In the same way as for player 1 we can now subtract from this fractional-deviation induced

expected stream of losses the equilibrium expected stream of losses which is appropriately

adapted to the considered time horizon. This yields

E[D2|θ0, ξ0]− E[S2|θ0, ξ0], (129)

where

E[S2|θ0, ξ0] = Λ1
2erd/2 − 2− rd
erdr2(erd − 1)

+ Λ1
erd/2(8 + rd(2 + γ)2)− 8− rd(8 + 4γ + γ2)

4erd/2r2(erd − 1)
+
Kerd/2

erd − 1
.

Thus, it is profitable for firm 2 to deviate from a proposed synchronous inattentiveness period

d in a non-marginal way if (129) is negative for at least one m ∈ N.

Now building the difference quotient by dividing the respective terms of (129) by x/m, where

again x is chosen apprppriately for the different intervals, and then letting r → 0, we obtain

that (129) is negative if

K > d2

(
Λ2(8− 4γ)−

γ2
(
3σ2

ξ + 2ρσθσξ − σ2
θ − 2γ2(σ2

ξ + ρσθσξ)
)

(2− γ)2

)
× (130)

Λ2

(
(2+γ)2

16

)
m3 +

(
Λ1

1
2

+ Γ2
(2−γ)2

32

)
m2 +

(
Λ2

(2−γ)2

4
+ Γ1

(2+γ)2

16

)
m+ Λ2

(
12+2γ
(2−γ)2

)
+ Γ3

(
8+4γ+γ2

32

)
Λ2

(
(2+γ)2

16

)
m3 + Λ2

(
4+4γ+γ2

16

)
m2 + Γ2

(
(2+γ)2(2−γ)

32

)
m

 .

As above, via differentiating the second term on the right-hand side of (116), one can check

that it is strictly decreasing in m. Therefore, letting m→∞ is the most profitable deviation

for firm 2. We can then write (130) as

K > d2

(
Λ2(8− 4γ)−

γ2
(
3σ2

ξ + 2ρσθσξ − σ2
θ − 2γ2(σ2

ξ + ρσθσξ)
)

(2− γ)2

)
. (131)

Now letting r → 0 in (46) stated in Lemma 5, i.e., in the condition that gives the lower

bound from the marginal deviation of player, d2
a, we obtain that d2

a is (implicitly) given by

K = (d2
a)

2

(
Λ2(8− 4γ)−

γ2
(
3σ2

ξ + 2ρσθσξ − σ2
θ − 2γ2(σ2

ξ + ρσθσξ)
)

(2− γ)2

)
. (132)
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But since only d ≥ d2
a can be potential equilibria, combining (131) and (132), we obtain that

(131) can never be satisfied for any d ≥ d2
a. This implies that the non-marginal deviation

of firm 2 to a period length of d + d/m with m being an even number does not eliminate

any potential equilibria. By the same argument, even if we consider deviations of firm 2 to

period lengths of d(1 + l/m), l ≤ m, this does not eliminate any potential equilibria since

m→∞ is the most profitable deviation in this case either.

We can proceed in the same way for non-marginal deviations in which firm 2 chooses a period

length of d + d/m with m being an odd number, and sticks to the (A) mode and also for

non-marginal deviations in which firm 2 sets a period length of d − d/m with m being an

odd or even number, and sticks to the (A) mode. In all cases we obtain that in the limit as

r → 0, the deviation to m → ∞ excludes the largest set of inattentiveness period length,

and that this set is equivalent to the one that is excluded by the marginal deviations. Thus,

non-marginal deviations in which firm 2 chooses the (A) mode do not exclude any potential

equilibria in the limit as r → 0. By continuity, if r is positive but sufficiently close to 0, the

result applies as well.

We now turn to the case in which firm 2 deviates to the (S) mode, that is, to sequence of

planning dates {
d

(
1± 1

m

)
, 2d

(
1± 1

m

)
, ...

}
.

Proceeding in the same way as above, i.e., building the differential quotient between the

expected stream of losses and the equilibrium loss and letting r go to zero, we obtain that

independent of the inattentiveness length being d(1−1/m) or d(1+1/m) the most profitable

deviation is the one in which m→∞, i.e., the sequence {d, 2d, ...}.

Now, we determine the condition under which it is not profitable for firm 2 to deviate to the

RTS deviation. We do so by determining the differential quotient between the RTS and the

equilibrium sequence for r in a neighborhood of zero. This yields that deviating to the RTS

sequence is not profitable if and only if

rK ≤ d

8e3rd(2− γ)2

(
e5rd/2

(
4γ2(σ2

θ + ρσθσξ) + 2γ3(σ2
ξ + ρσθσξ)− 4Λ1(γ4 + 4)

)
(133)

+8Λ1e
2rd(2− γ)2 + 4(1 + erd/2 − erd)γ2

(
Λ1γ

2 − (σ2
ξ + ρσθσξ)γ + σ2

ξ − σ2
θ

))
.
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Thus, only those d?a that satisfy (133) are not eliminated by the RTS deviation. Since no

potential equilibrium inattentiveness period is eliminated by the non-marginal deviations of

firm 1 and the other non-marginal deviations of firm 2, the result of the lemma follows. �

Proof of Proposition 2

On (i): Taking the limit r → 0 of (133) this inequality can be written as

0 ≤ −
γd?a

(
4(σ2

θ + 2ρσθσξ + σ2
ξ )− γ(σ2

θ + 6ρσθσξ + 5σ2
ξ ) + 2γ2(σ2

ξ + ρσθσξ)
)

8(2− γ)2
. (134)

Therefore, in the limit as r → 0 an alternating planning equilibrium can only exist for γ > 0

if and only if

ρ < max

[
−
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
,−1

]
. (135)

From the proof of Lemma 8 we also know that, as r → 0, marginal deviations are not

profitable if

K ≤ (d?a)
2

(
Λ2

4− γ
8

+
γ2
(
6γ(σ2

ξ + ρσθσ
2
ξ ) + σ2

θ − 10ρσθσξ − 11σξ
)

32

)
.

Suppose for the moment that K → 0. Then solving the last inequality for ρ we obtain that

marginal deviations are not profitable if

ρ ≥ −
4(4− γ)(σ2

θ + σ2
ξ )− γ2(11σ2

ξ − σ2
θ) + 6γ3σ2

θ

2σθσξ(16− 4γ − 5γ2 + 3γ3)
. (136)

We can now check if conditions (135) and (136) can be jointly satisfied. To do so we calculate

−
4(4− γ)(σ2

θ + σ2
ξ )− γ2(11σ2

ξ − σ2
θ) + 6γ3σ2

θ

2σθσξ(16− 4γ − 5γ2 + 3γ3)
−
(
−
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)

)
,

which yields

− γ(2− γ)2(σξ − σθ)(σξ + σθ)

σθσξ(16− 4γ − 5γ2 + 3γ3)(4− 3γ + γ2)
.
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For both conditions to be jointly satisfied at γ > 0 we must have that the latter term is

strictly negative which can only hold true if σξ > σθ. But we have that at σξ > σθ

−
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
< −1,

thereby ruling out an alternating planning equilibrium. For K > 0 condition (136) becomes

even tighter. Thus, an alternating planning equilibrium does not exists for this case either.

We have shown the result for r → 0. However, by continuity, we must have that even if r is

positive but close to 0, an alternating planning equilibrium can not exist for γ > 0.

On (ii): From part (i) of this proposition it follows that for r close to zero an alternating

planning equilibrium can only exist for γ < 0. Lemmas 7 and 8 imply that even for γ < 0

the equilibrium only exists if ρ ≥ max[ρ̌, ρ+]. Finally, it follows from Lemmas 5 and 6 that

the maximum range of this equilibrium is given by the marginal deviations of player 1, that

is d?a ∈ [d1
a, d̄

1
a].

On (iii): The equilibrium inattentiveness lengths d?a and d̄?a are characterized by (44) and

(45). Solving each of the two equations for K and then taking the limit r → 0, we obtain

that d?a = d̄?a = d?a, where d?a is characterized by

K = (d?a)
2

(
Λ2

4− γ
8

+
γ2
(
6γ(σ2

ξ + ρσθσ
2
ξ ) + σ2

θ − 10ρσθσξ − 11σξ
)

32

)
. (137)

The right-hand side of (137) can only be positive if

ρ ≥ −
4(4− γ)(σ2

θ + σ2
ξ )− γ2(11σ2

ξ − σ2
θ) + 6γ3σ2

θ

2σθσξ(16− 4γ − 5γ2 + 3γ3)
. (138)

From the proof of part (i) of this proposition we know that this is also the tightest bound on

ρ such that marginal deviations are not profitable. In addition, an alternating equilibrium

can only exist if (134) is satisfied. The proof of part (i) of this proposition implies that (134)

and (138) can jointly only be satisfied if γ < 0 and

ρ ≥ −
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
.

69



5 APPENDIX

As a consequence, the alternating planning equilibrium exists if and only if γ < 0 and

ρ ≥ max

[
−
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
,−

4(4− γ)(σ2
θ + σ2

ξ )− γ2(11σ2
ξ − σ2

θ) + 6γ3σ2
θ

2σθσξ(16− 4γ − 5γ2 + 3γ3)
,−1

]
.

�

Proof of Proposition 3

On (i): We know that for r → 0, d?a = d̄?a = d?a, where d?a is defined by (137). The left-hand

side of (137) is constant in d?a and γ while the right-hand side of (137) is strictly increasing

in d?a. Now differentiating the right-hand side with respect to γ we obtain

3d?a
(
4(σ2

θ + 2ρσθσξσ
2
ξ )− γ(8− 6γ + γ2)(σξ + ρσθσξ)

)
16(2− γ)3

> 0,

where the inequality sign stems from the fact that at the equilibrium γ < 0. It therefore

follows that after an increase in γ, (137) can only be fulfilled if d?a falls, yielding that dd?a/dγ <

0.

On (ii): Now consider the case where r > 0 but small such that the difference between d?a

and d̄?a is small. We know that d?a and d̄?a are determined by (44) and (45). As is easy to

see the last three terms on the left-hand side of both equations have the same structure and

only differ because d?a and d̄?a differ while the first term is different even if d?a and d̄?a were

the same. Since we consider the case in which d?a and d̄?a are very close to each other, we can

concentrate on the difference in the respective first terms in determining if d?a and d̄?a change

differently with γ.

Totally differentiating the first term of (44) we obtain

dd?a
dγ

= − 8d?a
(2− γ)(8− 4γ + γ2)(1− rd?a)

< 0,

while totally differentiating the first term of (45) we obtain

dd̄?a
dγ

= − d̄?a(8 + 4γ + γ2)

2(2 + γ)(1− rd̄?a)
< 0.
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Now subtracting dd?a/dγ from dd̄?a/dγ and taking into account that d?a is close to d̄?a we obtain

dd̄?a
dγ
− dd?a

dγ
≈ − d̄?a(96− 80γ + 2γ4 − γ5)

2(2 + γ)(2− γ)(8− 4γ + γ2)(1− rd̄?a)
.

Since r is small, the denominator is positive and so the whole expression is negative. But,

since both dd?a/dγ and dd̄?a/dγ are strictly decreasing in γ, this implies that d̄?a decreases by

more than d?a if γ rises. Thus, the equilibrium range of inattentiveness periods shrinks as γ

rises. �

Proof of Lemma 9

Suppose that firm i expects that firm j chooses an inattentiveness period of length d ∈ R+ at

Di(0) = Dj(0) = 0. The sequence of planning dates induced by d can only be an equilibrium

if neither of the following infinitesimal deviations are profitable for firm i: choose a longer

inattentiveness period, that is deviate to d′ = d +4, with 4 > 0, or a shorter period, i.e.

d′′ = d−4. In order to simplify the exposition we assume that the shock realizations at 0

are given by θ(0) = 0 and ξ(0) = 0. This assumption is without loss of generality because

the shock realizations do not influence a firms’ deviation incentive.

In order to derive the “no-deviation” conditions we have to compare firm i′s expected loss

from following the proposed equilibrium sequence with the expected losses from the sequences

D′ = {d′, 2d′, 3d′, ...} and D′′ = {d′′, 2d′′, 3d′′, ...}.

Lifetime expected loss for D

We know from Lemma 5 that firm i′s expected instantaneous loss from following the proposed

equilibrium sequence at any instant t, with nd ≤ t < (n+ 1)d, for all n ∈ N0, is given by

E[Le|I0] = Λ1τ,

where τ denotes the time that elapsed since the last planning date, that is τ = t − nd, for

all n ∈ N0.
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Thus, the lifetime expected loss implied by any candidate equilibrium inattentiveness interval

is

E[L(D)|I0] =
erd − 1− rd
erdr2(erd − 1)

Λ1 +
K

erd − 1
. (139)

In order to consistently transform expected profits into expected losses we scale the expected

stream of profits under the infinitesimal deviations by the equilibrium expected full informa-

tion profits. In the synchronous planning equilibrium the expected full information profit a

firm earns

E[ΠFI(t)|I0] =
(σ2

θ − 2ρσθσξ + σ2
ξ

4

)
τ +

(σ2
θ − 2ρσθσξ + σ2

ξ − γσ2
ξ (2− γ) + 2γρσθσξ

(2− γ)2

)
nd?

+
(α− (1− γ)c)

(2− γ)2
. (140)

Lifetime expected loss for D′

We set out by introducing some notation. Let m̃ ∈ N denote a natural number for which

m̃4 ≤ d and (m̃+ 1)4 > d.

In the following we derive the lifetime expected loss from the sequences D′. First, we turn

to the expected instantaneous loss that firm i incurs in the interval [d, d′] if it deviates to

the sequence D′.

From d to d′ = d+4

If firm i deviates to D′ then its expected profit function at instant d+ τ , τ ∈ [0,4) is given

by

E[Π(d+ τ)|I i0, I
j
0 ] = (α− pi(d+ τ) + γE[pj(d+ τ)|I i0, I

j
0 ])(pi(d+ τ)− c)

− E[ξ(d+ τ)(θ(d+ τ) + γpj(d+ τ))|I i0, I
j
0 ]. (141)

In this interval firm i is the firm with the more outdated information est. However, firm j

has not detected firm i′s deviation. Thus, firm j still believes that both firms share the same

information set Id. Hence, it follows that firm j′s optimal price at d+ τ is given by

p?j(d+ τ) =
α + θ(d) + c+ ξ(d)

2− γ
. (142)
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Therefore,

p?i (d+ τ) = E[p?j(d+ τ)|I i0, I
j
0 ] =

α + c

2− γ
. (143)

Using (143) and (142) in (141) yields that firm i′s expected instantaneous profit under D′ in

the interval t ∈ [d, d′] is given by

E[Π?(d+ τ)|I i0, I
j
0 ] = −

2ρσθσξ + γσ2
ξ

2− γ
d− ρσθσξτ +

(α− (1− γ)c)

(2− γ)2
. (144)

Subtracting (144) from (140) yields that firm i′s expected instantaneous loss in the period

[d, d+4) is

E[L′1|I0] = Λ2d+ Λ1τ, (145)

with τ ∈ [0,4).

From d′ to 2d

In this time interval firm j still believes that firm i sticks to the proposed equilibrium strategy.

Thus, its optimal price is at each instant given by (142). Firm i acquires new information

at instant d′ = d+4. Therefore, its expected profit function is in this interval given by

E[Π(d′ + τ)|I id′ , I
j
d] = (α− pi(d′ + τ) + γpj(d

′ + τ))(pi(d
′ + τ)− c)

− E[ξ(d′ + τ)(θ(d′ + τ) + γpj(d
′ + τ))|I id′ , I

j
d], (146)

with τ ∈ [0, d−4). Proceeding in the same way as before, we obtain that

p?i (d
′ + τ) =

α + θ(d′) + c+ ξ(d′)

2
+
γ
(
α + θ(d) + c+ ξ(d)

)
2(2− γ)

. (147)

Using (147) and (142) in (146), taking expectations and subtracting the resulting expression

from (140) yields for the interval [d′, 2d) the following instantaneous loss function

E[L′2|I0] = Λ1τ, (148)

with τ ∈ [0, d−4).
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From 2d to 2d′

At 2d firm j detects, that firm i deviated to the sequence D′. This implies that firm j knows

that firm i′s consecutive planning dates will be at nd′, for n ∈ N \ {1}. As firm j is in the

interval [2d, 2d′) better informed than firm i, the latter’s expected profit function equals

E[Π(2d+ τ)|I id′ , I
j
d′ ] = (α− pi(2d+ τ) + γE[pj(2d+ τ)|I id′ , I

j
d′ ](pi(2d+ τ)− c)

− E[ξ(2d+ τ)(θ(2d+ τ) + γpj(2d+ τ))|I id′ , I
j
d′ ], (149)

with τ ∈ [0, 24). As a consequence the firms’ optimal prices in this period are given by

p?j(2d+ τ) =
α + θ(2d) + c+ ξ(2d)

2
+
γ
(
α + θ(d′) + c+ ξ(d′)

)
2(2− γ)

, (150)

p?i (2d+ τ) = E[p?j(2d+ τ)|I id′ , I
j
d′ ] =

α + θ(d′) + c+ ξ(d′)

2− γ
. (151)

Using (151) and (150) in (149), taking expectations and subtracting the resulting expression

from the corresponding full information profit, which is obtained by replacing d by 2d in

(140), yields the instantaneous expected loss in this interval, which is given by

E[L′3|I id′ , I
j
d′ ] = Γ1(d−4) + Λ1τ, (152)

with τ ∈ [0, 24). Due to the fact that firm j knows firm i′s consecutive planning dates,

the instantaneous expected loss is in each interval in which firm i is the firm with worse

information, that is in [nd, nd′], for n ∈ {2, ..., m̃}, given by

E[L′3|I0] = Γ1(d− n4) + Λ1τ,

with τ ∈ [0, d− n4) and n ∈ {2, ..., m̃}.

From nd′ to (n+ 1)d, for n ∈ {2, ..., m̃}

These intervals share the feature that firm j′s information set is more outdated. It is easy to

see that the firm with the worse information in an alternating planning pattern sets the same

optimal price as a firm in the synchronous planning pattern. Thus, it follows immediately,

that the expected instantaneous loss is in every interval [nd′, (n + 1)d), for n ∈ {2, ..., m̃},
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given by

E[L′2|I0] = Λ1τ, (153)

with τ ∈ [0, d− n4) and n ∈ {2, ..., m̃}.

The above analysis implies, that the expected loss from the sub-sequence D′m̃ = {d′, ..., m̃d′}

is given by

E[L′(D′m̃)|I0] = e−rd
∫ 4
τ=0

e−rτ (Λ2d+ Λ1τ) dτ

+
m̃∑
n=1

(
e−rnd

′
∫ d−n4

τ=0

e−rτΛ1τdτ

)
+K

m̃∑
n=1

e−rnd
′

+
m̃∑
n=2

(
e−rnd

∫ n4

τ=0

e−rτ
(

Γ1(d− n4) + Λ1τ
)
dτ

)
. (154)

Subtracting the expected loss implied by the equilibrium sub-sequence Dm̃ = {d, ..., m̃d},

denoted by E[L(Dm̃)|I0], from (154) yields

e−rd
∫ 4
τ=0

e−rτ (Λ2d) dτ −
m̃∑
n=1

(
e−rnd

′
∫ d−n4

τ=0

e−rτΛ1n4dτ

)
+K

( m̃∑
n=1

e−r(nd
′) −

m̃∑
n=1

e−r(nd)
)

+
m̃∑
n=2

(
e−rnd

∫ n4

τ=0

e−rτΓ1(d− n4)dτ

)
+ e−rm̃dΥ. (155)

where Υ denotes the difference in expected losses beyond date m̃d. This difference in

expected losses is at each instant t > m̃d bounded below by the expected instantaneous

loss implied by the sequence D. Again we get this by assuming the best possible case for

the deviation, that is, the expected instantaneous loss that is implied by the sequence D′

is zero from date m̃d onwards. In addition, we know that the instantaneous loss from the

sequence D is finite since firm i optimally chooses to plan after some time length. Thus, at

each instant t > m̃d the difference in expected losses is bounded below by

−e−rτΛ1d,

for τ ∈ (0, d] and

−e−rdK,

at a planning date d. Both expressions are finite because d is finite.
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In order to determine the per instant difference in expected losses in the time period before

date m̃d, we divide the first four terms in (155) by n4, where n is chosen appropriately for the

different intervals. Then, we take the limit 4→ 0. The last term in (155) e−rm̃dΥ vanishes

as 4 → 0 implies that m̃ → ∞ and the future is discounted at rate r > 0. Therefore, we

can concentrate on the first four terms when determining the critical inattentiveness length

such that deviating to the sequence D′ is profitable.

We get that the lifetime expected loss from deviating to D′ is lower than the lifetime expected

loss from the proposed equilibrium sequence D if d ≤ ds, where ds solves

e−rdsdsΛ2 − e−rds
Λ1

r
− rK

erds − 1
+
dse
−rds

erds − 1
Γ1 = 0. (156)

If ds → 0, the left-hand side of (156) goes to −∞ because the term involving −rK < 0 is

dominating term. Conversely, if ds → ∞, the left-hand side of (156) goes to 0 from above.

This is the case because the last three terms go to zero at a faster rate than the first term

and the first term is strictly positive since Λ2 > 0. Thus, there exists a solution to (156)

at which ds > 0. It remains to show that this solution is unique. To do so we differentiate

(156) with respect to ds to get

e−rdsΛ1 +
r2erdsK

(erds − 1)2
− Γ1

(
e−rds + rds(2− e−rds − 1

(erds − 1)2

)
+ Λ2e

−rds(1− rds). (157)

It is easy to check that for ds → 0, (157) goes to ∞ since K > 0, while for ds → ∞, (157)

goes to 0 from below. This is the case because the term −Λ2e
−rdsrds < 0 goes to zero at

a slower rate than the other terms. We now look at the four terms of (157) in turn. The

first two terms are strictly positive and strictly decrease as ds rises. The third term is either

positive or negative for any ds, dependent on Γ1 being positive or negative. As the frist two

terms, it becomes strictly smaller in absolute value as ds increases but it does so at a higher

rate than the first two terms. Finally, the fourth term is the only term in (157) that changes

its sign from positive to negative as ds increases which occurs at ds = 1/r. In addition,

this fourth term becomes the dominant term as ds gets larger and larger. As a consequence,

there exist a unique value of ds at which (157) changes its sign from positive to negative.

But this, in combination with the fact that the left-hand side of (156) is negative at ds = 0

and positive at ds → ∞, implies that there must exist a unique solution to (156). As a
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consequence, we have that if d ≥ ds then the lifetime expected loss from deviating to D′

exceeds the lifetime expected loss from the proposed equilibrium sequence D.

Using a similar derivation we obtain that the lifetime expected loss from deviating to D′′

exceeds the lifetime expected loss from the proposed equilibrium sequence D if d ≤ d̄s,

where d̄s solves

d̄sΛ1 − rK −

(
erd̄s − 1

rerd̄s

)
Γ1 = 0. (158)

Existence and uniqueness of d̄s are implied by arguments similar to the ones developed for

ds. �

Proof of Lemma 10

It follows from (51) and (52) that d̄s = ds = d̂s if ρ = ρ̂, where

ρ̂ =
δ1e

rd̂s + δ2

2σθσξ

(
(4(1 + rd̂s) + γ2 − γ(3 + rd̂s))erd̂s + δ3

) , (159)

with

δ1 := (γ(rd̂s + 5)σ2
ξ + (rd̂s + 1)σ2

θ)− 2γ2σ2
ξ − 4(σ2

θ + σ2
ξ )(rd̂s + 1),

δ2 := 4(σ2
θ + σ2

ξ ) + γ((4rd̂s − 5)σ2
ξ − σ2

θ)− 2γ2σ2
ξ (rd̂s − 1),

δ3 := −4− γ(2rd̂s − 3)− γ2(1− rd̂s).

Differentiating ρ̂ with respect to r yields

d̂sγ(σ2
θ − σ2

ξ )(2− γ)(4− γ)(1 + e2rd̂s + (d̂sr)
2erd̂s − 2erd̂s)

2σθσξ

(
(4(1 + rd̂s) + γ2 − γ(3 + rd̂s))erd̂s + δ3

)2 . (160)

Thus,

sign
{∂ρ̂
∂r

}
= sign

{
γ(σ2

θ − σ2
ξ )
}
.

Therefore, ρ̂ is decreasing in r if either σθ > σξ and γ < 0 or σθ < σξ and γ > 0. If these

conditions are not met, then ρ̂ is increasing in r.
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If ρ̂ is decreasing in r, then we obtain the upper bound of ρ̂, which we denote as ρ̄, by taking

the limit r → 0. We get that

ρ̄ = lim
r→0

ρ̂ = −
σ2
θ(4− γ) + σ2

ξ (4− 5γ + 2γ2)

2σθσξ(4− 3γ + γ2)
.

Thus, ρ̄ = ρ′.

If ρ̂ is increasing in r, we obtain the upper bound of ρ̂, which we denote as ρ̃, by taking the

limit r → ∞. We get

ρ̃ = lim
r→∞

ρ̂ = −
σ2
θ + σ2

ξ

2σθσξ
.

It is easy to show that ρ̃ < −1. �

Proof of Proposition 4

We constructed the range of candidate equilibrium inattentiveness intervals by assuming

that a firm may only deviate marginally from the proposed equilibrium planning horizon.

Thus, we have to complement the analysis by considering non-infinitesimal deviations.

Suppose for the remainder of the proof that ρ > ρ̂ so that d ≤ d̄. As in the alternating

planning scenario we restrict the exposition to fractional deviations: firm j sticks to the

proposed inattentiveness period d ∈ [d, d̄] and firm i chooses to remain inattentive for a

period of d (1 ± l/m), m ∈ N and l ∈ {l ∈ N : l ≤ m}.

The proof proceeds as follows. First, we show that the fractional deviations of the type

d (1 ± 1/m) induce the tightest bounds on the range of potential equilibria. Second, we

derive a firm’s expected lifetime loss from deviating non-infinitesimally from any candidate

equilibrium inattentiveness interval. Third, we characterize the tightest bounds that this

type of non-marginal deviation imposes on the range of inattentiveness periods that are

robust against marginal deviations.
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Comparison of the d(1 ± l/m), l > 1, and d(1 ± 1/m) deviation

Generally, a deviation to a sequence d(1 + l/m), l > 1 induces higher expected losses net

of planning cost than a deviation to the sequence d(1 + 1/m). This is due to the fact that

with the former type of deviation firm i is the worse informed firm for a longer time. The

advantage of the former over the latter lies in the planning cost reduction. Thus, firm i

prefers the d(1 + 1/m) to the d(1 + l/m), l > 1, deviation if

E

[
S
((

1 +
l

m

)
d

)]
−E

[
S
((

1 +
1

m

)
d

)]
−K e

rd(m+l)
m − e

rd(m+1)
m(

e
rd(m+1)

m − 1
)(

e
rd(m+l)

m − 1
) ≥ 0, (161)

where E [S((1 + l/m) d)] denotes the expected losses net of planning cost induced by the

sequence (1 + l/m) d and E [S((1 + 1/m) d)] denotes the expected losses net of planning

cost induced by the sequence (1 + 1/m) d.

For d → 0 and d → ∞ the net expected losses induced by both sequences are identical. In

the first case both firms plan at each instant whereas in the case both firms never plan. Thus,

in both cases the difference between the net expected losses is zero. Thus, for d → 0 the

left-hand side of (161) converges to −∞. For d → ∞ the left-hand side of (161) goes to zero.

We know from the arguments developed in Lemma 9 concerning existence and uniqueness

that the left-hand side of (161) is first increasing and then decreasing in d. Thus, there

exists a unique d, denoted by d̂, so that the inequality in (161) holds for all d > d̂. Thus, for

given m the fractional deviation of type d(1 + 1/m) induces the largest lower bound on the

set of potential equilibrium inattentiveness periods as compared to fractional deviations of

the type d(1 + l/m), l > 1.

Similar arguments imply that for given m the fractional deviation of type d(1 − 1/m)

induces the lowest upper bound on the set of potential equilibrium inattentiveness periods

as compared to fractional deviations of the type d(1− l/m), l > 1.

Now, we derive firm i′s expected stream of losses if it deviates to an inattentiveness interval

of length d(1 + 1/m), m ∈ N.
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d(1 + 1/m): Expected instantaneous losses

Suppose that firm i deviated to d + d/m, m ∈ N, whereas firm j sticks to the equilibrium

planning horizon d. This deviation induces a stream of expected losses that is composed of

three different instantaneous expected losses:

ν1 := Λ1τ + Λ2d, (162)

ν2 := Λ1τ, (163)

ν3 := Λ1τ + Γ1

(m− k
m

)
d, k ∈ N, k < m. (164)

The expected instantaneous loss in the period that elapses between the first planning date

on the equilibrium path and the first planning date under the deviation are given by (162).

In this period, firm i′s deviation is undetected by firm j. The component (163) captures

firm i′s expected instantaneous losses in the time period in which it is the better informed

firm, irrespective of whether the deviation was detected or not. (164) captures firm i′s

expected instantaneous losses in the time period in which it is the worse informed firm after

its deviation has been detected.

The counter ((m−k)/m)d, k ∈ {0, ...,m−1} in (164) measures the time that elapses between

a planning date of firm i and the consecutive planning date of firm j. If, e.g., m = 5 and

k = 4, then the time that elapses between the kth planning date of firm i and the (k + 1)th

planning date of firm j is given by (k + 1)d − k(1 + 1/m)d = 5d − 4(1 + 1/5)d = 1/5d. It

also becomes evident from this example that the firms plan simultaneously every (m + 1)d

periods: firm i repeated its planning horizon exactly m times and firm j planned for the

(m+ 1)th time at this date. This is due to the fact that we consider deviations in which the

deviant expands its inattentiveness period by a fraction.

d(1 + 1/m): Expected stream of losses

Given the expected instantaneous expected losses (162) to (164) a deviant’s expected stream

of losses is given by
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E[S|θ0, ξ0] = e−rd
∫ d

m

0

e−rτν1dτ +
m−1∑
k=1

(
e−r(1+ 1

m)kd

(∫ (m−k
m )d

τ=0

e−rτν2dτ

))

+
∞∑
n=1

m−1∑
k=0

(
e−r(n(m+1)+(1+ 1

m)k)d

(∫ (m−k
m )d

τ=0

e−rτν2dτ

))

+
m−1∑
k=1

(
e−r(1+k)d

(∫ ( k+1
m )d

τ=0

e−rτν3dτ

))

+
∞∑
n=1

m−1∑
k=0

(
e−r(n(m+1)+1+k)d

(∫ ( k+1
m )d

τ=0

e−rτν3dτ

))

+K
∞∑
n=1

(
e−rn(1+ 1

m)d
)
. (165)

Now, we derive the deviant’s expected stream of losses if it chooses an inattentiveness interval

of length d− d/m, m ∈ N instead of d.

d(1− 1/m): Expected instantaneous losses

Suppose that firm i deviated to d − d/m, m ∈ N, whereas firm j sticks to the equilibrium

planning horizon d. This deviation induces a stream of expected losses that is composed of

two different instantaneous expected losses:

φ1 := Λ1τ, (166)

φ2 := Λ1τ + Γ1

( k
m

)
d, k ∈ N, k < m. (167)

In this scenario, the deviation is detected by firm j at its first planning date. The component

(166) captures firm i′s expected instantaneous losses in the time period in which it is the

better informed firm, irrespective of whether the deviation was detected or not. Correspond-

ingly, (167) captures firm i′s expected instantaneous losses in the time period in which it is

the worse informed firm.

The counter (k/m)d, k ∈ N, k < m in (167) measures the time that elapses between a

planning date of firm i and the consecutive planning date of firm j. In order to illustrate

this, suppose again that m = 5 and k = 3. Then the time that elapses between the kth

planning date of firm i and the kth planning date of firm j is given by (k)d− k(1− 1/m)d =
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3d − 3(1 − 1/5)d = 3/5d. It also becomes evident from this example that the firms plan

simultaneously every (m − 1)d periods: firm i repeated its planning horizon exactly m − 1

times and firm j planned for the mth time at this date. Again, this is due to the fact that

we consider deviations in which the deviant expands its inattentiveness period by a fraction.

d(1− 1/m): Expected stream of losses

Given the expected instantaneous expected losses (166) and (167) a deviant’s expected

stream of losses is given by

E[S̄|θ0, ξ0] =
∞∑
n=0

m−1∑
k=1

(
e−r(k−

k
m

+n(m−1))d

(∫ ( k
m)d

0

e−rτφ1dτ

))
+
∞∑
n=0

(
e−r(n(m−1)d)

∫ (1− 1
m)d

τ=0

φ1dτ

)

+
∞∑
n=0

m−2∑
k=1

(
e−r(n(m−1)+1+k)d

(∫ (1− k+1
m )d

τ=0

e−rτφ2dτ

))

+K
∞∑
n=1

(
e−rn(1− 1

m)d
)
. (168)

Now, we turn to the third part of the proof and characterize the equilibrium range of

synchronous inattentiveness intervals.

To do so, we set out by deriving a firm’s incentive to deviate for each type of fractional

deviation. Subtracting from each fractional-deviation induced expected stream of losses –

(165) to (168) – the equilibrium expected stream of losses which is appropriately adapted to

the considered time horizon yields

E[S|θ0, ξ0] − E[S1|θ0, ξ0], (169)

E[S̄|θ0, ξ0] − E[S2|θ0, ξ0], (170)

where

E[S1|θ0, ξ0] =
erd − 1− rd
erdr2(erd − 1)

Λ1 +
K

erd − 1
,

E[S2|θ0, ξ0] = e−r(1− 1
m)d

∫ d
m

τ=0

e−rτ
(

Λ1

((
1− 1

m

)
d+ τ

))
dτ + E[S1|θ0, ξ0].

Thus, it is profitable for a firm to deviate from a proposed synchronous inattentiveness period

d in a non-marginal way if either (169) or (170) are negative for at least one m ∈ N.
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Using (169) and (170) we can show that synchronous planning cannot be an equilibrium for

γ < 0 and −1 ≤ ρ ≤ ρ̂. Thus, according to Lemma 10 a synchronous planning equilibrium

can only exist for γ > 0 and ρ ≥ max{−1, ρ̂}.

In order to derive the tightest bounds that the non-marginal “no-deviation” conditions

impose on the range of potential equilibria we proceed as follows: we treat, for the sake

of simplicity, m as a real non-negative number and minimize (169) and (170) with respect

to m. Denote the real numbers that solve the minimization problem of (169) and (170) by

m and m̄. It can be shown that m = m̄. Accordingly, denote by m? = [m̄] the integer

which is closest to m̄. This yields for each direction the fractional deviation, i.e.,
(
1− 1

m?

)
d

and
(
1 + 1

m?

)
d, that induces the smallest expected stream of losses. As a consequence,

the equilibrium inattentiveness intervals for which (169) and (170) are zero for m = m?

constitute the tightest bounds that characterize the equilibrium range.

For the sake of brevity, we limit the presentation to the derivation of m. Solving (169) with

respect to K and taking r → 0 in the solution delivers

K =
d2

24(2− γ)2m

( (
2(σ2

ξ + ρσθσξ)γ
2 − (σ2

θ + 6ρσθσξ + 5σ2
ξ )γ + 4(σ2

θ + 2ρσθσξ + σ2
ξ )
)
γm2

+(2(σ2
θ + 2ρσθσξ + σ2

ξ )− (2− γ)(σ2
ξ + ρσθσξ)γ

2)6m

+4(3− γ)(σ2
θ + 2ρσθσξ + σ2

ξ ) + (σ2
θ − 6ρσθσξ − 7σ2

ξ )γ
2
)
. (171)

Differentiating (171) with respect to m yields

m =

√
4(ρσθσξ + σ2

ξ )γ
3 + (σ2

θ − 6ρσθσξ − 7σ2
ξ ) + 4(σ2

θ + 2ρσθσξ + σ2
ξ )(3− γ)

γ(2(ρσθσξ + σ2
ξ )γ

2 − (σ2
θ + 6ρσθσξ + 5σ2

ξ )γ + 4(σ2
θ + 2ρσθσξ + σ2

ξ ))
. (172)

Solving the second derivative of (169) with respect to m for K, taking r → 0 in the solution

and evaluating the resulting expression at m yields that this is indeed a minimum. Thus,

it follows from (171) and (169) that a firm has no incentive to deviate to an inattentiveness

period of length d+ d
m
∀m ∈ N, where

dls =
2
√

6(2− γ)
√
Km?√

Θ(m? + 1)
,
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and

Θ = (ρσθσξ + σ2
ξ )(2 +m?)2γ3 − ((7 + 5m?)σ2

ξ + 6ρσθσξ(m
? + 1) + σ2

θ(m
? − 1))γ2

+4(σ2
θ + 2ρσθσξ + σ2

ξ )(m
? − 1)(γ(m? − 1) + 3),

m? = [m] .

Similar arguments imply that a firm has no incentive to deviate to an inattentiveness period

of length d− d
m
∀m ∈ N if d ≤ dus , where

dus =
8
√

6
√
Km?√

Θ(m? + 1)
.

Obviously, dus > dls for γ > 0.

A similar argument yields that the bounds that are implied by player 2 choosing planning

mode (A) and an fractional deviation of the type (1 + l/m) d are not tighter than dls and dus .

Hence, every common d ∈ [dls, d
u
s ] is a synchronous equilibrium inattentiveness period. �
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