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Abstract

We consider a market model with n rational firms (doctors) and a continu-

um of boundedly rational consumers (patients). Following Spiegler (2006a),

we assume that patients are not familiar with the market and rely on anec-

dotes.

We analyze the price setting game played by doctors with given, different

healing qualities. Doctors know their own quality, as well as the qualities of

their competitors. We find a unique equilibrium in mixed strategies. All doc-

tors, no matter how bad, make positive profits that are typically considerably

higher than their maxmin payoffs.

In order to analyze welfare, we introduce a pre-stage where doctors choose

qualities. Even though a better quality comes for free, doctors mainly offer

mediocre qualities in all SPNE. If the highest possible quality is high enough,

welfare strictly decreases in the number of doctors.
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1 Introduction

A consumer who turns to an unfamiliar market may rely on the advice of other

consumers. Anticipating such search behavior, it may be beneficial for firms to

commit on low qualities as a product differentiation strategy, even if raising quality

is costless. With low qualities, every single firm is considered by less consumers.

Yet the firm has to compete for potential consumers less fiercely, as these take only

few other firms into consideration. This is the situation explored in this paper.

There are plenty of markets in which consumers are not fully aware of the different

qualities of specialists and rely on anecdotal evidence. Whereas consumers do not

know well how the market they are in exactly looks like, specialists know the market

perfectly: They know how good they are, how good their competitors are, and how

consumers use to search for them. Specialists act rationally, while consumers apply

a rule of anecdotal reasoning.

Our running (toy) example is given by a patient thinking about consulting some

doctor because a friend got cured at that doctor. Like in Spiegler’s “Market for

Quacks” (2006a) on which our model is based, patients are assumed to rely on

the experiences of others in order to judge the qualities of different doctors. Each

patient asks one former client of each doctor whether the doctor cured him or not.

A positive report makes the patient believe that that doctor will cure him as well

- whereas a negative report makes the patient shy away from that doctor. Among

the recommended doctors, patients choose the cheapest one.

Another example is given by the market of piano-teaching: Parents, not knowing

how to play the piano themselves, rely on recommendations to find a good piano

teacher for their children. Further applications are the markets for financial advice,

personal coaching, business consulting, special repair services, or spiritual guidance.

We define the quality of a doctor as the probability with which he can help a

patient. If patients ask one client of each doctor while searching for a good treatment,

the probability that a doctor is recommended to a patient is given by his success

probability. We first assume that qualities are given exogenously and analyze the

price setting behavior of the doctors. Later we allow doctors to choose their qualities.

Thinking about choosing a quality as a process of specialization, it is natural to

assume that doctors first choose their quality, then set their prices.
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In the pricing game with exogenous, asymmetric qualities, we find that even the

worst doctors survive in the market, and earn equilibrium payoffs much larger than

their maxmin payoffs. The reason is that good doctors do not feel threatened enough

by bad doctors to set low prices. Instead good doctors mix over rather high prices,

leaving room for bad doctors to earn considerable payoffs.1 No doctor has an in-

centive to reveal his true quality: If he would state his true quality, his position in

competition with other recommended doctors would be weakened.

We then analyze the full game in which doctors first choose their qualities. Consid-

ering pure quality-setting strategies, we find that in all SPNE doctors mainly offer

low qualities. A low quality attracts fewer patients, but it softens price competition.

The latter effect dominates, thus doctors do not set high qualities, even if setting

higher qualities is costless. This extended model allows us to analyze how welfare

(i.e. the overall proportion of patients cured2) is affected by the number of doctors

in the market.

We find that heavily restricting the number of doctors improves welfare since it

increases the quality of treatments offered. If the maximal quality doctors can offer

is high enough, having a monopolistic doctor maximizes welfare (and welfare strictly

decreases in the number of doctors).3

It may seem cynical to think of a physician (or other specialist) in front of a patient

applying a bad technique when he could without problems or direct costs apply

a better technique instead. The quality choice should be seen to take place on a

more fundamental level: A doctor comes to the market. He can specialize on the

best-available treatment. Yet he can as well specialize on an alternative approach

of curing the same disease, a method that maybe helps less often. Anticipating

that choosing the best available treatment will lead to strong competition, the doc-

tor may specialize on an alternative, weaker method. Our model thus predicts a

differentiation of treatments at the expense of overall quality.

1This may explain why approved therapies do not crowd out the myriads of obscure nutritional
supplements which were never clinically tested.

2In our model, all payments made are just transfers within society. Moreover, neither doctors
nor patients face any direct costs. Thus, in our setting, maximizing social welfare is equivalent to
maximizing the proportion of patients cured.

3It is even more beneficial for welfare not to limit entry but to exogenously prescribe a fixed
price. Then doctors cannot not take advantage of the weaker price competition induced by low
qualities, and thus have no incentive to choose a lower than maximal quality.
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1.1 Related Literature

Our model is based on Ran Spiegler’s “Market for Quacks” (2006a). We extend his

model of the pricing game to the case of asymmetric qualities. This allows us to

introduce a pre-stage of quality-setting which makes the model more suitable for

the study of social welfare. The sampling rule patients apply to evaluate doctors

is the S(1) rule which was introduced by Osborne and Rubinstein (1998). Spiegler

and Rubinstein have utilized the S(1) rule to model consumer behavior in a variety

of settings (see Spiegler (2006a, 2006b) and Rubinstein and Spiegler (2008)). We

have used the S(1) procedure as well in a companion paper, Szech (2008).4

Besides S(1) there are other related approaches for modeling boundedly rational con-

sumer behavior, such as Ellison and Fudenberg’s (1995) “word-of-mouth learning”

and Rabin’s (2002) “law of small numbers”. More broadly, our paper contributes

to the literature on interactions between rational firms and boundedly rational con-

sumers (see the survey by Ellison (2006)). To our knowledge, this paper is the first

to extend a price competition game with boundedly rational consumers via intro-

ducing a preceding quality setting stage in order to study how bounded rationality

affects welfare.

Technically, our analysis has some parallels to papers on price dispersion like Varian

(1980) or to papers on complete information all-pay auctions such as Baye, Kovenock

and de Vries (1996).5 Like in those models, the equilibrium of our pricing stage is

in mixed strategies. We first specify equilibrium payoffs for all possible equilibria

and then identify sequentially the unique equilibrium candidate - a similar approach

has been used, for instance, by Siegel (2008) in the context of generalized all-pay

auctions. In light of that literature, an interesting feature of our price setting game is

that we obtain a unique equilibrium in non-degenerate mixed strategies in the price

setting game both in the symmetric and the asymmetric case. This sets our model

apart from the complete information all-pay auction or Varian’s model of sales.

There, in the asymmetric case, all but two firms play pure strategies. Furthermore,

4In there, we consider a variant of Spiegler’s (2006a) model in which the doctors’ qualities are
privately known random variables. We identify an equilibrium in monotone pricing strategies of
that model and show that welfare goes to zero in the number of doctors. This happens because
patients always attend the cheapest among the doctors who are recommended - in monotone
strategies this is also the worst recommended doctor.

5Indeed, our model is a complete-information first-price (procurement) auction with stochastic
participation.
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in the symmetric case, there is a multiplicity of equilibria.6 The central reason for

these differences is that in our model, for any pair of firms, there is a group of

consumers who just decide between these two firms. Notably, in the asymmetric

case, Varian’s model of sales can only explain sales (i.e. mixing) by the two firms

with the smallest “home-base”.7 Our analysis shows that by introducing further

groups of consumers (whose “sophistication” lies between that of the two groups

considered by Varian) sales by all firms in the market can be explained.8

Reinterpreting the model with rational patients, i.e., considering a model where

each patient likes or dislikes (notices or does not notice) a firm’s product with some

probability,9 one sees the close relation of our model to the advertising model of

Butters (1977). A similar reinterpretation with rational agents is possible with the

Spiegler model, which is then a special case of the Perloff and Salop (1985) model

of product differentiation. Our quality-setting stage parallels Shaked and Sutton

(1982): They introduce a quality setting pre-stage to the Gabszewicz and Thisse

(1979) pricing model, while we do the same with a Perloff-Salop-type pricing model.

In Shaked and Sutton (1982), only a limited number of firms can make positive

profits. This is not true in our model. The reason lies in the different modeling of

consumers’ preferences: In Shaked and Sutton (1982), all consumers share the same

ranking of products. In our paper, for each product there is a group of consumers

who prefer it to all other products.

1.2 Outline

The paper is structured as follows: Section 2 presents the model and describes the

S(1) procedure in detail. In Section 3, we analyze the second stage of decision mak-

ing in the game (the price setting stage), and identify its unique Nash equilibrium.

Pure equilibria of the quality setting stage and their welfare implications are dis-

cussed in Section 4. Section 5 presents a number of extensions and variations of our

6See Baye, Kovenock and de Vries (1992, 1996).
7By asymmetry we mean that the mass of consumers tied to one firm varies across firms. The

asymmetric case is not treated in Varian’s paper. It is covered, e.g., by the analysis of Siegel
(2008).

8In our terminology, in Varian’s model patients either get a recommendation for all doctors or
for only one doctor. The interpretation is that some consumers are aware of all firms while others
consider only the nearest firm. Under this interpretation, we have that in our model for any subset
of firms there is a group of consumers who are aware exactly of that subset. See also footnote 21.

9This reinterpretation of quality as “mass appeal” or “intensity of advertising” affects the
welfare implications of our model, but not the equilibrium analysis.
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model. First, we show that the equilibrium analysis is robust to the introduction

of convex costs. Then, we point out the differences between our model and a paral-

lel model with rational patients holding incomplete information about the doctors’

qualities. Finally, we consider the reinterpretation of our model as a model of prod-

uct differentiation or advertising with rational consumers. Section 6 concludes. In

Appendix A we discuss mixed strategy equilibria of the quality setting stage. All

proofs are in Appendix B.

2 The Model

We consider a market with n doctors who are familiar with the market and act

rationally. Patients are not familiar with the market and apply a simple sampling

rule described below. Patients form a continuum of mass one. We assume that the

doctors know each other very well and hence know the qualities of each other when

playing the pricing game. Qualities can be anything between zero and some upper

bound 0 < α < 1. A doctor’s quality is the probability with which he can cure a

patient. With the counter probability, the patient remains ill. Before we specify the

patients’ behavior, we give the exact timing of the model:

1. Doctors simultaneously set their qualities αi ∈ [0, α].

2. Doctors observe each others’ qualities.

3. Doctors simultaneously set their prices Pi.

4. Patients decide if they want to attend a doctor and if so, which one.

Patients are initially ill and have a utility of one from getting cured and a utility

of zero from staying ill. They decide according to the behavioral rule S(1) as

introduced by Osborne and Rubinstein (1998), and as utilized in Spiegler (2006a):

• Each patient samples each doctor once.

• With probability αi, a patient gets a positive signal Si = 1 on doctor i (“a

recommendation”).

• With probability 1 − αi, a patient gets a negative signal Si = 0 on doctor i

(“no recommendation”).

• A patient attends the doctor with the highest Si − Pi ...
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• unless maxi Si−Pi < 0. Then the patient stays out of the market and expects

a utility of 0 at a price of 0.

Note that the last two points implicitly contain a tie-breaking rule: If a patient has

to choose between consulting a recommended doctor charging a price of one and

staying at home, the patient opts for the doctor. It can be shown that in the pricing

stage no equilibrium exists if we depart from this assumption. For all other possible

types of ties, no special breaking rule is needed for our results - ties can be broken

arbitrarily.

Note that patients rely far too much on the signal they get - they overinfer from

their sample. The idea behind the S(1) rule is to capture a simple way of anecdotal

reasoning: Each patient independently asks some “former” client of each doctor.10

A client of doctor i got cured with probability αi. Thus, with probability αi, he

recommends doctor i to the patient. The patient trusts in this report - he either

thinks the doctor can cure him as well for sure or not at all.

Choosing a higher quality comes at no direct costs for the doctors. The motivation

for this assumption is that we want to study how the patients’ boundedly rational

behavior induces doctors to set a low quality. Our model is to be understood as a

benchmark case which ignores costs that give doctors another, separate reason for

choosing a low quality. In Section 5.1 we show that our results are robust to the

introduction of convex costs.

3 The pricing stage

We search for SPNE using backwards induction, and thus we start with an analysis of

the price setting game for given quality levels αi.
11 We first show that the equilibrium

payoffs of the price setting stage are uniquely determined. Then we identify the

unique equilibrium of the pricing stage.

Proposition 1 Fix α1,..., αn. Then in all equilibria of the price setting game, the

payoff of doctor i is given by

πi = αi
∏
j 6=j∗

(1− αj) (1)

10Of course, we are not in a dynamic model here. This is only some motivating story.
11The price setting game is essentially a generalization of the game analyzed by Spiegler who

assumes that all (or all but one) doctors have the same α.
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where j∗ ∈ argmaxj αj.

The intuition for this is as follows: Consider doctor j∗ who offers the highest qual-

ity.12 This doctor can make a positive profit independent of his competitors’ strate-

gies, as there will be patients who only get a positive report on him, but not on the

other doctors. (The fraction of these patients is αj∗
∏

j 6=j∗(1−αj)). Our doctor will

thus set a positive lowest price in any equilibrium. Consider one equilibrium and

assume our doctor makes there a payoff of αj∗C and sets a lowest price of pL. By

charging an only slightly lower price than this, every other doctor i can make, at

least, a profit arbitrarily close to αiC. Reasoning vice versa we see that the payoffs

indeed have to equal αiC and cannot be higher. To determine C, we find out that

there is one doctor i who has a price of 1 in the support of his equilibrium price

setting strategy. This doctor only makes a profit if he is the only recommended

doctor, which happens with a probability of αi
∏

j 6=i(1 − αj). Finally, we find that

this doctor has to be the best doctor, as otherwise C would be so low that the best

doctor would prefer to deviate. Thus we can specify C =
∏

j 6=j∗(1− αj).

From Proposition 1, we see that the quality of the best doctor does not appear in the

payoff formulas of the other doctors. Hence it does not matter for the competitors’

profits whether the best doctor is equally good as the second best doctor or much

better. For the second best doctor, this is not true: His quality always affects the

competitors’ profits.13

One important question left open by Proposition 1 is equilibrium existence to which

we turn now: We find a unique equilibrium which is in mixed strategies. To get

an intuition for the equilibrium distribution functions, assume all doctors use some

price p̃ in their supports. Then, the equilibrium distribution functions Gi must

fulfill:

π1(p̃)
(1)
= α1

∏
j 6=j∗

(1− αj) = α1p̃
∏
j 6=1

(1− αjGj(p̃)).

The middle part of the equation is the equilibrium payoff specified above. The

right hand side is the payoff doctor 1 makes from playing p̃ given that the other

doctors mix according to Gj: p̃ is the price he earns if he is consulted, and α1 is the

12If there is more than one, we (arbitrarily) determine as best doctor one of the doctors with
highest qualities.

13Thus, if more than one quack in Spiegler’s market would be changed into some expert, the
payoffs of the remaining quacks would be diminished. This result complements Proposition 2 of
Spiegler (2006a).
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probability that he is recommended. The product term is the probability that all

competitors are not recommended, or pricier than i. The same must hold for doctor

2.

π2(p̃)
(1)
= α2

∏
j 6=j∗

(1− αj) = α2p̃
∏
j 6=2

(1− αjGj(p̃)).

We thus have
1

p̃

∏
j 6=j∗

(1− αj) =
∏
j 6=1

(1− αjGj(p̃))

and
1

p̃

∏
j 6=j∗

(1− αj) = p̃
∏
j 6=2

(1− αjGj(p̃))

from which we see that

1− α1G1(p̃) = 1− α2G2(p̃)

or, more generally,

1− αkGk(p̃) = 1− αlGl(p̃)

for all k, l.

We can thus write∏
j 6=j∗

(1− αj) = p̃
∏
j 6=1

(1− αjGj(p̃)) = p̃(1− αiGi(p̃))
n−1

and therefore

1

αi

1− n−1

√∏
j 6=j∗(1− αj)

p̃

 = Gi(p̃)

for all i.

This is the basic reasoning behind Proposition 2, but since the doctors may mix

over different price intervals, the equilibrium looks a bit more complicated. Before

stating the proposition, we depict the price intervals doctors typically mix on.
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Figure 1: Supports of the doctors’ pricing strategies for n = 5

The doctors’ price supports all start at the same lowest price p0. Furthermore, we

see that the higher the quality of a doctor, the larger the support of his pricing

strategy.

Proposition 2 Consider 0 < α1 ≤ . . . ≤ αn ≤ α. Then the unique equilibrium of

the pricing game is given as follows:

Define a sequence of prices p0, . . . , pn by

pi =
(1− αi+1) · . . . · (1− αn−1)

(1− αi)n−i−1

for 1 ≤ i ≤ n− 2,

p0 =
n−1∏
i=1

(1− αi) and pn−1 = pn = 1.

Each doctor i mixes over the interval [p0, pi] using the distribution function Gi de-

fined by

Gi(p) =
1

αi

(
1− n−j

√
(1− αj) · . . . · (1− αn−1)

p

)
for p ∈ [pj−1, pj] ⊂ [p0, pi] with 1 ≤ j ≤ n − 1. On [0, p0], define Gi = 0 and on

[pi, 1], Gi = 1. Gn places an atom of size 1− αn−1

αn
at 1.14

14Note that Propositions 1 and 2 still hold in the (excluded) case where exactly one doctor has
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Note that the upper boundaries pi coincide if the corresponding αi coincide. The

distribution functions Gi are continuous except for Gn where doctor n puts an atom

on p = 1 (if αn−1 6= αn).

We first showed equilibrium payoff uniqueness (Proposition 1) and then sequentially

constructed a unique equilibrium candidate (Proposition 2). A very similar approach

was recently taken by Siegel (2008) to analyze complete information all-pay auctions

with general cost functions. Furthermore, our equilibrium somewhat resembles the

mixed-strategy equilibrium of a complete information all-pay auction. Of course, the

price setting game we consider is not an all-pay auction, but a complete-information

first price auction with equal valuations and random participation. What these

two auction models have in common is that some players can secure a positive

maxmin payoff by making a high bid. Such behavior is, however, not consistent

with equilibrium behavior. Thus a mixed strategy equilibrium arises.

Note that in our equilibrium weak players typically earn much more than their

maxmin payoffs. As an example, consider the case n = 2, α1 = 0.9, α2 = 0.3. Then

π1 = maxmin1 = 0.9(1− 0.3) = 0.63,

whereas

π2 = 0.3(1− 0.3) = 0.21 > maxmin2 = 0.3(1− 0.9) = 0.03.

A good doctor can make a high payoff from being a monopolist. Thus when facing

a weak competitor he is “unwilling” to play too low prices. Hence there is room left

for the weak doctor to make a considerable profit.

The following corollary characterizes the equilibrium further. It shows that while

better doctors have larger market shares in equilibrium, differences in market shares

are smaller than differences in qualities:

Corollary 1 Consider the equilibrium of Proposition 2. Consider two doctors i and

j with qualities αi < αj. Denote by mi and mj the doctors’ market shares, i.e. the

a quality of 1. If there are more than one doctor with a quality of 1, payoffs will be zero due to
Bertrand competition. Then, many equilibria are possible as long as two “perfect” doctors set
prices of 0.
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proportions of patients visiting the doctors. Then

αi
αj

<
mi

mj

< 1.

Note that αi/αj is also the ratio between the equilibrium payoffs of doctor i and

j. Thus the corollary implies that better doctors make higher payoffs partly due to

higher prices and partly due to attracting more patients.

4 The quality setting stage

As the equilibrium of the price setting game is unique, the doctors’ payoffs in every

SPNE of the complete game just depend on the qualities chosen by the doctors in

the first stage. From now on, we can thus consider the game as a one-stage quality

setting game and search for its Nash equilibria.

For intuition, consider first the two doctors case with α > 1
2
. By Proposition 1, the

payoff of doctor 1, given quality choices α1 and α2, is

Π1(α1, α2) =

{
α1(1− α2) if α1 ≥ α2

α1(1− α1) if α1 ≤ α2.

It is thus not surprising that the best response curve of doctor 1 contains only 1
2

and α:

BR1(α2) =

{
α if α2 ≤ 1− 1

4α
1
2

if α2 ≥ 1− 1
4α
.

The two equilibria in pure quality setting strategies are, accordingly: (α, 1
2
) and

(1
2
, α).

With more than two doctors, it remains true that a doctor’s best response to any

pure strategies of his opponents is either α or 1
2
. Furthermore, if α > 1

2
, given

that one of his opponents plays α, doctor i will prefer playing 1
2

to α. Intuitively,

doctor i chooses a low quality to prevent a fierce price competition with the strong

competitor. We can now characterize the SPNE as follows:

Observation 1 (i) If α ∈ (1
2
, 1), all SPNE in pure quality setting strategies are

of the following form: One doctor i sets αi = α, all other doctors j set αj = 1
2
.
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Pricing strategies are as calculated in Proposition 2. We will call these equilibria
1
2
-α-equilibria.

(ii) If α < 1
2
, the unique SPNE is given by all doctors i setting αi = α and playing

prices as in Proposition 2.

An immediate corollary of Observation 1 is the following:

Corollary 2 With α > 1
2
, there is no SPNE where all doctors offer the highest

quality.

There is a positive effect of raising α above 1
2
: With a higher quality, a doctor gets

recommended to more patients. Yet, if strong competitors are present, this effect

on payoff is dominated by the negative effect of making competition in the market

fiercer. This behavior of the doctors already suggests the following conclusion which

is made precise in Proposition 3: Having many doctors in the market cannot be

good for welfare (i.e. the overall proportion of patients cured) since the average

quality offered by the doctors is quite small then (close to 1
2
).

We now determine the market size which maximizes social welfare in the 1
2
-α-

equilibria. We find that monopoly is optimal for α ≥ 3
4
. For smaller α having

a few doctors in the market is best.

Proposition 3 As n increases, welfare in the 1
2
-α-equilibria converges to 1

2
from

above. For 3
4
< α < 1 welfare strictly decreases in n ≥ 1. For 1

2
< α ≤ 3

4
welfare

increases up to some finite optimal market size n∗ and decreases from there on.

Furthermore, for 1
2
< α the optimal market size is bounded from above through

n∗ ≤ 10.4 + 2.3 ln

(
1.7 +

0.35

α− 1
2

)
.

To see why a market with a small number of doctors may generate more welfare

than monopoly, consider as an example α = 0.6. If there is only one doctor, he

offers the best possible quality of 0.6 and sets a price of 1. Thus 60% of the patients

get a positive report and attend this doctor. Of this fraction of patients, 60% get

cured. Thus, in monopoly, 36% of all patients get cured. With more doctors, more

patients get at least one positive report and attend a doctor at all. In our example,

with two doctors, we have 1 − (1 − 0.6) · (1 − 1
2
) = 80% of all patients getting at

least one positive report and thus attending a doctor at all. Using formula (10) of
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the Appendix it can be seen that in this case 44.25% of patients get cured, and that

the optimal number of doctors for α = 0.6 is 7. This is the positive welfare effect

of a larger number of doctors. Yet if the number of doctors increases, more and

more doctors offer only low quality treatments (α = 1
2
). This is the downside of

a high number of doctors, which dominates if n gets larger: The positive effect of

increasing the market size vanishes exponentially in n while the market share of the

good doctor decreases much slower (roughly as 1
n
). Thus for n sufficiently large the

proportion of patients cured is always above 1
2
.

While the upper bound on the optimal market size given in the proposition is not

very sharp, it makes clear that the optimal market size goes to infinity only very

slowly as α approaches 1
2
. For instance, for α = 0.50001 we get n∗ ≤ 34:15 The

presence of a doctor with a slightly better quality drastically reduces the optimal

market size, as infinitely many doctors would maximize welfare if α = 1
2
. The

proposition is summed up in Figure 2 which depicts the proportion of patients

cured as a function of market size for different values of α.

Let us now turn to the case where the best possible method of healing only leads to

a recovery probability of α ≤ 1
2
. Then, as noted in Observation 1, the unique SPNE

is that all doctors offer the best possible treatment with healing probability α. But

what would happen if there was a new technology that could lead to a higher α?

Observation 2 tells us that a rise of α in between [ 1
n
, 1

2
] would not be welcomed by

the doctors:

Observation 2 The equilibrium profit of each doctor

α(1− α)n−1

is strictly decreasing in α on [ 1
n
, 1

2
].

Hence doctors would try to block or delay the approval of promising new drugs or

treatments.16

15The exact value (which can be found numerically) is n∗ = 24.
16Note, however, that doctors would, of course, welcome innovations that allowed themselves

but not the other doctors to set a higher quality.
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Figure 2: The effect of market size on welfare

For α ≤ 1
2
, the proportion of patients who are healed increases with the market

size. Note, however, that a restriction to a finite market size will not do much harm

unless α is small since the proportion of patients healed, which is given by

α [1− (1− α)n] ,

converges to α exponentially fast.

Finally, note that for a given vector of (positive) prices, it is a unique best response

for doctors to set their qualities to α. An obvious policy implication of this fact

is the following: If a policy maker could prescribe an arbitrary fixed price for the

doctors’ services, the problem of low qualities would vanish. Doctors would set

their qualities as high as possible. As discussed at the end of Section 5.1 however

this simple policy of fixing prices at an arbitrary value will not work anymore if we

introduce costs of quality setting: Then only a carefully chosen fixed price may have

the desired effect.
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5 Discussion

5.1 Costly Quality Choice

We now discuss the robustness of our results with regard to costly qualities. We

find that our results are robust to the introduction of convex costs, i.e., there are

SPNE which are structurally similar to the 1
2
-α-equilibria of the previous section:

Proposition 4 Assume that setting α is associated with a cost c(α), where c is a

continuously differentiable, increasing and convex function with 0 < c ′(0) < 1 and

c(0) = 0. Then there exists an SPNE where all but one doctors set 0 < αl < 1
2

and

one doctor sets αh where αh > αl. αl solves

c ′(αl) = (1− 2αl)(1− αl)n−2

and αh solves

c ′(αh) = (1− αl)n−1

if c ′(1) ≥ (1−αl)n−1 and αh = 1 otherwise. Furthermore, αl and αh are decreasing

in n.

Note that all doctors make positive profits in equilibrium no matter how large n is.

Of course, if we introduce fixed costs of entry, some doctors may decide to stay out

of the market. An implication of the proposition is that the significance of the value

α = 1
2

in the basic model (which may have seemed a bit strange) was caused by the

assumption of no costs.

In Section 4 we saw that, in the model without costs, fixing prices at any arbitrary

p ∈ [0, 1] makes doctors set their qualities to the maximum and thus to the social

optimum (for each fixed n). In the model with costs this simple policy does not

work anymore: as a symmetric Nash equilibrium, doctors play qualities α(p, n) that

sensitively depend on the fixed price p. As one would expect, the quality α(p, n)

is decreasing in n and increasing in p.17 For example, if p was fixed at zero, all

doctors would choose zero qualities. No patient would get cured. Thus we find that

in the model with costs only a careful choice of a fixed price p may induce the social

optimum.

17α(p, n) is implicitly given as the solution of p(1 − (1 − α)n)/nα = c′(α) if a solution exists,
otherwise α(p, n) ∈ {0, 1}. Since the left hand side is decreasing and the right hand side is strictly
increasing in α there is at most one solution. Technical details are available upon request.
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5.2 Comparison with a Model of Incomplete Information

It is natural to ask whether our results could be reproduced in a model with in-

complete information and complete rationality. Despite some similarities, this is

generally not the case. Consider first a price setting game in which patients believe

in some prior distribution of doctors’ qualities. Patients receive either a good or a

bad report on each doctor and update their prior in a Bayesian way. Thus there

are two possible expectations αl and αh a patient can have about a doctor’s quality.

This does lead to a mixed strategy equilibrium like in our model. Yet, apart from

this, there are considerable differences. For instance, in the incomplete information

model, if we change the patients’ prior beliefs to more optimistic ones (such that

αl and αh are replaced by Lαl and Lαh, L > 1) the patients’ willingness to pay

increases, and doctors then charge higher prices in equilibrium. This is in contrast

to the S(1) model, in which increasing qualities leads to lower equilibrium prices.

For a more detailed discussion, see Spiegler (2006a).

A two stage model with strategical patients differs even more drastically from our

model. In such a model, in equilibrium patients know the doctors’ strategies (even

though they may not observe qualities perfectly). It is thus an SPNE for doctors to

set the highest possible quality and charge a price of zero and for patients to choose

an arbitrary doctor among those offering the lowest price.

Having results such as Milgrom and Roberts (1986) in mind one might expect that

if doctors had a chance to disclose their qualities they would do so in equilibrium

and most of our results would break down. Yet this is not the case. In our model,

doctors have no incentive to disclose their qualities: A doctor who is assumed to

have a quality of 1 by a fraction αi of patients is in a better position when competing

with other doctors than a doctor who is known to have quality αi by all patients.

Unlike rational agents, our boundedly rational patients do not draw any conclusions

from a doctor’s decision not to disclose his quality. For a detailed exposition of this

point, see Proposition 3 in Spiegler (2006a).18

18Spiegler shows that any strategy involving disclosure is weakly dominated by some strategy
involving no disclosure. The equilibrium we have identified in Theorem 2 persists because if
some doctor could profitably deviate to a strategy involving disclosure there would also exist a
strategy involving no disclosure he could deviate to. But then our equilibrium would not have
been an equilibrium in the original game. Furthermore, in the working paper version Spiegler
(2003), Spiegler shows that no Nash equilibrium involves disclosure. Hence the equilibrium from
our Theorem 2 is still the unique equilibrium of the game where disclosure is allowed.
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5.3 Rational Agents

Our model can be seen as a model of product differentiation with fully rational

consumers. This is because the Spiegler model, i.e. our price setting stage, can be

reinterpreted as a variant of Perloff and Salop’s (1985) model of product differen-

tiation (see also Gabaix, Laibson and Li (2005)). In this interpretation, consumers

(independently) attribute to a firm i’s service a valuation of 1 with probability αi

(and a valuation of 0 otherwise).19 Thus we reinterpret “quality” as “mass appeal”

here. A higher mass appeal is costless to the firms. Our results then show that,

under competition, most firms produce niche products, i.e. products with a lower

mass appeal. A quality setting stage (or mass appeal setting stage) is not present in

other papers based on the Perloff Salop model. Shaked and Sutton (1982), however,

consider a quality setting stage extending the Gabszewicz and Thisse (1979) model

of product differentiation. What the analysis of Shaked and Sutton has in common

with ours is that in both models firms reduce price competition by differentiating

their products in a preliminary stage. A notable difference is, however, that in

the model of Shaked and Sutton firms offer different combinations of quality and

price in order to exploit differences between consumers with regard to their willing-

ness to pay. In contrast, consumers in our model are ex ante symmetric and firms

do not differentiate by trying to match different needs of consumers: Instead our

firms differentiate their products by modifying them so that some consumers do not

want them anymore while the other consumers’ valuations of the product remain

unchanged.

Our model can also be seen as a model of advertising: Assume that all firms offer

services consumers value at one. Consumers need some information (e.g. a flyer) to

become aware of a firm. Each firm can specify the proportion αi of consumers (but

not the concrete identities of consumers) that should get informed. Our analysis then

suggests that firms do not necessarily inform as many consumers as possible, even

though advertising is costless.20 Butters (1977) is a seminal paper in the advertising

literature which considers a related model.

19Perloff and Salop consider continuous distributions instead of this Bernoulli distribution. This
leads to pure strategy equilibria of the price setting game.

20Note, however, that under these reinterpretations, social welfare is identical no matter which
firm is selected. Thus the decrease in social welfare described in Proposition 3 is not present in
the reinterpretations.
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6 Conclusion

We have seen that if consumers rely on anecdotes, all firms, no matter how bad, sur-

vive in the market. Low quality firms typically earn much more than their maxmin

payoffs. If firms can choose, they will mostly opt for low qualities: A lower quality

makes the firms attract less consumers. Yet it also softens price competition, and

thus allows them to set higher prices in equilibrium. The latter, positive effect on

payoffs dominates.

Having many firms in the market does not help to cure the problem. Indeed, welfare

falls for larger numbers of firms, as the average quality offered decreases. Depending

on the maximally possible quality, a monopoly or oligopoly of firms is best for

welfare.

Fixing prices exogenously would destroy the incentives of the firms to choose low

qualities. Then, all firms would offer the best possible quality. An increase in

qualities offered could also be achieved by making the market more transparent to

the patients.
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A Mixed Strategy Equilibria of the Quality Set-

ting Game

In this section we round out the game-theoretic analysis with a discussion of mixed

strategy equilibria of the quality setting game with α ∈ (1
2
, 1). While showing exis-

tence of a symmetric mixed strategy equilibrium based on abstract existence results

is straightforward, we cannot give such equilibria explicitly for n > 2. Nevertheless,

in the following proposition we show that (symmetric) mixed equilibria are charac-

terized by rather low qualities as well: In expectation, the quality a doctor sets lies

in the lower half of [1
2
, α].

Proposition 5 For α ∈ (1
2
, 1), the quality setting game has a symmetric mixed

strategy equilibrium. Fix such an equilibrium given by a distribution function F on

[0, α]. Then supp F ⊆ [1
2
, α] and {1

2
, α} ⊆ supp F . Denote by µ a doctor’s expected

equilibrium quality, i.e.

µ =

∫ α

1
2

α dF (α).

Then

µ ≤ 1− 1

4α
≤ 1

2

(
1

2
+ α

)
.

Furthermore, equilibrium payoffs π are bounded from below by

π ≥ 1

4

(
1

4α

)n−2

≥
(

1

2

)2n−2

.

While our bound on the expected equilibrium quality is not very sharp, note that

it does not depend on n. Recall from Corollary 1 that market shares are more

evenly distributed than qualities. Thus, although for large n with high probability

there will be a considerable number of high quality doctors, this will not prevent a

considerable portion of patients from choosing low quality treatments. Hence also

in the mixed strategy equilibrium, competition does not force doctors to offer high

qualities and social welfare remains bounded away from α.

For the two player case we can give a symmetric equilibrium of the quality setting

game explicitly: It is easy to check that F given by

F (α) =
4α2 − 1

4α2
for α ∈ [

1

2
, α)
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and F (α) = 1 is indeed an equilibrium.

Finally note that there are also asymmetric mixed strategy equilibria. For instance,

with two players, an equilibrium is given by one doctor setting a quality of 1 − 1
4α

and the other doctor setting a quality of α with probability 1
3− 1

α

and of 1
2

with the

counter probability.

B Proofs

Proof of Proposition 1:

Without loss of generality assume α ≥ αn ≥ αn−1 ≥ . . . ≥ α1 ≥ 0.

The maxmin payoff of doctor n

αn
∏
j 6=n

(1− αj)

is strictly positive. So doctor n must have a strictly positive payoff in any equilib-

rium. Fix such an equilibrium. pln, the lowest value in the support of doctor n’s

equilibrium strategy, must be strictly positive. Let πn be doctor n’s expected equilib-

rium payoff. Define a positive constant C, depending on α1, . . . , αn, via πn = αnC.

In this equilibrium, it must then be that each doctor i has an expected payoff πi of

αiC:

If some doctor j < n earned more, say αj D where D > C, doctor n could deviate

to a price p∗ that was smaller but close to plj. Through this, doctor n could make

a profit arbitrarily close to αnD or even higher. This is because, setting the price

p∗, doctor n faces as many or even less cheaper competitors as doctor j did in

equilibrium at price plj (as p∗ < plj). So, given he gets a good report (for which

the probability is αn), doctor n earns at least something close to D: The price is

slightly lower, the possibility to be chosen by the patients is equal or higher (due to

the slightly lower price).

If some doctor j < n earned less than αiC, he could use an analogous type of

deviation (thus deviate to a price slightly below pln) and raise his expected profits.
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Hence for any equilibrium there is some constant C such that for all i the equilibrium

payoff of doctor i is given by

πi = αi C. (2)

Next we show that there is some doctor who does not earn more than his maxmin

payoff. We start by establishing the following facts:

1) In equilibrium, no doctor places an atom in the interval [0, 1): Placing an atom on

p = 0 cannot be part of an equilibrium strategy as it leads to zero payoffs. (Recall

that we have shown above that equilibrium payoffs are positive.) Placing an atom

on p ∈ (0, 1) cannot be part of an equilibrium strategy either: Assume some doctor

i did so. Then consider a small price interval (p, p+ ε). If no other doctor sets prices

in this interval, doctor i is better off by shifting his atom a bit to the right. If there

is some doctor j in this interval, doctor j should better shift the mass he has in the

interval to some price slightly left from p. This would give doctor j a slightly lower

price in case patients buy his services, but the probability that patients choose him

increases substantially. (If ε is small enough, the second effect will dominate the

first one.)

2) In equilibrium, at most one doctor will place an atom on p = 1: If several doctors

had an atom on p = 1, each of them would have an incentive to deviate and shift

his atom to a slightly lower value.21

3) In equilibrium, the support of some doctor’s pricing strategy must go up to 1: If

ph < 1 was the highest price in the supports of the doctors’ strategies, some doctor

whose support went up to ph could earn more by shifting probability mass from a

neighborhood of ph to 1. This would give him a substantially higher price while

only slightly diminishing his chances of winning. (Recall that no doctor would set

an atom on ph < 1.)

We can now show that, in equilibrium, there is some doctor k∗ who only earns his

maxmin payoff: From 3), we know that there is a doctor whose strategy support

21 This argument would not be valid in Varian’s (1980) model of sales where, so to say, either
all or only one doctor (seller) is recommended. There (as long as other doctors set lower prices
with certainty) two or more doctors setting an atom in 1 do not stand in competition because
each of them is only attended by patients who are exclusively aware of him. In contrast, in our
model for any subset of doctors there is a group of patients who are aware of these doctors and no
others. This is the reason for the contrast between our unique equilibrium and the multiplicity of
equilibria in the Varian model pointed out by Baye, Kovenock and de Vries (1992).
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goes up to 1. This doctor can only earn more than his maxmin payoff in p = 1 if he

has a competitor who sets an atom on p = 1. But then, this competitor cannot earn

more than his maxmin payoff (since there cannot be two doctors setting an atom

on 1, compare 2)).

Thus, there is some doctor k∗ earning his maxmin payoff πk∗ = αk∗
∏

j 6=k∗(1 − αj)
implying C =

∏
j 6=k∗(1− αj) for all doctors in equilibrium. Thus, in equilibrium,

πi = αiC = αi
∏
j 6=k∗

(1− αj)

for all i. It remains to be shown that k∗ ∈ argmaxjαj:

Assume αk∗ < αn. Then the payoff of doctor n is

πn = αn
∏
j 6=k∗

(1− αj),

which is strictly smaller than doctor n’s maxmin payoff αn
∏

j 6=n(1 − αj) since 1 −
αk∗ > 1 − αn. This would give doctor n an incentive to deviate. Thus we get

k∗ = n. �

Proof of Proposition 2

The proof consists of two parts. In part 1 we show that the vector of strategies

defined in the proposition is indeed an equilibrium. In part 2 we show in three steps

that the equilibrium is unique.

Part 1

Let πi(p) denote the payoff of doctor i given that he chooses p with certainty and

given that the other doctors mix according to the distribution functions Gk described

in the proposition. Clearly

πi(p) = pαi
∏
k 6=i

(1− αkGk(p)). (3)

We have to show that, for all i, there exists a set Si with mass 1 under Gi so that

πi is constant on Si and πi is weakly greater on Si than on SCi . We will show this

with Sn = [p0, pn] and with Si = [p0, pi) for i < n.
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For p ∈ [0, p0) we have πi(p) ≤ πi(p0) as the other doctors do not put any mass on

[0, p0): Deviating below p0 gives the same chances of attracting a patient as playing

p0 but at a smaller price.

Now we show that πi(p) is constant on [p0, pi] \ {1}. The case p = 1 will be treated

separately afterwards. By (3) and the definition of the Gk

πi(p) = pαi(1− α1) · . . . · (1− αj−1)

[
n−j

√
(1− αj) · . . . · (1− αn−1)

p

]n−j

for p ∈ [pj−1, pj] ⊂ [p0, pi] where we use the fact that n− j of i’s opponents have p

in the supports of their pricing strategies, while the j − 1 remaining doctors put all

their probability mass below p. This immediately implies that

πi(p) = αi(1− α1) · . . . · (1− αn−1). (4)

The case p = 1 poses a minor technical difficulty due to tie-breaking: If doctor n

does not have an atom on 1 (i.e. αn−1 = αn), the calculation for p < 1 still goes

through. If doctor n has an atom on 1, it is easy to check that doctors i 6= n with

pi = 1 earn less than the payoff from (4) when playing 1. But this does not give

them an incentive to deviate from playing Gi as the probability of playing 1 is zero

under Gi. Doctor n plays 1 with positive probability but he does not face opponents

who do: He gets his maxmin payoff which corresponds to his payoff from (4) when

playing p = 1. Thus doctor n does not have an incentive to deviate either.

To conclude the proof, we have to show that doctor i with pi < 1 does not have

an incentive to set prices p ∈ (pi, 1]: Consider p ∈ [pj−1, pj] with j > i (so that

pi ≤ pj−1). By (3) we have

πi(p) = pαi

[
n−j

√
(1− αj) · . . . · (1− αn−1)

p

]n−j+1 ∏
1≤k≤j−1

k 6=i

(1− αk)

= αi
n−j

√
(1− αj) · . . . · (1− αn−1)

p

∏
k 6=n
k 6=i

(1− αk).

The above expression is strictly decreasing in p, so that it is sufficient to consider
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deviations to pj−1. Using the definition of pj−1 we see that

πi(pj−1) = αi(1− αj−1)
∏
k 6=n
k 6=i

(1− αk).

This is weakly smaller than the payoff from (4) as pi ≤ pj−1 implies 1−αi ≥ 1−αj−1.

Thus, doctor i does not have an incentive to deviate to prices above pi.

Part 2

The uniqueness part of the proof proceeds in a number of steps. We start with some

preliminary observations:

First, recall from the proof of Proposition 1 that in any equilibrium doctors will not

place atoms except for one doctor possibly putting an atom on 1. From Proposition

1 we also know that, for all i, doctor i’s equilibrium payoff is given by

πi = αiC where C :=
n−1∏
j=1

(1− αi) > 0. (5)

Note that the first equality states that all doctors’ expected equilibrium payoffs

conditional on being recommended must be identical. Furthermore, recall from the

proof of Proposition 1 that the union of the agents’ strategies’ supports must go up

to 1. Due to the positive equilibrium payoffs this union must be bounded away from

zero. Denote by pL the infimum of the union of equilibrium supports. Now note

that this union of supports must be an interval [pL, 1], i.e. there cannot be any gaps

in the union of supports: If there was an interval [p, p] ⊂ [pL, 1] where no doctor was

active, a doctor who would be playing prices right below p could deviate by moving

probability mass from a small interval below p to p yielding a substantially better

price at a marginally lower probability of winning. Thus the union of supports must

be an interval [pL, 1]. Note also that there cannot be a subset [p, p] ⊂ [pL, 1] where

only one doctor is active: That doctor could profitably deviate by concentrating all

probability mass of the interval in an atom at p which yields a higher price at the

same probability of winning.

Armed with these insights we turn to the first major step in the proof:

1) In any equilibrium, the support of every doctor goes down to the same pL > 0.

Furthermore, in any equilibrium, pL = C.
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Proof of 1): Consider two doctors i and j with supports Si and Sj. Assume piL < pjL
where pkL = inf Sk for k = i, j. Note that with positive probability doctor i plays a

price from [piL, p
j
L] and that agent j’s payoff from playing pjL equals αjC > 0. But

this implies that doctor i can earn more than his equilibrium payoff of αiC by playing

pjL: Since - unlike doctor j - doctor i does not have himself as a possibly cheaper

competitor when playing pjL, his expected payoff conditional on being recommended

must be higher than that of j. This is, however, a contradiction to (5) and thus the

support of every doctor goes down to the same pL. To see that pL = C, note that,

for all j, doctor j’s payoff from playing pL must be αjpL: The other doctors ask for

higher prices with probability 1 and thus doctor j gets all the patients to which he

was recommended and they pay him pL. These payoffs of αjpL are, however, only

consistent with (5) if pL = C.

The next step further characterizes the functional form of the doctor’s equilibrium

distribution functions:

2) Let D ⊂ {1, . . . , n} denote the set of doctors who are active on some interval

I = (p, p) in some arbitrary but fixed equilibrium. Assume all doctors j ∈ D are

active at any p ∈ I and let m = #D. (Note that from our preliminary observations

we have m 6= 1.) We will show that for all j ∈ D the equilibrium distribution

functions Gj(p) must satisfy for all p ∈ I

Gj(p) =
1

αj

(
1− m−1

√
H

p

)
(6)

where H > 0 depends on the αi and on the probability mass placed below p by the

doctors from DC , namely,

H =
C∏

i∈DC (1− αiGi(p))
.

Proof of 2): To see this, note that for all j ∈ D and all p ∈ I the expected payoff

of doctor j from playing p must equal the equilibrium payoff of αjC. Using (3) and

the fact that distribution functions of the inactive doctors are constant over I this

condition reads

αjC = pαj

[∏
i∈DC

(1− αiGi(p))

] ∏
k∈D\{j}

(1− αkGk(p))

 .
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Rearranging and using the definition of H yields for all p ∈ I and j ∈ D

∏
k∈D\{j}

(1− αkGk(p)) =
H

p
. (7)

Now consider (7) for two different doctors j1, j2 ∈ D. Taking the quotient of (7) for

j1 and (7) for j2 yields that for all p ∈ I

1 =
1− αj2Gj2(p)

1− αj1Gj1(p)

which implies that there is a function h(p) such that h(p) = αkGk(p) for all k ∈ D.

Substituting h(p) for αkGk(p) on the left hand side of (7) and then solving for h

yields

h(p) = 1− m−1

√
H

p

and thus

Gj(p) =
1

αj

(
1− m−1

√
H

p

)
as required.

The last main step before we can conclude the proof shows that all doctors’ supports

are intervals, i.e. no doctor will be inactive over some range of prices (above pL) but

put positive probability mass on prices above that range:

3) For all j the support of doctor j’s strategy is of the form [pL, p
j
H ] for some

pL < pjH ≤ 1.

Proof of 3): The proof is by contradiction. Assume that some price p is in the support

of the strategy of doctor j but j is inactive on some interval below p. Choose p < p

such that for all p ∈ I = (p, p) the set of doctors who are active at p is identical.

(This is possible since there are no atoms and thus the Gi are continuous.) Denote

the set of doctors active on I by D. Using (3) as in step 2) we can write the payoff

of player j from playing some p ∈ I ∪ {p} as

πj(p) = αjp

 ∏
i∈DC\{j}

(1− αiGi(p))

[∏
k∈D

(1− αkGk(p))

]
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Defining the constant factor from the other inactive doctors as

K :=

 ∏
i∈DC\{j}

(1− αiGi(p))

 .
and using (6) from the last step, we can express πj(p) as

πj(p) = αjpK

(
m−1

√
H

p

)m

= αjKH
m
m−1 m−1

√
1

p

where the constant H is as defined in Step 2. Note that this implies that πj(p) is

strictly decreasing in p over I ∪{p}. By assumption, doctor j is active at p and thus

earns his equilibrium payoff there:

πj(p) = αjC.

But since πj(p) is decreasing, this implies that for p ∈ I

πj(p) > αjC.

such that doctor j can profitably deviate - which is a contradiction.

To conclude the proof, we still have to show that the vector of strategies defined in

the proposition is actually the only candidate for an equilibrium. We have seen that

all supports start at pL = C and since doctors do not set atoms or leave gaps in

their supports, all doctors remain active up to the price p1 where the first doctor(s)

j have Gj(p1) = 1. Note that on any interval [pL, p] where all doctors are active,

all distribution functions are uniquely pinned down by Step 2. This also uniquely

determines p1 and the set of agents who have Gj(p1) = 1. Above p1, all doctors who

still have probability mass to spend must remain active. By Step 2, distribution

functions above p1 are again uniquely determined, determining in turn uniquely the

price p2 > p1 where the next supports end. Continuing this procedure sequentially

until p = 1 or until all or all but one distribution functions equal 1 determines a

unique candidate for an equilibrium. It is easy to check that this unique candidate

is actually the vector of strategies stated in the proposition. �

Proof of Corollary 1
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Note that we can write

mi =

∫ pi

p0

αi
∏
k 6=i

(1− αkGk(p))dGi(p).

Note furthermore that the Gk were chosen such that for p ∈ [p0, pi]

n−1∏
k=1

(1− αk) = p
∏
k 6=i

(1− αkGk(p)).

Thus

mi = αi

n−1∏
k=1

(1− αk)
∫ pi

p0

1

p
dGi(p).

Define bi =
∫ pi
p0

1
p
dGi(p). Recall that because of the shape of the Gk and because of

αi < αj we can see Gj as a mixture of Gi and a probability distribution over [pi, pj].

Since 1
p

is decreasing, this implies bi > bj and thus

mi

mj

=
αibi
αjbj

>
αi
αj
.

It remains to be shown that mi < mj. For this denote by gi(p) and gj(p) the

densities of Gi(p) and Gj(p).
22 Note that for p ∈ [p0, pi] we have αiGi(p) = αjGj(p)

and thus αigi(p) = αjgj(p). Thus we can deduce:

mi =
n−1∏
k=1

(1− αk)
∫ pi

p0

1

p
αigi(p)dp =

n−1∏
k=1

(1− αk)
∫ pi

p0

1

p
αjgj(p)dp

<
n−1∏
k=1

(1− αk)
∫ pj

p0

1

p
αjgj(p)dp = mj.

�

Proof of Proposition 3

The quantity of interest in this proof is w(α, n), the proportion of patients healed

in the 1
2
-α-equilibria with n doctors where n ≥ 1 and 1

2
< α ≤ 1. Clearly, w(α, n)

22Note that these densities are well-defined but exhibit jumps at the pk. Without loss of gener-
ality we can choose the densities to be left-continuous. In this proof we chose to ignore the atom
of Gn since it only complicates notation without adding further insight.
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can be written as

w(α, n) = pgα + pb
1

2
+ p00 (8)

where pg, pb and p0 denote the fractions of patients consulting the good doctor (i.e.

the doctor offering α), the fraction consulting the other doctors and the fraction who

stays at home, respectively. Note that pg, pb and p0 are unique since the price setting

game has a unique equilibrium by Proposition 2 and that they can be calculated

from the equilibrium strategies given there: The good doctor mixes over [2−(n−1), 1]

using the distribution function

Fg(p) =
1

α

(
1− n−1

√
1

2n−1p

)
and puts an atom of size 1 − 1

2α
on 1. The remaining doctors mix over the same

interval with

Fb(p) = 2

(
1− n−1

√
1

2n−1p

)
.

Note that the pricing strategy of the good doctor can be interpreted in the following

way: With probability 1 − 1
2α

he sets a price of 1 and with probability 1
2α

he uses

exactly the same pricing strategy as the other doctors. In the first case the good

doctor only gets patients if no other doctor is recommended (which happens with

probability 2−(n−1)). In the second case, the good doctor has exactly the same

chances to acquire a patient as the other recommended doctors. Let the random

variable rn denote the number of bad doctors who are recommended to a patient.

Then the market share of the good doctor can be written as

pg = α

[
1

2α
E

[
1

1 + rn

]
+ (1− 1

2α
)2−(n−1)

]
(9)

where the leading factor α results from the fact that the doctor is only competing

for the patients to which he is recommended. Note that rn is distributed binomially

with parameters n− 1 and 1
2

and thus

E

[
1

1 + rn

]
=

n−1∑
k=0

(
n− 1

k

)
2−(n−1) 1

1 + k
=

1

n

n−1∑
k=0

(
n

k + 1

)
2−(n−1)

=
2

n

n∑
k=1

(
n

k

)
2−n =

2

n

(
−2−n +

n∑
k=0

(
n

k

)
2−n

)
=

2

n
(1− 2−n)
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where in the first step we have used that n
(
n−1
k

)
= (k+ 1)

(
n
k+1

)
and in the final step

we used that the sum equals 1 since it simply adds up all probabilities of a Binomial

(n, 1
2
) distribution. Putting this into (9) and rearranging terms gives us

pg =
1

n
(1− 2−n) + (α− 1

2
)2−(n−1).

Clearly p0 = (1 − α)2−(n−1). Thus we see that - as claimed in the main text - as

n gets large pg goes to zero like 1
n

and thus much slower than p0 which decreases

exponentially. Inserting these expressions for pg and p0 and pb = 1− pg− p0 into (8)

and rearranging we obtain

w(α, n) =
1

2
+ (α− 1

2
)
1

n
(1− 2−n) + (2α2 − α− 1

2
)2−n. (10)

The remainder of the proof consists of an analysis of the function w(α, n).23 We will

proceed in the following way: First, we will show that for every α as n gets large

w approaches 1
2

from above. Then we will show that w(α, x), where x ∈ R≥1, is

monotonically decreasing in x for α ≥ 1
4
(1 +

√
5) ≈ 0.809. For 1

2
< α < 1

4
(1 +

√
5)

we will show that w increases in x up to some value x∗ ≥ 1 and decreases from there

on. From this we can conclude that w(α, 1) ≥ w(α, 2) is a sufficient condition for

n∗ = 1 being a maximizer of w(α, n). Then we will verify that w(α, 1) ≥ w(α, 2)

if and only if α ≥ 3
4
. From these results we can conclude that for α > 3

4
w(α, n)

is maximized at n∗ = 1 while for α ≥ 3
4

there is a finite n∗ > 1 which maximizes

w(α, n). Furthermore it follows that there are at most two maximizers and if there

are two, these must be subsequent integers. In the final part of the proof we will

show an upper bound on n∗ in terms of α.

It is immediate that w(α, n) converges to 1
2

as n goes to infinity. To show that this

convergence is from above we have to show for every fixed α that w(α, n) > 1
2

for

sufficiently large n. Here and in the following we will substitute n by the real-valued

parameter x and view w as the weighted sum of two functions f and g which do not

depend on α:

w(α, x) =
1

2
+ (α− 1

2
)f(x) + (2α2 − α− 1

2
)g(x)

23While this rather technical analysis is of course necessary to complete the proof, the impatient
reader is invited to skip it. Ultimately the calculations only verify that Figure 2 delivers the
complete picture.
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where

f(x) =
1

x
(1− 2−x) and g(x) = 2−x.

Note that the coefficient of f is always positive while the coefficient of g is zero at

α = 1
4
(1 +
√

5) and strictly increasing over [1
2
, 1]. Note furthermore that g and f are

strictly decreasing and positive. For g this is clear, for f note that

f ′(x) = −[2x − (1 + x ln(2))]x−22−x.

The factors outside the brackets are clearly positive. The term in squared brackets

is positive for all x ≥ 1 since it is the difference between the convex function 2x and

its first order Taylor approximation in 0. Thus f ′(x) < 0 for all x ≥ 1.

Note that in the case α ≥ 1
4
(1 +
√

5) where the coefficients of f and g are both non-

negative it is immediate that w is strictly decreasing in n, always greater than 1
2

and

maximized by n∗ = 1. The case where the coefficient of g is negative requires more

work however. The key observation driving the argumentation that follows now is

that f decreases much slower than g and thus the term with the positive coefficient

will eventually dominate - even if for α near 1
2

this coefficient is very small.

Note first that we can rewrite w to

w(α, x) =
1

2
+ g(x)

[
(α− 1

2
)
f(x)

g(x)
+ (2α2 − α− 1

2
)

]
.

In order to show that this is greater than 1
2

for x sufficiently large (and finite) it is

sufficient to show that f/g tends to infinity as x gets large because this guarantees

that the first (positive) summand in the squared brackets will eventually dominate

the second one making the term in the squared brackets positive. Now f/g is easily

calculated to be
f(x)

g(x)
=

2x − 1

x

which obviously tends to infinity as x gets large.

Next we show for fixed α that w(α, x) has exactly one local maximum in x. This

is equivalent to showing that (depending on α) the x-derivative of w(α, x) is either

negative for all x or changes signs exactly once on [1,∞) from positive to negative.

32



Note that we can write this derivative as

∂w

∂x
(α, x) = g′(x)

[
(α− 1

2
)
f ′(x)

g′(x)
+ (2α2 − α− 1

2
)

]
. (11)

Recalling that g′ < 0 it is clear that it is sufficient to prove that f ′/g′ is monotonically

increasing and tends to infinity. It is easily calculated that

f ′(x)

g′(x)
=
−1 + 2x − x ln(2)

x2 ln(2)
(12)

which clearly tends to infinity as x gets large. In order to show monotonicity consider

the derivative of f ′/g′ which can be written as

d

dx

f ′(x)

g′(x)
=

2x(x ln(2)− 2)− (−x ln(2)− 2)

x3 ln(2)
.

To determine the sign of this expression we can concentrate on the numerator. Note

that the numerator is exactly the difference between the function 2x(x ln(2)−2) and

its first order Taylor approximation around 0. Since 2x(x ln(2)−2) is strictly convex

on (0,∞) (its second derivative is 2xx ln(2)) this difference is positive for x > 0.

Thus f ′/g′ is monotonically increasing for x ≥ 0 as desired. Thus we have shown

for every α > 1
2

that w(α, x) has a unique maximizer 1 ≤ x∗ <∞.

Now we will consider w(α, n) with an integer parameter n again. From the previous

analysis it is clear that w(α, n) is globally maximized by n = 1 if and only if

w(α, 1)− w(α, 2) ≥ 0

(and n = 1 is the unique maximizer if the inequality holds strictly). Now we have

w(α, 1)− w(α, 2) =
1

2
α2 +

1

8
α +

3

16
.

Since this is a quadratic polynomial, it is easily seen that it is increasing over [1
2
, 1]

and zero for α = 3
4
. Thus n∗ = 1 for α ≥ 3

4
and n∗ > 1 for α < 3

4
. That for fixed

α there are at most two integer maximizers of w(α, n) and that, if there are two,

those must be subsequent integers follows trivially from the fact that w(α, x) has a

unique real-valued local (and thus global) maximizer.
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In the final part of the proof we show an upper bound on n∗ in terms of α. We

will again consider the function w(α, x) with real valued argument x ≥ 1. Note

that since w(α, x) has a unique local maximum for fixed α, any point x where the

x-derivative of w(α, x) is negative must lie to the right of the maximizer x∗. We will

construct a function B(α) with the property that

x > B(α)⇒ ∂

∂x
w(α, x) < 0.

This implies x∗ ≤ B(α) and thus n∗ ≤ B(α) + 1.

Note that from (11) and (12) ∂
∂x
w(α, x) < 0 is equivalent to

−1 + 2x − x ln(2)

x2 ln(2)
>
α + 1

2
− 2α2

α− 1
2

.

We will now try to find a sufficient condition for this which is of the desired form.

Note that the numerator of the right hand side only fluctuates between 1
2

and −1
2

and thus a sufficient condition is

2x

x2 ln(2)
>

1 + x ln(2)

x2 ln(2)
+

1

2(α− 1
2
)
.

Now note that the first term on the right hand side is at most (1 + ln(2))/ ln(2) and

thus a sufficient condition is

2x

x2
> 1 + ln(2) +

ln(2)

2(α− 1
2
)
.

Taking logarithms on both sides yields

x ln(2)− 2 ln(x) > ln

(
1 + ln(2) +

ln(2)

2(α− 1
2
)

)
.

Since ln(x) is concave we can bound it from above by its first order Taylor approx-

imation in 8 which is ln(8) + (1/8)x.24 Thus a sufficient condition is

x >
2 ln(8)

ln(2)− 1
4

+
1

ln(2)− 1
4

ln

(
1 + ln(2) +

ln(2)

2(α− 1
2
)

)
.

24The choice of 8 as the expansion point is essentially arbitrary, it only matters that the value
is large enough so that the left hand side of the equation remains increasing in x.
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Since this bound is not very sharp anyway we can afford to improve readability

by bounding the logarithms by real numbers in a way that the condition remains

sufficient and get

x > 9.4 + 2.3 ln

(
1.7 +

0.35

α− 1
2

)
=: B(α).

As argued above this implies

n∗ ≤ 10.4 + 2.3 ln

(
1.7 +

0.35

α− 1
2

)
.

�

Proof of Observation 2

This observation follows immediately from the fact that

∂

∂α
α(1− α)n−1 = (1− nα)(1− α)n−2

is negative for α ∈ ( 1
n
, 1). �

Proof of Proposition 4

We first search for a symmetric Nash equilibrium of the quality setting game played

by the doctors 1, ..., n−1 given that doctor n chooses a higher α (and thus does not

affect the payoffs of doctors 1, ..., n − 1). Then we show that doctor n will indeed

respond to this behavior by setting a higher quality than the other doctors.

Given that doctor n chooses a high αn, doctors i < n maximize

αi(1− αi)

[∏
j 6=i,n

(1− αj)

]
− c(αi)

which yields a first order condition of

(1− 2αi)

[∏
j 6=i,n

(1− αj)

]
− c′(αi) = 0.
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Assuming symmetry for doctors 1, ..., n− 1 this becomes

(1− 2α)(1− α)n−2 = c′(α).

There is a unique αl ∈ (0, 1
2
) which solves this equation: the left hand side decreases

strictly on (0, 1
2
) taking all values between 1 and 0 while the right hand side is strictly

increasing starting with 0 < c′(0) < 1 as c is assumed to be convex.

We now determine doctor n’s best response to the other doctors playing αl. Note

that doctor n will not play qualities below αl: On [0, αl] doctor n has the same

optimization problem as the other doctors in the previous step,

max
α

α(1− α)(1− αl)n−2 − c(α)

which is solved by α = αl. On [αl, 1] doctor n maximizes

α(1− αl)n−1 − c(α)

which gives a first order condition of

(1− αl)n−1 = c′(α).

Note that the other doctors’ first order condition implies that

(1− αl)n−1 > c′(αl).

Thus we have to distinguish two cases: If

(1− αl)n−1 < c′(1),

by the monotonicity of c′, there is a unique best response αh ∈ (αl, 1) which solves

(1− αl)n−1 = c′(αh).

If

(1− αl)n−1 ≥ c′(1),

it is optimal for doctor n to play αh = 1. Finally, note that doctors 1, ..., n − 1
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do not want to deviate to qualities above αh: If this were a profitable deviation

for one of them, αh would not have been optimal for doctor n (who faces weaker

competitors than the other doctors).

To conclude the proof we have to show that αl and αh are decreasing in n: To

make the dependence on n clearer we write αl(n) and αh(n). Recall that from

the bad doctors’ first order condition αl(n) was the value of α where c′(α) and

(1−2α)(1−α)n−2 intersect. Increasing n to n+1 shifts the function (1−2α)(1−α)n−2

downwards, implying that it intersects c′ at a smaller value of α since c′ is increasing.

Thus αl(n) is decreasing in n.

We now show that αh(n) is weakly decreasing: As a preliminary observation, note

that c′(αl(n)) is decreasing in n and thus by the bad doctors’ first order condition

(1− 2αl(n))(1− αl(n))n−2 (13)

is decreasing as well. If for some n the good doctor’s first order condition is not

binding (which implies αh(n) = 1) we obviously have αh(n) ≥ αh(n + 1). Now

consider some n where the good doctor’s first order condition is binding so that

αh(n) solves

(1− αl(n))(1− αl(n))n−2 = c′(αh(n)). (14)

Clearly, to show that αh(n) ≥ αh(n + 1) we need to prove that the left hand side

of (14) is decreasing: Recall that (13) is decreasing and note that the leading factor

(1− 2αl(n)) is increasing. Thus the second factor (1−αl(n))n−2 must be decreasing

strongly enough to make the product (13) decreasing. The left hand side of (14) has

the same second factor as (13). The first factor (1−αl(n)) is however increasing less

strongly than the first factor of (13). Thus the left hand side of (14) is dominated

by its second, decreasing factor. �

Proof of Proposition 5

Note that payoffs in the quality setting game are continuous, bounded and sym-

metric. Thus, for instance, the main result of Becker and Damianov (2006) shows

existence of a symmetric equilibrium. Recall that a doctor’s best response to any

set of pure strategies by his opponents is playing either 1
2

or α. Thus (1
2
, . . . , 1

2
) and

(α, . . . , α) are the only candidates for symmetric pure equilibria. Since neither of

these is an equilibrium, we can conclude the existence of a symmetric equilibrium
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in (non-degenerate) mixed strategies. Fix such an equilibrium and denote the equi-

librium strategy by a distribution function F over [0, α]. Define S = supp F . Since

qualities in [0, 1
2
) are strictly dominated by playing 1

2
we can conclude S ⊆ [1

2
, α].

Define s = inf S and s = supS. We must have s = α because otherwise a doc-

tor could profitably deviate by playing α instead of qualities near s: For a doctor

who is the (weakly) best doctor with high probability it is optimal to choose α.

Analogously we must have s = 1
2

because otherwise a doctor would want to move

probability mass from near s down to 1
2
.

What remains to be shown is the lower bound on expected equilibrium qualities

and payoffs. Without loss of generality consider the payoff of doctor 1. For doctor

1, α2, . . . , αn are independent random variables with distribution function F . The

main idea is to compare payoffs from playing 1
2

and α. Denote these payoffs by π 1
2

and πα. Note that

πα = αE[
n∏
j=2

(1− αj)] = α(1− µ)n−1

since a doctor playing α is the (weakly) best doctor with certainty. Denote by αj:n−1

the jth largest of α2, . . . , αn. We can then write doctor 1’s payoff from setting a

quality of 1
2

as

π 1
2

=
1

4
E

[
n−1∏
j=2

(1− αj:n−1)

]
≥ 1

4
E

[
n−1∏
j=2

(1− αj)

]
=

1

4
(1− µ)n−2

where in the middle step we used that we can bound the product over the n − 2

smallest αj by a product over an arbitrary collection of n − 2 of the αj.
25 In

equilibrium we must have that π 1
2

= πα. We can thus conclude that

α(1− µ)n−1 ≥ 1

4
(1− µ)n−2.

Solving for µ we get the bound

µ ≤ 1− 1

4α
.

Since the right hand side is a convex function in α we can bound it from above by

the straight line connecting its values at the boundaries 1
2

and α. This yields the

25Note that how much we are giving away in this bound depends on n: Thus while our upper
bound is independent of n, the same is not true for µ itself.
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easier to read bound

µ ≤ 1

2

(
1

2
+ α

)
.

Plugging our upper bound on µ into the expression for πα we finally get the desired

lower bound on equilibrium payoffs. �
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