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Abstract

Is more novel research always desirable? We develop a model in which knowledge
shapes society’s policies and guides the search for discoveries. Researchers select a
question and how intensely to study it. The novelty of a question determines both
the value and the difficulty of discovering its answer. We show that the benefits of
discoveries are non-monotone in novelty. Through a dynamic externality, moonshots—
research on questions more novel than myopically optimal—can improve the evolution
of knowledge. Incentivizing moonshots requires promising ex-post rewards. However,
even a myopic funder combines rewards with ex-ante cost reductions to increase
research effort.
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[Evolution] comes through asking the right questions, because the answer pre-exists.
. . .You don’t invent the answer. You reveal the answer.

Jonas Salk, discoverer of the polio vaccine

1 Introduction

In a letter to Franklin D. Roosevelt, Vannevar Bush (1945) pleads with the president
to preserve freedom of inquiry by federally funding basic research—the “pacemaker of
technological progress.” That letter paved the way for the creation of the National Science
Foundation (NSF) in 1950. The NSF today, like the vast majority of governments and
scientific institutions, cherishes scientific freedom and allows academic researchers to select
research projects independently.

With scientific freedom comes the responsibility for “asking the right questions” that
Jonas Salk refers to in the epigraph. However, what are the right questions? Biologist
and Nobel laureate Peter Medawar (1967) famously notes that “research is surely the art
of the soluble. . . . Good scientists study the most important problems they think they
can solve.” Finding the most important yet soluble question is nontrivial. One reason is
that both importance and solubility depend on the current state of knowledge (see, for
example, Iaria, Schwarz, and Waldinger, 2018).

In this paper, we develop a microfounded model of knowledge creation through research.
Our model captures (i) the role of existing knowledge in determining the benefits and cost
of research, (ii) the spillovers a discovery creates on conjectures about similar questions,
and (iii) the researcher’s freedom to choose what question to study and how intensely to
study it. We characterize the researcher’s choices and address classical questions of science
funding: Should we incentivize researchers to study questions far beyond the current
knowledge frontier? Do such moonshots improve the evolution of knowledge? When and
how should a budget-constrained funder incentivize innovative research?

We model the value of knowledge as the extent to which it improves decision making.1
We represent society by a single decision maker who faces problems that correspond to
questions. In her response to these problems, she uses the public good of knowledge.
Knowledge is the set of questions to which the answer has already been discovered. Because
answers to similar questions are correlated, knowledge also provides the decision maker
with conjectures regarding questions to which the answer is undiscovered. The precision
of a conjecture depends on the question’s location relative to existing knowledge.2 We
conceptualize the correlation by assuming that answers to questions follow the realization
of a Brownian path. Figure 1 depicts that idea. Questions are on the horizontal axis,
and the gray line represents the answers to all questions. Dots ( ) represent existing
knowledge. Because of the assumption of a Brownian path, all conjectures follow a normal
distribution. The mean and the variance depend on existing knowledge. The solid black
lines in Figure 1 represent the mean; the dashed lines provide the band of the 95 percent
prediction interval.3

1Following, for example, Jacob Marschak (1974)’s “Knowledge is useful if it helps to make the best
decisions”. Hjort et al. (2021) provide evidence on how knowledge creation improves decision making.

2At the end of the introduction, we describe how our model applies to the protein folding problem in
structural biology. An example of the spillovers we have in mind is the COVID-19 vaccine development by
Moderna, which “took all of one weekend.” The speed was a direct consequence of similarities of relevant
proteins on the virus, SARS-CoV-2, with already discovered proteins (see, for instance, in This American
Life (2020)).

3The 95 percent prediction intervals depend on existing knowledge and describe the following relation:
for each question, with a probability of 95 percent, the answer lies between the respective dashed lines
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Figure 1: Existing knowledge and conjectures.

Our first contribution is to characterize the benefits of a discovery. To gain intuition,
consider the left panel of Figure 1. Only the answer to question xr is known. Assume that
researchers discover the answer to question xl. We now move to the right panel. Decision
making improves in three ways. First, the decision maker has precise knowledge about the
answer to xl. Second, her conjectures about all questions to the left of xr improve. Third,
her conjectures improve the most in the newly created area of questions [xl, xr] in which
the decision maker now has two pieces of knowledge that help her form conjectures.

The benefit of discovering the answer to xl depends on the question’s distance from
xr. The effect of an increase in the distance between xl and xr is similar to the effect of
output expansion by a monopolist. Consider first a discovery close to existing knowledge
which implies a narrow area [xl, xr]. There are only few questions in the area, but the
conjectures about them are precise; that is, the variance of the conjectures is low. As the
distance of xl from xr increases, more questions lie inside the area—a marginal gain. At
the same time, the conjectures become less precise—an inframarginal loss. The benefit of
a discovery is maximized at an intermediate distance.

If both xl and xr are known initially, discoveries advance knowledge beyond the frontier
if the discoveries concern questions x /∈ [xl, xr]. Advancing beyond the frontier works in
the manner described in the paragraph above. Alternatively, discoveries deepen knowledge
if they concern questions x ∈ [xl, xr]. Depending on the distance between xl and xr,
advancing knowledge or deepening knowledge may be optimal. If xl and xr are close,
knowledge is dense: the conjecture about any question in [xl, xr] is already precise. In this
case, advancing knowledge beyond the frontier provides larger benefits than deepening
knowledge does. If xl and xr are far apart, knowledge is sparse: conjectures about
questions in [xl, xr] are imprecise. Obtaining an answer to a question x ∈ [xl, xr] divides
this single area of imprecise conjectures into two areas with precise conjectures. In this
case, deepening knowledge provides larger benefits than advancing knowledge beyond the
frontier does.

Overall, the largest benefit comes from deepening knowledge between distant, yet
not too distant, pieces of knowledge. Advancing knowledge beyond the frontier beats
deepening knowledge in an existing area only if all available areas are short.

Our second contribution is to characterize a researcher’s optimal choice of which

given existing knowledge.
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question to tackle and how much effort to invest in studying that question. We assume
that the researcher’s benefits of a finding are proportional to the benefits of a discovery
discussed above. In addition, we conceptualize the research process as the search for an
answer. We assume that it requires effort to search for an answer and that the cost of
effort is increasing and convex. We propose a cost function that derives from this idea and
provide a microfoundation. The cost function relates the cost of research to novelty (the
distance of the question to existing knowledge) and output (the probability that search
results in discovery). The link originates in the initial conjecture, which depends on the
novelty of the question. The more precise that conjecture, the higher the output for any
given level of effort.

When characterizing the researcher’s choices, we show that novelty and output are
non-trivially related. The relation depends on the structure of existing knowledge. In
particular, novelty and output can be substitutes or complements. As a consequence, more
novelty does not always come at the cost of higher risk: whenever novelty and output
are complements, the additional benefit from higher novelty induces the researcher to
exert substantially more effort. If the question lies in a short area, novelty and output
are complements. In this case, the more novel the question, the higher the probability
that the researcher will discover the answer. The benefits of discovery increase in novelty,
yet the cost remains low. If the question lies within a larger area, novelty and output are
substitutes for small levels of novelty but complements for intermediate levels. In this case,
at the boundaries of the area, xl and xr, the marginal cost of output increases relatively
fast in novelty, causing the researcher to reduce output in response to an increase in novelty.
However, moving away from one end of the area means moving toward the other end.
While moving away from one end reduces the precision of conjectures, moving toward the
other attenuates that reduction. As novelty increases, the attenuation becomes stronger,
mitigating the marginal-cost effect. Eventually, the marginal-benefit increase dominates:
novelty and output become complements. As the area length increases further, the region
in which novelty complements output shrinks. If the researcher advances knowledge beyond
the frontier, novelty and output are substitutes throughout.

In general, output is higher when the researcher deepens knowledge than when she
advances beyond the frontier. Output peaks in areas of intermediate length. In such areas,
the researcher pursues the question at the midpoint of the area.

Our third contribution is to apply our previous insights to the design of research
incentives. We consider a budget-constrained funder facing a sequence of researchers. We
assume that the funder has access to two instruments to affect the researcher’s choices: (i)
reducing the researcher’s cost ex ante and (ii) rewarding the researcher for discoveries ex
post. We characterize the set of novelty-output pairs that the funder can implement and
show that there can be complementarities between output and novelty. In particular, a
cost-neutral increase in induced novelty may increase induced output. Therefore, a funder
who maximizes the myopic benefits to society may find it optimal to incentivize excessive
novelty, even if only to increase the output.

To address the incentives of a forward-looking funder, we first determine under what
circumstances moonshot discoveries—discoveries far from existing knowledge—are desirable.
Moonshot discoveries are suboptimal in the short run. They create knowledge that is
too disconnected from existing knowledge and therefore provide little immediate benefit.
However, moonshots guide future researchers aiming at questions between the moonshot
and previously existing knowledge. As a result of the moonshot, future researchers increase
their output, and knowledge created over time becomes more valuable than otherwise.
If the funder is patient and the cost of research is intermediate, the positive dynamic
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externality of moonshots dominates the implied myopic loss. We show that a forward-
looking funder must provide ex post rewards to incentivize moonshots—even when she
could eliminate the cost entirely.

To summarize, we make three contributions. First, we offer a framework that endoge-
nously links typical measures of research (novelty and output) to typical premises about
the research process (selection from a large pool of questions, conjectures determined by
existing knowledge, and the need for costly effort to obtain a discovery). We generate
this link by conceptualizing the discovery process of a Brownian path as a search for
realized values guided by conjectures that build on known realizations. Second, we shed
light on the nontrivial relation between the novelty of the research and the expected
research output. We show that whether the two are complements or substitutes crucially
depends on the structure of existing knowledge. To do so, we characterize the researcher’s
optimal policy as a function of existing knowledge. Third, we provide new insights into
two classical questions in the science of science funding: (i) Should society incentivize
research far beyond the frontier even if the immediate benefits of such a discovery are
low? Yes, if the cost of research is intermediate and society is patient. (ii) Which mode of
funding provides larger expected benefits: ex ante cost reductions or ex post rewards? It
depends. A funder that aims to maximize the benefits of research may strictly prefer to
combine both modes. A funder that aims at incentivizing research far beyond the frontier
has to offer ex post rewards.

Illustration: The Protein Folding Problem. To illustrate our model idea, consider
the protein folding problem in structural biology. Besides being an important research
field in itself, structural biology has received increasing attention from economists. See, for
example, Hill and Stein (2020, 2021) who also provide an excellent overview and further
details of this research field.

A protein’s three-dimensional structure derives from its underlying amino-acid sequence.
However, how a protein’s amino-acid sequence translates into its structure is a complex
problem. Structural biologists work on experimentally discovering such structures, which
is a difficult time- and resource-intensive process. Knowledge of a protein’s structure
provides valuable information about the protein’s functionality and, for example, possible
treatments of a disease linked to the protein. The accumulated knowledge of protein
structures is accessible via the Protein Data Bank (PDB), which contains more than
150,000 experimentally determined protein structures.4

Importantly, knowing a particular protein’s structure is valuable beyond its immediate
applications. Proteins with similar amino-acid sequences are likely to have similar structures
as well (see, for example Berman, 2008). Hence, the knowledge of known mappings from
amino-acid structures feeds into predicting the structure of proteins with similar amino-acid
sequences (Deep Mind’s AlphaFold being one particularly successful prediction tool, see
Senior et al., 2020). Such predictions are used both to guide experimental verification
of structures and to search for treatments and vaccines.5 Providing structure-predicting
researchers with the best possible data to quickly predict the structure of essential proteins
is therefore highly valuable.

Suppose that we can construct a one-dimensional real-valued amino-acid similarity
index for a protein family. Then, each protein can be considered as a question in our
model. The answer for each protein is its three-dimensional structure. As in our model,

4Notably, the PDB is open-source and academic journals often require the publication of identified
protein structures in the PDB to make it accessible to other researchers worldwide.

5See the discussion in Oxford Protein Informatics Group (2021).
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proteins with similar amino-acid sequences are expected to have similar structures. The
existing knowledge, i.e., those proteins with known structures, is stored in the PDB. It
is used to develop treatments against diseases (a value to society) and to guide research
about similar proteins with still unknown structures (by forming conjectures).

1.1 Related Literature

Ample empirical literature in the science of science has documented the importance of
novelty and output for progress in science. Fortunato et al. (2018) provide an extensive
summary of it. The importance of (accessible) pre-existing knowledge for research pur-
poses is documented, for example, in Iaria, Schwarz, and Waldinger (2018). We aim to
complement the (quasi-)experimental approach in these papers by providing a simple yet
flexible formal model based on few parameters to make it identifiable and testable.

Our model relies on the expanding literature following Callander (2011a) that uses
Gaussian processes to model the search for answers. We differ in our notion of both
benefits and costs, which leads to novel incentives and results. Similar to Garfagnini and
Strulovici (2016), Callander and Clark (2017), and Bardhi (2019) payoffs are determined
by the realization of an entire Brownian path. However, the value of incomplete knowledge
differs, and thus the value of learning an additional point also differs. In our model, the
value of answering one additional question is how much it reduces the uncertainty about
other, unknown answers. Hence, the added benefit of answering a question is detached
from the answer itself leading—in contrast to their models—to continuation strategies
independent of the realized answer. That independence is key to gaining tractability,
especially when we address the interplay between funding and the evolution of knowledge.
Moreover, our notion of cost leads to an endogenous success probability that depends on
the question chosen and the existing knowledge.

Similar to Garfagnini and Strulovici (2016), the researcher’s cost to discover a certain
point depends on the relation of that point to the existing knowledge.6 However, the
cost-generating process differs significantly. In Garfagnini and Strulovici (2016) cost
depend only on whether the search occurs inside or outside the knowledge frontier. In our
model, the agent decides on the intensity of her search for an answer. Her intensity choice
affects both benefits and cost.

The differences in benefits and cost allow us to answer novel questions. How does
knowledge accumulate over time? What is the probability that a researcher succeeds to
answer their self-chosen research questions given their self-chosen intensity?

Our findings relate to other theoretical models in the science of science literature
that consider particular aspects of the scientific process we have in mind.7 Aghion,
Dewatripont, and Stein (2008) consider a setting in which progress has a predefined
step-by-step sequential structure. To advance to the next question, a particular prior
question has to be answered. We offer greater flexibility in that we posit that any question
can—in principle—be addressed at any time. However, the benefits from a discovery and

6Jovanovic and Rob (1990), too, study the choice between expanding and deepening research. In
Jovanovic and Rob (1990), expanding implies an i.i.d. draw at a fixed cost while deepening is costless.
In our model, by contrast, all questions are connected and cost depends on both existing knowledge and
the degree of novelty. Moreover, see Callander and Hummel (2014), Callander, Lambert, and Matouschek
(2018), Callander and Matouschek (2019), and Bardhi and Bobkova (2021) for applications different from
ours in a related framework. Some of the results in Section 5 are reminiscent of Callander (2011b) in a
different context.

7There is a literature orthogonal to ours that views science as establishing links between known answers
(for example, Rzhetsky et al., 2015). Our model is complementary. We consider research as the search for
answers given a reasonable estimate of the link.
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the effort needed for the discovery depend on previous work.8 Bramoullé and Saint-Paul
(2010) model the decision of a researcher to deepen knowledge in a given area or to advance
the knowledge frontier. The main driver in their model is the assumption that as an area
gets increasingly crowded, the reputation a researcher gains from new developments in
that area declines.9 We offer a decision-based microfoundation that provides a measure of
uncertainty, in line with Frankel and Kamenica (2019). It reaches a similar conclusion: as
the opportunities in the area become increasingly narrow, the informational content of an
additional finding decreases, and hence its value does too. However, unlike in Bramoullé
and Saint-Paul (2010), the researcher in our model has more discretion, as she chooses
not only the area but also the degree of novelty and the level of research intensity, which
directly determines the probability of success. Both choices are continuous, and shrinking
the research area may be beneficial if it leads to better conjectures by closing the gap
between existing pieces of knowledge.10

Prendergast (2019) studies agency concerns when incentivizing creative innovation.
His model relates to ours on a high level, yet the mapping is not straightforward. Neither
model nests the other. Under a particular narrow structure of existing knowledge in our
model and a specific assumption on the agent’s reduced-form cost in his, the two models
overlap. Beyond this intersection, however, the scope, the modeling choices, and the focus
differ. Unsurprisingly, results differ too.

1.2 Roadmap

Our model of research builds on several fundamental ingredients that lead us to the
researcher’s objective function via intermediate results. Therefore, we chose a step-by-step
approach in setting up the model of a researcher to emphasize the role of each model
ingredient. With each additional model feature, we analyze the respective consequences.
In Section 2, we provide the basic model of knowledge and society’s decision making. In
Section 3, we obtain our first result—a characterization of the benefits of a discovery to
society and of the benefit-maximizing research questions given any existing knowledge. In
Section 4, we introduce a researcher and construct her objective based on the benefits of
discoveries to society and a microfounded cost function. Building on this objective, we
obtain our second result—a researcher’s optimal choices and the properties thereof. In
Section 5, we analyze the interaction between a long-lived decision maker who incentivizes
a series of short-lived researchers—our third result. Section 6 summarizes and provides an
outlook on other applications.

8To (ab)use Newton’s metaphor: Any researcher can build a ladder to see farther, but the effort
required depends on the existing giants’ shoulders. Related ideas appear in Scotchmer (1991), Aghion
et al. (2001), Bessen and Maskin (2009), and Bryan and Lemus (2017).

9Similar to Bramoullé and Saint-Paul (2010), we model innovation as a public good. That differentiates
us from most models of R&D competition. Yet, similarly to, for example, Letina (2016), Letina, Schmutzler,
and Seibel (2020), and Hopenhayn and Squintani (2021), we assume that progress corresponds to successful
search in an ocean of possibilities. Unlike in those approaches, in our setting, benefit and cost depend on
the question’s relation to existing knowledge.

10Other recent theoretical work studies frictions in the scientific process that we abstract from. Bobtcheff,
Bolte, and Mariotti (2017), Akerlof and Michaillat (2018), and Andrews and Kasy (2019) study inefficiencies
due to the publication process, career concerns, or homophily. Hill and Stein (2020, 2021) provide empirical
counterparts. Frankel and Kasy (2021) provide a normative justification. Similar to us, Liang and Mu
(2020) look at (a sequence of) myopic researchers aiming to discover the truth. Unlike us, they focus on the
choice of the learning technology and show that depending on the complementarities between technologies,
researchers may persistently select an inefficient technology.
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2 A Model of Knowledge
We set up a model of knowledge with the following desired properties:
(i.) Knowing the answer to a question informs conjectures about other questions.
(ii.) The distance between two questions determines the impact that answering one

question has on the conjecture about the other question.
(iii.) The set of available questions is unbounded.
(iv.) Knowledge informs decision making.

We first set up a formal model of knowledge and then introduce society as a decision
maker that applies knowledge in its decision-making process.

Questions and answers. We represent the universe of questions by the real line, R.11 A
specific question is an element x ∈ R. Each question x has precisely one answer, y(x) ∈ R.
A question-answer pair (x, y(x)) is thus a point in the two-dimensional Euclidean space.

The answer y(x) to question x is determined by the realization of a random variable,
Y (x) : R→ R. We provide more structure for Y (x) below.

Truth and knowledge. Truth is the collection of all question-answer pairs. It is the
graph of the realization of the random variable Y (x), over its domain R. Knowledge is the
finite collection of known question-answer pairs. We denote it by Fk = {(xi, y(xi))}ki=1.
For notational convenience, we assume that Fk is ordered such that xi < xi+1. We refer
to x1 and xk as the frontier of current knowledge.

The key assumption of our model of knowledge concerns the truth-generating process
Y (x). We assume that Y (x) follows a standard Brownian motion defined over the entire
real line.12 This assumption captures the notion that the answer to question x is likely
to be similar to the answer to a close-by question x′. As the distance between x and x′,
|x− x′|, increases, the uncertainty increases. Yet a correlation remains.

Knowledge Fk implicitly determines a partition of the real line consisting of k + 1
elements

Xk := {(−∞, x1), [x1, x2), · · · , [xk−1, xk), [xk,∞)}.

In what follows, we make frequent use of the interval length Xi of an element of the
partition that a particular question x ∈ [xi, xi+1) is part of.

We introduce the following terminology. We refer to each element of the partition
Xk as an area. We call (−∞, x1) area 0, [x1, x2) area 1, and so on until area k, which is
[xk,∞). The length of area i ∈ {1, .., k − 1} is Xi := xi+1 − xi, and X0 = Xk =∞.

Conjectures. A conjecture is the cumulative distribution function Gx(y|Fk) of the
answer y(x) to question x given knowledge Fk. Conjectures about questions to which

11Our assumption implies that the relation between any two questions can be represented in a single
dimension. We think of our universe of questions as being within one specific and mature discipline such as
the protein-folding problem from the Introduction. In Appendix G, we discuss how our results generalize
and present a model that includes seminal discoveries—discoveries that open up a new field of research.

12As in Callander (2011a), the realized truth Y is a random draw from the space of all possible paths Y
generated by a standard Brownian motion going through some initial knowledge point (x0, y(x0)). While
the process has been fully realized at the beginning of time, knowledge is the filtration known to the
observer Fk. We choose a standard Brownian path with 0 drift and variance of 1 for convenience only.
Our model extends naturally to other Gaussian processes. The x dimension should not be confused with a
sequential structure of finding answers. Any question-answer pair (x, y(x)) is discoverable.
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Figure 2: Distributions of answers for different distances to knowledge when F1 = (0, 42). Given
that the only question to which the answer is known is x = 0, we can determine knowledge about questions
of distances 1, 4, and 16 from x = 0. All answers have the same mean (42), but the variance and thus
the precision of the conjecture differ. For x = 0, the answer is known and G0(y|F1) is a step function.
Questions with longer distances have larger variances. The left panel depicts the respective distribution
functions; the right panel depicts the densities.

the answer is known are trivial; if (xi, y(xi)) ∈ Fk, then Gxi(y|Fk) = 1y≥y(xi), a right-
continuous step function jumping to 1 at y = y(xi). The conjecture for a yet-to-be-
discovered y(x), Gx(y|Fk), is also well defined. Because Y (x) is determined by a Brownian
motion, Gx(y|Fk) is a cumulative distribution function of a normal distribution with mean
µx(Y |Fk) and variance σ2

x(Y |Fk). Both µx and σ2
x follow immediately from the properties

of the Brownian motion.

Property 1 (Expected Value). Given knowledge Fk, the conjecture Gx(y|Fk) has the
following mean:

µx(Y |Fk) =


y(x1) if x < x1

y(xi) + x−xi
Xi

(y(xi+1)− y(xi)) if x ∈ [xi, xi+1), i ∈ {1, ..., k − 1}
y(xk) if x ≥ xk.

Property 2 (Variance). Given knowledge Fk, the conjecture Gx(y|Fk) has the following
variance:

σ2
x(Y |Fk) =


x1 − x if x < x1
(xi+1−x)(x−xi)

Xi
if x ∈ [xi, xi+1), i ∈ {1, ..., k − 1}

x− xk if x ≥ xk.

Figure 2 illustrates the distributions for different distances from existing knowledge
assuming that knowledge is F1 = (0, 42). In Appendix C, we provide a graphical example
that highlights the ingredients of our model of knowledge and how adding additional
question-answer pairs to knowledge influences conjectures.

2.1 Society and Decision Making

We represent society by a single decision maker. That decision maker observes knowledge
Fk and takes a continuum of actions—one for each question x ∈ R. For each question x,
she can either take a proactive action a(x) ∈ R or select an outside option a(x) = ∅—for
example, the act of doing nothing. The decision maker’s choice is thus represented by a
function a : R→ R ∪∅.

9



The expected payoff of selecting the outside option a(x) = ∅ is finite, safe (that is,
independent of y(x)), and question-invariant. We normalize it to 0. The choice of ∅
reflects the idea that for a subject on which very little is known, it is not wise to take
proactive actions. One interpretation of preferring to choose ∅ is what is known as the
precautionary principle: if uncertainty is large, prudence is preferred over risking a poor
proactive choice.13 The payoff of addressing a question x proactively is represented by a
monotone transformation of the quadratic loss around the true answer to question x, y(x).
The decision maker’s payoff on a particular question x from action a(x) is

u(a(x);x) =

1− (a(x)−y(x))2

q if a(x) ∈ R
0 if a(x) = ∅,

for a given q > 0. The scaling parameter q measures the error tolerance of the decision
maker: if the proactive choice a(x) is less than √q away from the optimal choice—the
true answer y(x)—the decision maker prefers the proactive choice over the outside option.

To keep the analysis focused, we abstract from any prioritization the decision maker
might have among different questions; that is, we assume that the decision maker values all
questions equally. If a(x) is such that u(a(x);x) is (locally) integrable, then total payoffs
to the decision maker are given by ∫ ∞

−∞
u(a(x);x)dx.

Technically, it is the outside option ∅ and the finiteness of knowledge that ensure a
bounded payoff at the optimum.14 Thus, the outside option guarantees that knowledge
contributes in a quantifiable way to the decision maker’s total payoff.

3 The Benefits of Discovery
Discovery occurs whenever an answer is found and the new question-answer pair is added
to existing knowledge Fk. In this section, we formulate a measure of the benefits of
discovery for the decision maker.

3.1 The Value of Knowledge

Knowledge informs decision making. For each question x, the decision maker uses the
conjecture Gx(y|Fk) to decide on a(x). Suppose the decision maker addresses a question
x proactively, i.e., a(x) 6= ∅. Her expected payoff for that question is

13What we have in mind as outside options are longstanding policies with a finite expected payoff where
the decision maker decides whether to revise her policy. Take the discussion about how to respond to
climate change: Since the Kyoto Protocol, decision makers have reevaluated policies on several issues (for
example, transportation, energy, protection of nature). For each issue, they use current knowledge and
decide whether to continue with business as usual or to change policy.

14The decision maker’s problem is straightforwardly solved pointwise resulting in a sufficiently well-
behaved per-question payoff u(·) to ensure integrability. An alternative assumption to facing all questions
is that the decision maker faces a single question at random. However, in the case of a uniform distribu-
tion—which would resemble equal weighting of questions—we need to restrict attention to draws from
a large subset, [x, x], of the set of all questions R. If the subset from which the questions are drawn is
large enough, the two assumptions are equivalent when the decision maker acts optimally. Other weighting
functions on questions are straightforward to incorporate; yet, they come at a significant cost of clarity in
the analysis.

10
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Figure 3: The value of knowing F1. The left panel depicts the same situation as the left panel in
Figure 1. Only the answer to question 0 is known. The right panel depicts the the value of knowledge
v(F1). It is proportional to the shaded part.a The variance σ2

x(Y |Fk) = |x| is the Euclidean distance from
0. The expected payoff from taking an action equal to the mean of the conjecture, a = µx = 42, is the
vertical distance between the action and the dashed line. For |x| ≤ q, a = µx = 42 is preferred to a = ∅.
aThe shaded part is proportional as we have to multiply it with the normalizing factor 1/q. This holds throughout this section.

Eu(a 6= ∅;x|Fk) =
∫

1− (a− y(x))2

q
dGx(y|Fk).

Because of the quadratic loss, the optimal action in this case corresponds to the mean of
the distribution, µx(Y |Fk) with payoff

Eu(µx(Y |Fk);x|Fk) =
∫

1− (µx(Y |Fk)− y(x))2

q
dGx(y|Fk)

= 1− σ2
x(Y |Fk)
q

.

Addressing the question proactively is therefore optimal only if σ2
x(Y |Fk) ≤ q, that

is, only if the decision maker’s conjecture is sufficiently precise. Otherwise, the decision
maker prefers the outside option, a(x) = ∅, with payoff 0.

The decision maker’s optimal policy is thus

a∗(x) =
{
µx(Y |Fk), if σ2

x(Y |Fk) ≤ q
∅, if σ2

x(Y |Fk) > q
.

This implies a total expected payoff to the decision maker given existing knowledge Fk of

v(Fk) :=
∫ ∞
−∞

Eu(a∗(x);x|Fk)dx =
∫ ∞
−∞

max
{
q − σ2

x(Y |Fk)
q

, 0
}

dx.

We refer to v(Fk) as the value of knowing Fk; that is, v(Fk) is the decision maker’s gain
from following the optimal policy given knowledge Fk compared with refraining from any
proactive choices—that is, ∀x ∈ R a(x) = ∅.

The right panel of Figure 3 provides a graphical representation of v(F1). The left
panel of Figure 4 represents v(F2), the right panel of Figure 4 represents v(F4).

3.2 The Benefits of Discovery

The benefits of a discovery come in the form of an enhanced value of knowledge. Formally,
adding (x, y(x)) to Fk provides the benefit

11
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Figure 4: The benefits of discovery.
Left panel: Benefit of a knowledge-expanding discovery. Benefits of discovering the answer to
question −2q when initial knowledge was F1 = (0, y(0)). Outside the frontier—where x /∈ [−2q, 0]—the
variance is σ2

x(Y |Fk) = d(x). Inside, it is smaller with σ2
x(Y |Fk) = d(x)(X − d(x))/X, where X = 2q is

the length of the interval [−2q, 0]. The value of F2 is proportional to the entire shaded part. The net
benefit of discovering the answer to question x = −2q is proportional to the dark-shaded part.
Right Panel: Benefit of knowledge-deepening discovery. Value of knowledge and the benefit of
discovery when the research deepens knowledge by discovering the answer to question x = −q. The total
value of F4 is proportional to the entire shaded part. The net benefit of discovering the answer to question
x = −q is proportional to the dark-shaded part (relative to pre-existing knowledge F3).

V (x;Fk) := v(Fk ∪ (x, y(x)))− v(Fk).

The value of the discovery depends on the question being answered, x, and on existing
knowledge Fk. We distinguish two scenarios: expanding knowledge beyond the frontier
and deepening knowledge in an area. A discovery y(x) expands knowledge if x /∈ [x1, xk].
A discovery y(x) deepens knowledge in area i if x ∈ [xi, xi+1].

We first state the benefits-of-discovery function. Three corollaries to that statement
contain our first contribution. The corollaries characterize the properties of the benefits of
discovery including a characterization of the benefits-maximizing discoveries as a function
of existing knowledge. The two main factors determining the benefits are the distance
from knowledge, which we formally define below, and the research area. Area length X is
a sufficient statistic for the research area.

Definition 1 (Distance). The distance of question x from knowledge Fk is the minimal
Euclidean distance to a question to which the answer is known:

d(x) := min
ξ∈{x1,x2,...xk}

|x− ξ|

Definition 2 (Variance). The variance of a question with distance d in an area of length
X is

σ2(d;X) := d(X − d)/X.

Note that σ2(d;X) = σx(Y |Fk) whenever d(x) = d and x is in an area of length X.
This allows us to simplify notation and to focus on the variables d and X exclusively
rather than keeping track of the exact question x and its research area. We abuse notation
by stating the benefits of discovery as V (d;X).

12
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Figure 5: Benefit-maximizing (left) and too large (right) distance of x given F1. Given that the
value of doing nothing is q = 1, the benefit-maximizing distance when expanding knowledge is d = 3q. The
left panel depicts the benefit-maximizing choice, given F1, when expanding to the negative domain and
d = 3q and thus x = −3; the right panel shows the effect of a choice that is too far away (x = −5, d = 5q).
The gain in knowledge V (d;∞) is proportional to the dark-shaded part. It is larger in the left panel than
in the right panel.

Proposition 1. Consider discovery (x, y(x)) in an area of length X ≤ ∞ with distance
d = d(x). The benefit of the discovery is

V (d;X) = 1
6q
(
2Xσ2(d;X) + 1d>4q

√
d(d− 4q)3/2

+ 1X−d>4q
√
X − d (X − d− 4q)3/2

− 1X>4q
√
X(X − 4q)3/2

) .

Expanding knowledge beyond the frontier has a benefit of V (d;∞) := limX→∞ V (d;X).

Proposition 1 states that expanding knowledge is equivalent to the limiting case of
deepening knowledge.

The terms in V (d;X) without an indicator function measure the direct reduction
in the variance due to a discovery and hence the effect on decision making conditional
on a proactive action a 6= ∅. The terms with an indicator function, 1, become active
whenever the corresponding area contains questions with too imprecise conjectures (see,
for example, the right panel of Figure 5). Such conjectures induce the decision maker
to select the outside option ∅ rather than making a proactive decision to limit losses to
0. The indicator-function terms that enter positively correspond to choices in the newly
created areas. The indicator-function term that enters negatively corresponds to choices
in an old area that gets replaced. Therefore, the presence of the outside option protects
the decision maker from risky proactive actions when there is high uncertainty about the
question’s optimal answer.

Figure 4 illustrates the benefits of discovery for expanding knowledge (left panel) and
deepening knowledge (right panel). The right panel of Figure 6 on page 15 illustrates the
functions for different area lengths X. To gain intuition, it is useful to discuss expanding
knowledge and deepening knowledge separately.

Expanding knowledge. Our first corollary states the closed form of V (d;∞).

Corollary 1. V (d;∞) = 1
6q

(
6qd− d2 + 1d>4q

√
d(d− 4q)3/2

)
13



We focus on discovering the answer to x < x1, which occurs when the decision maker
moves from Figure 3 to the left panel of Figure 4. The case of x > xk is analogous.

The benefit of expanding knowledge comes from the new area [x, x1) it creates. The
discovery of y(x) pushes the knowledge frontier to the left and creates new research area
[x, x1). The benefit of the discovery is the value of that new area (the dark-shaded part in
Figure 4, left panel).15

The value of adding an area depends on (i) the amount of questions in that area and
(ii) the degree of improvement in decision making relative to the outside option a = ∅. The
benefits-maximizing question resolves a classic marginal-inframarginal trade-off similar to
that in a monopoly-pricing decision: Increasing the area length of the newly created area
has two opposing effects on the value of discovery. The marginal gain is the increase in the
amount of questions that the conjecture improves. However, it comes at a cost because it
decreases the precision of conjectures about all inframarginal questions in the area.

Figure 4 and Figure 5 illustrate the benefits of discovery from creating too short (left
panel of Figure 4), ideal (left panel of Figure 5), and too large (right panel of Figure 5)
areas. The largest benefits come at an intermediate level at which all conjectures have
a variance strictly smaller than q, as the next corollary shows. The inframarginal losses
outweigh the marginal gains at that point. The decision maker refrains from using the
outside option for all questions inside the new area. We define the benefits-maximizing
distance in area X as

d0(X) := max
d

V (d;X).

Corollary 2. The benefits of expanding knowledge are single peaked in d. The benefit-
maximizing distance d0(∞) = 3q. The maximum benefits of expanding knowledge are
V∞ := V (3q;∞) = 3

2q.
16

Deepening knowledge is the process of discovering answer y(x) to question x in area i with
two bounds, xi and xi+1. The answers y(xi) and y(xi+1) are known. We illustrate the
process in the right panel of Figure 4. The difference from expanding knowledge is that
instead of creating a new area, deepening knowledge replaces the old area, [xi, xi+1), with
two new areas, [xi, x) and [x, xi+1).

The benefits of a discovery depends on the combination of improved decision making
in either of the areas. We know from Corollary 2 that the largest benefits in a single area
come from an area of length 3q. Thus, if the old area, i, had length Xi = 6q, a discovery
at the midpoint would provide the largest benefits. However, if Xi 6= 6q, at least one of
the two areas would have a length different from 3q.

If Xi 6= 6q, two forces are at play. First, there is a benefit to replacing the old area
with two symmetric new areas such that each is half the length of the old area. The
intuition echoes that of expanding knowledge: the inframarginal loss increases when an
area becomes too large. Thus, choosing two areas with the same length reduces the
inframarginal losses compared with the case of one large and one small area. Inspection of
the right panel of Figure 4 provides graphical intuition.

Second, benefits decline if area length is larger than 3q, as conjectures inside the area
become increasingly imprecise. Maintaining symmetry implies that newly created areas
are larger than 3q if Xi > 6q and thus too large to maximize the benefits.

15More precisely, the conjectures about questions to the left of the old frontier are replaced by conjectures
inside the new research area, and conjectures to the left of the new frontier also become more precise.
However, as can be seen in the left panel of Figure 4, the variance reduction to the left of the frontier is
always the same. Hence the benefits are the same as if only the new area was added.

16The results of this and the next corollary follow directly from an analysis of V (·; ·) derived in
Proposition 1. However, deriving them is not entirely straightforward, so we do so in the Appendix.
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Figure 6: The benefit of discovery.
Left panel: Benefits of discovery as a function of area length X. The graph plots the benefits
of discovery V (d0(X);X) for areas of length X <∞ (dashed line). The solid line is the maximum benefits
of discovery when expanding knowledge V∞. Deepening beats expanding knowledge if X > X̂0 ≈ 4.3q.
V (d0(X);X) is maximal at qX0 ≈ 6.2q; d0(X) < X/2 if X > X̃0.
Right panel: Benefits of discovery given X as a function of distance d. The graph depicts
expanding knowledge (solid line) and deepening knowledge (dashed and dotted lines) for area lengths
X ∈ {3q, 6q, 10q,∞}.
Note: Plots for deepening knowledge end at the maximum distance in each area, d = X/2.

If the initial area length Xi was small, the first force would dominate. It would be
better to divide the area evenly even if each new area was less than 3q long. However, if
Xi was large, the trade-off would be resolved in favor of creating one high-value area at
the cost of having imprecise conjectures in the other, larger, area. A cutoff X̃0 ∈ [6q, 8q]
exists such that it is benefits maximizing to create two symmetric areas if and only if
Xi < X̃0.

For what initial area length Xi does transforming the area into two new ones provide
the largest benefits? As explained above, two areas of length 3q provide the largest value.
However, we have to take into account that the two new areas replace an old area. The
larger the area that gets replaced, the less its initial value. On the other hand, the larger
the old area (beyond 6q), the lower the value of the two new areas. The initial area length
that provides the largest benefits when the area is replaced is qX0 ≈ 6.2q. That is, it is
more than 6q.

Expanding versus deepening knowledge. On the one hand, creating new areas means no
knowledge needs to be replaced, as all old areas remain. On the other hand, deepening
knowledge means creating two areas with relatively precise conjectures. If an area is small,
deepening knowledge provides only a small benefit. Conjectures are already precise. If
an area is large, conjectures are imprecise and deepening knowledge is more beneficial.
Overall, there is a cutoff X̂0 ≈ 4.3q such that deepening knowledge in Xi is more beneficial
than expanding knowledge if and only if Xi > X̂0.
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Our next corollary and the associated figure (Figure 6) summarize the discussion.

Corollary 3. There are three cutoff area lengths, 4q < X̂0 < 6q < qX0 < X̃0 < 8q, such
that the following propositions hold:

• The benefits of expanding knowledge by 3q dominate the benefits of deepening knowl-
edge in area i if and only if Xi < X̂0.

• The maximum benefits of deepening knowledge in area i are increasing in area length
if Xi < qX0; they are decreasing if Xi > qX0.

• The distance d0(Xi) of the benefits-maximizing discovery is increasing in Xi for
Xi < X̃0 and decreasing for Xi > X̃0. If Xi < X̃0, d0(Xi) = Xi/2. Otherwise
d0(Xi) ∈ (3q,min{Xi/2, 4q}]. As X →∞, d0(X)→ d0(∞) and V (d;X)→ V (d;∞)
uniformly.

4 The Researcher

4.1 The Researcher’s Objective

In this section, we introduce a researcher to our model. We assume that the researcher
chooses both her research question x and a research effort. Conditional on the question
x, we assume a one-to-one relationship between effort and output ρ, the probability that
the researcher finds the answer. Further, we assume that the researcher’s benefits of
discovering the answer y(x) are proportional to the benefits of the discovery to the decision
maker. That is, the researcher receives an expected benefit of ρV (d;X) if she chooses
the probability ρ to discover the answer to a question in area X with distance d.17 We
parametrize the researcher’s cost as

c(ρ, d;X) = c̃(ρ)σ2(d;X),

with c̃(ρ) := (erf−1(ρ))2, and erf−1 being the inverse error function of the normal
distribution. Thus, we assume a cost function, which is (i) multiplicatively separable in ρ
and (d;X), (ii) increasing in d and X, (iii) and concave in d; the concavity decreases in X
with the limiting case in which the cost function is linear in d as X →∞ (see left panel of
Figure 7).

The cost function links output and novelty: for a given level of effort, the probability of
a successful search depends on the precision of the conjecture about a question. Research
on a more novel question inside the same research area with the same level of effort entails
higher risk.

The use of the variance, σ2(d;X), to measure the cost of uncertainty about a question
is natural. While assuming an increasing and convex function in the success probability
ρ is natural as well, the use of the squared inverse error function, (erf−1(ρ))2, requires
further motivation. In Appendix D, we provide a search model to microfound the cost
function we impose. There, we assume that the researcher can—at a cost—decide on a
sampling-interval [a(x), b(x)] in the y-dimension. She discovers the answer if and only
if y(x) ∈ [a(x), b(x)]. Any (i) homogeneous, (ii) increasing, and (iii) convex sampling

17One rationale for discarding nonfindings is a moral hazard concern: science is complex, and it is
impossible to distinguish the absence of a finding from the absence of proper search. Our model can easily
account for the possibility of publishing nonfindings; unsurprisingly, these increase the value of knowledge
as well. The difficulty of publishing the absence of evidence, however, has long been recognized in the
literature. See, for example, Sterling (1959). In principle, it is relatively straightforward to compute
updated answer distributions based on null results in our setting. Including this in our researcher model,
however, is beyond the scope of this paper.
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Figure 7: Cost of research as a function of distance from knowledge (left) and probability of
discovery (right). As area length X decreases, cost diminishes for a given (d, ρ). The cost is linear in d
when expanding knowledge but strictly concave when deepening knowledge. The cost function is convex in
ρ. The left panel plots σ2(d;X) for different X’s; the right panel depicts c̃(ρ). In the left panel, plots for
area length X < 10q end at the maximum possible distance (d = X/2).

cost function over the interval length |a(x) − b(x)| would imply a reduced-form cost
function similar to the one we impose and therefore not alter our results qualitatively. The
reduced-form cost function we impose above corresponds to a quadratic sampling cost
(a(x)− b(x))2. A general increasing and convex c̃(ρ) not relying on erf−1 is possible, yet
harder to microfound. Moreover, erf−1 has a set of desired properties. In Appendix A,
we provide a discussion.

The researcher’s payoff is

uR(d, ρ;X) := ρV (d;X)− ηc(ρ, d;X)

where η > 0 determines the relative weights of cost and benefits, respectively.
We chose to abstract from any motivations other than the researcher’s desire to increase

the value of knowledge. That is, we implicitly assume that the market for research is
frictionless and rewards researchers for their direct contributions to the value of knowledge.
This assumption allows us to provide a clean analysis of the researcher’s trade-offs in
the absence of any other exogenous effects. We address additional frictions in our Final
Remarks.

It follows from the previous discussion that the researcher resolves the tension between
the cost and benefits of research by choosing a research question together with an appropri-
ate level of effort. A short distance to existing knowledge allows her to find answers with
a high probability at a relatively low cost. However, such answers provide little benefits to
society. By increasing the distance, the researcher increases her benefits conditional on
discovery. At the same time, either the cost increases or she has to accept a lower success
probability. This trade-off is at the heart of many discussions of research funding.18

In the following, we characterize the researcher’s optimal choice and elaborate on
the resolution of the novelty-output trade-off. While this characterization is a central
contribution of this paper, it also serves as a building block for the applications that follow.

18See, for example, the emphasis on high-risk/high-reward research by the European
Research Council (https://ec.europa.eu/research/participants/data/ref/h2020/call_ptef/ef/
h2020-call-ef-erc-stg-cog-2015_en.pdf) and the National Institutes of Health (NIH) (https://
commonfund.nih.gov/highrisk).
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4.2 The Researcher’s Decision

The researcher solves

max
X∈{X0,...,Xk}

max
d∈[0,X/2],
ρ∈[0,1]

ρV (d;X)− ηc(ρ, d;X)

︸ ︷︷ ︸
=:UR(X)

.

If there is no cost (η = 0), we can apply Proposition 1 to derive the optimum. For any
X, the researcher selects ρ = 1. For X < X̃0 she selects d = X/2; and for X̃0 < X <∞
she selects d ∈ (3q,X/2). If X =∞, the researcher chooses d = 3q. She prefers to expand
knowledge if and only if Xi ≤ X̂0 for any area Xi <∞ defined by Fk.

However, for η > 0, the researcher’s decision about effort is nontrivial and linked with
her decision about the research question. Choosing a question with a small distance allows
for a high probability of discovery at a low cost. Her initial conjecture about the answer is
already precise. Nevertheless, her payoff is low, as such a discovery provides little benefit.

By increasing the distance, the researcher increases the benefits of discovery but also
increases the cost, ceteris paribus. The effect on the optimal probability of discovery is
ambiguous: depending on which effect dominates, the distance and the probability of
discovery are substitutes or complements.

Definition 3. Let ρ∗(d;X) be the probability of success ρ that maximizes the researcher’s
payoff given d and X. Output ρ and novelty d are complements (substitutes) if ρ∗(d;X)
is strictly increasing (decreasing) in d.

It turns out that how output and novelty behave jointly depends crucially on both the
length of the research area and the level of novelty. If novelty is too high, the benefits
of discovery decrease in novelty (see Proposition 1). In this case, novelty and output are
substitutes. Reducing novelty increases the marginal benefits and reduces the marginal
cost of increasing output.

Optimal choice within a research area. First, we consider how the researcher’s
choice of distance and probability of discovery interact within an area of length X. The
following proposition summarizes the joint behavior of d and ρ.

Proposition 2. Suppose η > 0.
1. When the researcher expands knowledge,

i.) distance d and probability of discovery ρ are substitutes, and
ii.) the optimal choice of d ∈ (2q, 3q).

2. When the researcher deepens knowledge in an area of length X,
i.) d and ρ are

a.) independent if X ≤ 4q,
b.) complements if X ∈ (4q, (4 +

√
6)q),

c.) substitutes for d ∈ (0, d̂(X))19 and complements for d ∈ (d̂(X), X2 ) if
X ∈ ((4 +

√
6)q, 8q), and

d.) substitutes if X > 8q.
ii.) the researcher’s optimal choice of d is at d’s maximum value d = X

2 if X ≤ X̃
and at the interior value d < X

2 if X > X̃.
19d̂ is defined in the proof of the proposition.
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Whenever the researcher expands knowledge, an increase in distance increases the
marginal cost of the success probability more than the marginal benefit. Thus, any
increase in distance comes at the cost of reducing the success probability. The optimal
distance is intermediate: a short distance provides only small benefits. However, the
benefits-maximizing distance is 3q and the researcher will never select a question farther
than 3q beyond the frontier. As research comes with the risk of failure and at a cost, the
optimal distance is shorter than the benefits-maximizing distance.

Whenever the researcher deepens knowledge, the effect that distance has on the optimal
choice of ρ changes in contrast to the case of expanding knowledge. The variance of the
conjecture is concave in distance whenever X <∞ because the researcher uses information
from two answered questions to form a conjecture. Thus, the negative effect of moving
farther from one question in the set of existing knowledge is mitigated by moving closer to
another question in the set. Therefore, increasing the distance from existing knowledge is
less costly in terms of success probability when deepening knowledge than when expanding
knowledge. Distance and probability of discovery can become complements.

For short research areas—areas for which the decision maker addresses all questions
inside this area proactively—, the benefits of discovery are proportional to the variance of
the question (see Proposition 1): the probability of discovery is independent of the choice
of distance. If instead the initial area is larger, then the decision maker’s losses prior to
the new discovery were limited because she chose the outside option for some questions.
A more distant new discovery therefore leads to a larger increase in the benefit than in
the variance; d and ρ become complements.

To see this, note that the marginal cost of the success probability are increasingly
flat in novelty once the distance approaches the midpoint of the interval. The marginal
benefit of the success probability corresponds to the benefits of a discovery. Whenever
these benefits increase steeply in novelty relative to the increase of the marginal cost of
success probability, novelty and output are complements. If the research area becomes
very large, the region in which novelty and output are complements vanishes. The reason
is that once the marginal cost of success probability become flat, the marginal value of
success probability is even flatter or already decreasing.

Finally, we show in Proposition 2 that the researcher chooses the largest possible
distance whenever the area is not too large. If distance and success probability are
complements, she chooses the maximum distance and the largest probability of discovery
in this interval. Intuitively, there is no trade-off between novelty and output in such
research areas: any increase in novelty is accompanied by an increase in output. However,
for large research areas and expanding knowledge, a trade-off arises; novelty and output
become substitutes.

Optimal choice among intervals. We now characterize the researcher’s choice of
research area X. We take the optimal choice inside each area as given. Let d(X) and
ρ(X) be the researcher’s choices conditional on an area of length X, and let UR(X) be
the associated payoff. The respective objects for expanding research are d∞, ρ∞, and U∞R .
The following proposition summarizes the findings. Figure 8 illustrates the proposition.

Proposition 3. Suppose η > 0. There is a set of cutoff values 2q < X̂ < Ẋ < qX < X̃ <
8q such that the following claims hold:

1. The researcher expands knowledge if and only if all available research areas are
shorter than X̂.
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Figure 8: Outcomes of the researcher’s choices in areas of different length. The graphs indicate the
researcher’s choices conditional on area length X. We compare them with optimal choices when expanding
knowledge (the horizontal line in each graph). On the horizontal axis we indicate the cutoffs X̂, qX, Ẋ, and
X̃ from Proposition 3.
The solid lines plot the optimal choice conditional on X being the best available area. For small areas
(X < X̂), the researcher prefers to expand knowledge. For areas of length X > X̂, she prefers deepening
knowledge to expanding knowledge. If the area has length X < X̃, the researcher selects the largest
distance possible in area X—that is, d = X/2. If X > X̃, it is optimal to select distance d < X/2 closer to
one of the end points of the area. For small areas (X < Ẋ), ρ(X) increases in X. For large areas (X > Ẋ),
ρ(X) decreases in X (apart from a discontinuous jump at X̃). The researcher’s payoff increases in area
length for X < qX and decreases for X > qX. The order of the cutoffs is independent of the value of the
cost parameter η.

2. The optimal choices of distance d(X) and probability of discovery ρ(X) are nonmono-
tone in X. Probability ρ(X) has a maximum at Ẋ; distance d(X) has a maximum
at X̃.

3. The researcher’s payoffs UR(X) are single peaked with a maximum at qX.

Proposition 3 shows that the pattern in the choice of distance is qualitatively the same
as in Corollary 3. However, the cost adds another dimension to the problem: the optimal
probability depends on area length. Consider a short area X. The scope for improvement
of the decision maker’s policies is small, as conjectures are already precise. Thus, investing
in discovery has a small expected payoff. The researcher does not invest much in the
search for an answer despite the small cost. Thus, the probability of discovery is small.
Now consider a large area. The benefits of deepening research is greater than in the case of
the small area. However, because the conjectures are imprecise, the cost is larger too. The
researcher does not invest much in discovery, as the probability of discovery is relatively
flat in effort. Thus, the probability of discovery is small. In an area of intermediate length,
the benefits of discovery are relatively high, yet conjectures are relatively precise and limit
the cost. The return on investment is largest and the probability of discovery is highest.

Moreover, the researcher only trades off d(X) against ρ(X) if X is of intermediate
length. If X is small, an increase in X increases the benefits of research. Cost is small,
and the researcher has an incentive to increase d(X) and ρ(X). As X becomes larger,
the marginal increase in the benefits of research decline yet the marginal cost of research
increases for both d(X) and ρ(X). Eventually the researcher faces a trade-off: should she
lower ρ(X) to maintain d(X) = X/2? It turns out that she should. While the researcher
wants to remain at a boundary in her choice of d(X), she mitigates the increased cost by
lowering ρ(X). As X increases further, she eventually also lowers d(X). After a discrete
jump upward of ρ(X) at X̃ following the jump downward of d(X) from the midpoint X/2
to an interior point, d and ρ comove again; both decline in X.

The researcher’s preferred area length, qX, is in a region in which a trade-off between
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ρ(X) and d(X) exists. While the researcher would prefer a larger research area to increase
the benefits of research, she would prefer a smaller research area to reduce the cost of
finding an answer. Thus, d(X) is increasing and ρ(X) decreasing at the point at which
UR(X) is maximal.

Note that we have thus far only characterized the researcher’s decision conditional on
area length X and compared the resulting payoffs of the researcher. An explicit analytical
characterization of the researcher’s choice depends on the available research areas; the
choice is determined by existing knowledge Fk. Given our characterization, computing
the optimal area is straightforward.20

5 Moonshots, Funding, and the Evolution of Knowledge
In this section, we apply our model and the previous analysis to classical questions in the
economics of science. In particular, we consider a decision maker who faces a sequence
of short-lived researchers but may be forward-looking herself. The decision maker can
incentivize researchers through funding. We ask the following questions: How do short-run
and long-run incentives differ? Is there a value to incentivizing a moonshot—expanding
knowledge farther beyond the frontier than myopically optimal? Does it matter which
type of funding the decision maker uses?

Answering these questions allows us (i) to evaluate the evolution of knowledge generated
by short-lived researchers from the long-run decision maker’s perspective, (ii) to determine
tools that improve the evolution of knowledge, and (iii) to derive a funder’s optimal
funding mix to improve the evolution of knowledge.

5.1 Sequential Research

We begin with the benchmark scenario of a sequence of short-lived independent researchers
absent outside incentives.

Time is discrete, t = 1, 2, ... and at each time t, a single researcher is born, observes
only the current level of knowledge, Ft, and decides on

• a research question x ∈ R (which implies d and X), and
• an interval [a, b] ⊆ R in which to search for the answer (which implies a success

probability ρ, see Appendix D for details).
If the answer y(x) ∈ [a, b], then (x, y(x)) is added to the existing knowledge. Otherwise,
knowledge remains unchanged. The researcher obtains her payoff uR, and disappears.
Thus, knowledge evolves (up to relabeling) to

Ft+1 =
{
Ft ∪ (x, y(x)) if y(x) ∈ [a, b]
Ft else,

time progresses to t + 1 and a new researcher is born observing only Ft+1. The initial
knowledge F1 is given. Moreover, we assume researchers are symmetric in the following
way.

Assumption 1. Each researcher has the same cost type η. Moreover, researchers condition
their strategy only on existing knowledge, Ft, and not on calendar time, t. We focus on
symmetric pure strategies: each researcher selects the same pure strategy given the same
knowledge.

20A computer program to numerically calculate all choices, given Fk, is available on our websites.
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In this setting, the evolution of knowledge is a simple corollary to Proposition 3.

Corollary 4. (i) If a researcher fails to obtain a discovery at time t, all future re-
searchers fail. Knowledge ceases to evolve.

(ii) Knowledge ceases to evolve within finite time.
(iii) If a researcher finds it optimal to expand knowledge at time t, all future researchers

expand knowledge, too.
(iv) As long as knowledge has not ceased to evolve, researchers will eventually find it

optimal to expand knowledge.

Corollary 4 highlights two endogenous features of this benchmark. First, the evolution
of knowledge will eventually stop. Second, starting with an arbitrary initial knowledge F1,
researchers may begin to close the gaps in existing knowledge. However, ultimately, they
will venture into expanding knowledge and remain there until knowledge ceases to evolve.

The first feature follows from the symmetry and homogeneity of researchers imposed
in Assumption 1. Two researchers with access to the same knowledge will address the
same question with the same approach. Thus, if the first researcher fails, so will the
following researchers because we assume that failures cannot be communicated to future
generations. We consider this assumption reasonable in the following way: researchers
are short lived and—after failing to find an answer—cannot present any credible evidence
that they searched at all.

We view this feature as a strength of our model. Discovery fails if the truth takes an
unexpected turn. Researchers will continuously fail, and progress stops. It can only resume
through exogenous forces, e.g., paradigm shifts (Kuhn, 1962), importing new researcher
types (Moser, Voena, and Waldinger, 2014), genius researchers (Benzell and Brynjolfsson,
2019), etc. Consider the alternative assumption about knowledge generation that research
outcomes correspond to independent draws from a binary outcome variable with potential
realizations discovery (finding the answer to the question) and no discovery (not finding
the answer to the question). The researcher’s effort determines the probability of drawing
the outcome discovery. This assumption would make the results on moonshots and funding
that we show below stronger. Yet, it would introduce an additional source of randomness,
which is orthogonal to that created by the random realization of the truth. In particular, we
consider it reasonable that researchers with access to the same knowledge draw correlated
rather than independent conclusions. Some exogenous alteration of knowledge, information
or skill is necessary to restart scientific progress.

The second feature—eventually, researchers will expand knowledge step by step—is a
consequence of short-lived researchers. A short-lived researcher does not take the dynamic
consequences of her potential finding into account. If available, the researcher takes
advantage of “attractive gaps” in knowledge Ft. Gaps are attractive only if they are large
enough so that bridging them provides sufficient benefits. If such an attractive gap exists,
bridging it is worthwhile because, given effort, discoveries are likely. However, once all
gaps are sufficiently small, bridging any of them provides too little benefits. Researchers
prefer to take the risk of expanding knowledge. To mitigate their risk at reasonable cost,
researchers push the frontier only marginally. Thus, the new areas they create are short
and future researchers will not deepen knowledge in them. Instead, they again move
beyond the frontier and expand knowledge.

We view this feature as another strength of the model. Absent exogenous frictions, the
evolution of knowledge eventually resembles a model in the spirit of the endogenous growth
literature, e.g., Romer (1990) and Grossman and Helpman (1991). For example, starting
at one initially known point (x, y(x)), knowledge evolves according to a step-by-step
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expansion with stepsize d∞ until knowledge ceases to evolve. Moreover, if initial knowledge
has significant gaps, these are a temporary phenomenon only. Eventually, knowledge
becomes dense. From then onward, it follows the step-by-step expansion path.

Neither of the two features is crucial for what follows—we can easily introduce additional
frictions, asymmetries or heterogeneity in the baseline. They come, however, at the cost
of clarity to the trade-off we highlight next.

5.2 Moonshots

To evaluate the evolution of knowledge from a long-run perspective, we introduce an
infinitely-lived decision maker to the model. The decision maker discounts future payoffs
with discount factor δ ∈ [0, 1). Her within-period payoff is the value of knowledge v(Ft).

For simplicity, we focus on a setting in which F1 is such that the researcher’s individual
choice in period 1 would be to expand knowledge. By Corollary 4, such a situation will
eventually arise. As will become clear, the benefits of moonshots are most significant
in this instance. Without further loss, we assume F1 = (0, y(0)) and that knowledge
expansion is always to the right.

We define a moonshot as follows.

Definition 4 (Moonshot). Given Fk, a question x ∈ R is a moonshot if
1. x /∈ [x1, xk] and
2. d(x) > 3q.

That is, a moonshot is a question that is more novel than the decision maker’s
myopically optimal question, which by Corollary 2 has distance 3q.

Our first exercise determines whether a long-lived decision maker prefers a successful
moonshot in the first period over the myopically optimal distance. We begin with a
negative benchmark result.

Corollary 5. If research is costless, η = 0, incentivizing a moonshot is not beneficial. In
that case, the static optimum is also dynamically optimal for any δ.

If the cost of research is positive, η > 0, a moonshot may be beneficial. The preferences
of the decision maker and the researchers do not align for two reasons. First, the cost
of research enters the researcher’s payoff function directly. However, it enters the payoff
function of the decision maker only through the researchers’ decisions.21 Second, a discovery
in period t = 1 influences the benefits and cost of future generations of researchers in
periods t > 1 through the implied conjectures. While researchers do not take this effect
into account, the long-lived decision maker internalizes this dynamic externality.

Analysis. We now demonstrate why incentivizing moonshots can be beneficial to the
decision maker. As an illustration, we sketch the evolution of knowledge for two different
initial discoveries in Figure 9.

For now, assume that the decision maker can choose the initial question x̂ and can
further guarantee the discovery of y(x̂). We relax this assumption in Section 5.3. In this
case, the decision maker’s ex ante payoff is

∞∑
t=1

δt−1E [v(Ft+1)] .

21If the decision maker were to internalize the researchers’ cost as well, it would be more beneficial to
incentivize moonshots.
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Figure 9: Evolution of knowledge from t = 1 to t = 3 for different initial x̂’s. We assume
F1 = {(x0, y(x0))} (�). The dots show what questions have a known answer at each point in time t,
assuming that discovery has been successful in all periods through t. Apart from the initial discovery (•),
all question choices (◦) are optimal choices for identical researchers with cost parameter η = 1. The left
panel depicts an initial choice of x̂ = 3q; the right panel, a choice of x̂ = 6q.

The myopic benchmark for δ = 0 is given by Corollary 2 and implies x̂ = 3q. However,
if δ > 0, selecting x̂ > 3q has two effects on the expected payoff.

One effect comes from the cost function of future researchers. If x̂ > X̂, the next
researcher aims to deepen knowledge between x̂ and 0. Suppose x̂ is such that in t=2
the researcher prefers to research on a question x ∈ [0, x̂] with distance d2 to F2. That
researcher’s cost is determined by the variance σ(d2; x̂), which also depends on the choice
of x̂. A properly chosen moonshot x̂ > 3q reduces the cost to future generations of
researchers of connecting the initial body of knowledge with the moonshot compared to
the alternative of expanding knowledge. Hence, a well-designed moonshot induces higher
productivity in future periods.

A second effect comes from persistently shaping knowledge. After τ periods of making
discoveries, knowledge is sufficiently dense. All researchers from t = τ + 1 onward act to
expand knowledge by d∞. However, the knowledge created during these initial τ periods is
different with and without the initial moonshot x̂. Figure 9 compares a moonshot with a
no-moonshot scenario. We see that x̂ > 3q induces a more valuable landscape of knowledge
for the decision maker. The first two areas created to the right of 0 provide a higher value
of knowledge in the moonshot scenario (right panel) than the first two areas in the no
moonshot scenario (left panel).

Overall, an optimal moonshot can increase future output and novelty. The following
proposition shows that these benefits may outweigh the short-run cost of a too distant
discovery for a sufficiently patient decision maker, provided that the cost of research is in
an intermediate range.

Proposition 4. There is a non-empty range of cost parameters (η, η) such that the
decision maker strictly prefers a moonshot in t = 1 for any η ∈ (η, η) provided δ is larger
than the critical discount factor δ(η) < 1.

Proposition 4 states that moonshots are optimal if the decision maker is patient enough
and the researchers’ cost is not extreme. Figure 10 provides an illustration. If the cost is
low, the reasoning of the no-cost benchmark above applies. A moonshot has little benefits
because the cost does not distort the researchers’ decisions much. Yet the loss in benefits of
a suboptimal choice in the first period remains. If the cost is high instead, it is optimal for
future generations to limit the search to small intervals. The probability of any discovery
is low, and it is unlikely that future generations will eventually succeed in closing the gap
after a moonshot. In both cases, the decision maker’s optimal choice is the myopically
optimal x̂ = 3q.

For intermediate cost levels η, moonshots are beneficial. The positive externality
imposed on future researchers is significant, and research is generally productive. Future
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Figure 10: Moonshot of d = 6q versus the myopic optimum d = 3q for different parameters. The
left panel plots the difference between the first-period net present value of a 6q moonshot and that of the
myopic optimum d = 3q for different η’s. The discount factor is δ = 0.9. The moonshot is strictly preferred
for the interval [η, η] ≈ (0.01, 2.13).
The right panel plots the difference between the first-period net present value of a 6q moonshot and that
of the myopic optimum d = 3q for different δ’s. The cost parameter is η = 1. The moonshot is strictly
preferred for δ > δ ≈ 0.6.

generations benefit from the cost advantage and produce more valuable knowledge at a
higher success rate.

The length of the optimal moonshot depends on the cost parameter as well. If the
cost is low and the decision maker is patient, it might take several generations to close
the gap created by the optimal moonshot. The less patient the decision maker and the
more costly the research, the shorter the time required to close the gap. The effect of the
discount factor is as expected. The reason for the cost effect is that if the cost is high,
the chance that a researcher fails to obtain an answer increases. As a result, the effective
discount factor decreases. The decision maker prefers moonshots that entail less future
risk. Figure 11 shows the ex ante value of different moonshots to the decision maker for
two cost scenarios.

We want to stress that the value of a moonshot to the decision maker depends crucially
on existing knowledge. In particular, it depends on the density of existing knowledge. If
there are large areas available, researchers can close an already existing gap instead of
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Figure 11: Optimal moonshots. The figure plots first-period net present value against the initial choice
of moonshot. In the left panel, η = 1 and the optimal moonshot x̂∗ is between 5q and 6q. After the initial
moonshot, the researcher in t = 2 bridges the gap: She deepens knowledge by selecting x = x̂∗/2. In the
right panel, η = 0.1 and the optimal moonshot is between 8q and 9q. After the initial moonshot, it takes
two researchers to bridge that gap. In both figures, δ = 0.9.
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conducting a moonshot or expanding knowledge. As a result, the value of the moonshot
diminishes. The reason is straightforward. The point of a moonshot is to make a myopically
suboptimal discovery to guide future researchers, who will successively close the large
area opened by the moonshot. However, if there are already large areas given the existing
knowledge, it is attractive to close these gaps first and benefit immediately form closing
them. Creating another large area delays potential benefits and is thus less attractive. For
the same reasons, the decision maker may not push for moonshots in subsequent periods
even if she could. Instead, after one moonshot, she may delay the next moonshot until the
gap created by the first moonshot is closed.

5.3 Research Funding

Our previous discussion abstracted from any additional incentives provided to the re-
searchers. Instead, we focused on the effects that an exogenous moonshot has on the
evolution of knowledge. We now turn to the incentive provision problem. As our analysis
is—in part—motivated by the emphasis on scientific freedom, we assume that a funding
institution respects scientific freedom.22

We begin with a discussion of myopically optimal funding. After that, we turn to
forward-looking funding. Throughout, we consider a funding system with two instruments:
ex ante cost reductions (for example, through grants) and ex post rewards (for example,
through prizes). Cost reductions are reductions of the agent’s cost parameter η. In
particular, the agent’s initial cost parameter is η0 and a cost reduction of h leads to a
new cost parameter η = η0 − h. Rewards are an ex post utility transfer of ζ toward the
agent. We assume that rewards are provided for seminal contributions. The more difficult
and novel the problem, the larger the chance of receiving a reward. We proxy the ex post
relation by the function f(σFk) : R→ [0, 1]. It determines the probability of receiving a
reward. To keep the funding scheme as simple as possible, we assume a piecewise linear
relationship:

f(σ) =
{
σ2

s if σ2 < s

1 otherwise,

for some s ≥ 4q. That is, we assume that the marginal probability of obtaining the reward
is constant and positive in difficulty (in terms of variance) up to some level s. Beyond s
the marginal probability drops to 0.23 The parameter restriction on s is to simplify the
proofs only.

Further, we assume that the funder is budget constrained and cannot invest more than
K in the funding scheme. The relative price of cost reductions is κ such that the funder’s
budget constraint is

K = ζ + κh.

We assume that κ > K/η0 implying that the funder cannot eliminate the cost of research
entirely with her budget.

22The NIH, for example, awards most grants via investigator-initiated competitions without a specific
research topic suggested. For an empirical investigation of the effects of the alternative, “Request for
Applications” grants, on researchers’ choices, see Myers (2020). Azoulay, Graff Zivin, and Manso (2011)
show that long-term grants guaranteeing freedom of research impact researchers’ choices.

23In Appendix F, we discuss an alternative, non-linear reward technology, f(σ2) = 1−e−sσ
2
. Under that

assumption, the marginal probability is continuously decreasing. Our results do not change qualitatively,
yet we do not obtain a closed-form characterization of the feasible outcome set (see below).
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The Feasible Set. Based on this budget constraint, we determine the set of novelty
and output combinations the funder can implement with some funding scheme given the
parameters (K,κ, s, η0). The construction is based on the researcher’s optimal choice given
the funding mix (h, ζ), which is based on the solution to the researcher’s problem

max
d,ρ

ρ
(
V (d;∞) + σ2(d;∞)

s
ζ
)
− ηc̃(ρ)σ2(d;∞).

Because the funder is budget-constrained, any funding choice implies an output ρ < 1
bounded away from a guaranteed success. The funder therefore chooses her preferred
implementable combination (ρ, d) in the feasible set determined by the parameters (K,κ, s).

Definition 5. The research-possibility frontier d(ρ;K) describes the largest distance a
funder with budget K can implement for a given level of ρ.

Proposition 5. For any budget K < κη0, there is an s(K) < ∞ such that whenever
s > s(K), all funding schemes imply novelty d < s. Moreover,
if s > s(K). The set of implementable (d, ρ) combinations for a given cost ratio κ and

budget K is described by the research-possibility frontier d(ρ;K) defined over [ρ, ρ],
where ρ and ρ are the endogenous upper and lower bounds of ρ. These bounds are
determined by the extreme funding schemes (ζ = 0, η = η0 −K/κ) and (ζ = K, η =
η0). The research-possibility frontier is24

d(ρ;K) = 6q(K + s− κη0) ρc̃ρ(ρ)− c̃(ρ)
2sρc̃ρ(ρ)− sc̃(ρ)− κρ. (1)

if s < s(K). Whenever the researcher’s choice given (ζ, η) is such that d 6= s, then (1)
describes the relation between d(ρ). Moreover, there is a ξ > 0 such that d 6= s for
ζ < ξ.25

Myopic Funding. We now turn to the problem of myopic funding in period t = 1. We
assume that the funder wants to maximize ρV (x;F1). The first-best benchmark follows
directly from Corollary 2.

Corollary 6. A myopic and unconstrained funder optimally sets η = 0 and induces d = 3q
and ρ = 1.

As our funder is budget constrained she cannot eliminate the cost entirely and the
optimal myopic funding mix is non-trivial. We now describe the optimal funding scheme
of a funder that aims to maximize ρV (x;F1). We begin with a corollary to Proposition 5.

Corollary 7. A budget-constrained funder cannot implement her first best. Moreover, she
cannot implement d ≥ 3q with ζ = 0.

The corollary provides structure on the funder’s problem. The funds are insufficient to
eliminate the cost friction. Thus, the funder either implements novelty below the optimal
level or uses research prizes as an instrument. Which option the funder prefers depends
on the model parameters.

Inspection of equation (1) reveals that d(ρ) can be an increasing function, a decreasing
function or a non-monotone function. Thus, inducing more novelty may imply more or

24We define c̃ρ(ρ) := ∂c̃/∂ρ(ρ).
25If d=s, then ρ is the unique solution to V (s;∞)+ζ

ηs
= cρ(ρ).
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less output depending on parameters and the current level of novelty. The reason is
straightforward and follows the discussion on the researcher’s perspective in Section 4.
If the researcher’s benefits increase sufficiently in novelty, she is willing to increase her
research efforts significantly despite the cost—output increases. If these benefits do not
increase sufficiently, more novelty implies greater risk—output decreases.

By offering the researcher a ceteris paribus higher reward, the funder increases the
marginal benefits of research, thereby inducing greater complementarity between output
and novelty and thus inducing an increase in effort. However, there is a countervailing
force. The cost of increasing rewards is a higher cost parameter η, reducing incentives to
exert effort.

The optimal funding mix depends on parametric specifications. We conclude our
discussion on optimal myopic funding with a possibility result implied by the discussion
above.

Corollary 8. Myopic optimal funding can involve a combination of the two funding
instruments or a focus on either one. It can induce moderately excessive novelty d ∈ (3q, s).

Corollary 8 follows from Proposition 7 which we state and prove in Appendix E.
The left panel of Figure 12 provides an example in which the optimal myopic funding
scheme involves a combination of the two instruments and induces moderately excessive
novelty. On the research possibility frontier of Figure 12 (solid line) output and novelty
are complements for d ≤ 3.2q. The funder needs to increase distance d if she wants to
increases ρ. Dashed lines depict indifference curves, and the myopic payoff for a given ρ is
maximized at d = 3q by Corollary 2. However, around 3q, the funder’s problem is the
following. Should she increase novelty beyond the optimum to increase output? As we
can see in the left panel of Figure 12, moderate excessive knowledge is optimal in that
specification even under myopic preferences. The funder provides a funding mix of ex-ante
cost reductions and ex-post rewards to obtain it.

Forward-Looking Funding. We conclude this part by considering a forward-looking
funder. As we have seen in Section 5.2, incentivizing a moonshot in the first period can be
beneficial. However, in that part, we have ignored both the funds needed to incentivize
said moonshot and the risks involved.

Invoking Corollary 7, it is immediate that rewards are necessary to implement moon-
shots. However, a budget-constrained funder cannot guarantee a certain discovery and
must trade off the value of a successful moonshot against its (potentially) greater risk.

However, as indicated by Figure 10, the benefits of more novel research today are
non-monotone. That implies that—as in the static case—the funder’s indifference curves
are non-monotone as well. The dashed lines on the right panel of Figure 12 depict the
indifference curves of the forward-looking decision maker in the (d, ρ) space. Low levels
of novelty of period-1 discovery imply that researchers in period 2 will not choose to
deepen knowledge. There is no intertemporal externality. Only if the initial moonshot
is sufficiently novel this externality arises. The discontinuity in the funder’s indifference
curves occurs at the minimum level of knowledge that induces deepening knowledge of the
period-2 researcher. To the right of the discontinuity, the funder is willing to accept a lower
first-period output in return. The solid line depicts the same research possibility frontier
as in the left panel. We conclude with a simple corollary summarizing our discussion.

Corollary 9. If a moonshot is optimal, the optimal funding mix always includes strictly
positive rewards.
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Figure 12: Static vs Dynamic Optimal Funding. The solid line is the funder’s budget line. Dashed-line
depict the decision maker’s indifference curves if she is myopic (left panel) and forward looking with
discount factor δ = 0.9 (right panel). In both panels, K = 3, s = 6, q = 1, κ = 16 and η0 = 1. The funder’s
optimal choice (•) consists of a mix of ex-ante cost reductions and ex-post rewards, (ζ, h) > 0 in the left
panel and focuses exclusively on rewards in the right panel. The circle (◦) depicts the outcome if the
funder invest exclusively into rewards, ζ = K,h = 0; the square (�) the outcome if the funder invests
exclusively into cost reductions, ζ = 0, h = K/κ.

6 Final Remarks
We developed a tractable model of knowledge and research. The starting points of our
model are that (i) the pool of available research questions is large, (ii) questions in
close proximity to existing knowledge are easier to answer than questions that are far
from existing knowledge, and (iii) society applies knowledge when selecting policies. We
conceptualized research as the choice of a research question and the subsequent costly
search for an answer.

Our model endogenously links novelty and research output and highlights the impor-
tance of existing knowledge for research and knowledge accumulation. Novelty and output
can be substitutes or complements depending on the research area and the location of the
question therein. If research expands the frontier, greater novelty always entails greater
risk and thus lower output.

We show that the most valuable and productive research lies in research areas of
intermediate length. Discoveries that connect distant—yet not too distant—pieces of
knowledge substantially improve society’s decisions, and the researcher benefits from
relatively precise conjectures in the search for an answer.

We apply our baseline model to a classical question in the economics of science funding:
Should we use funds to incentivize more novelty in research? We show that it may
be beneficial for society to incentivize moonshots—highly novel discoveries with limited
immediate benefits. While suboptimal in the short run, moonshots guide future discoveries.
By incentivizing moonshots, the funder allows the evolution of knowledge to benefit from a
dynamic externality: the effect of discoveries on future generations of researchers. Properly
chosen moonshots increase both the research productivity and the value of knowledge
generated in future periods. We derive the funder’s feasible set and discuss the role of a
funding mix between rewards and cost-reductions for optimal funding.

Our results are in line with recent empirical work—for example, Rzhetsky et al.
(2015)—that analyze the impact of scientific findings on future scientific developments.
They suggest that scientists choose a dynamically suboptimal strategy when selecting
their research questions. Rzhetsky et al. (2015) identify researcher myopia as one of the
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drivers of that finding. While our model is consistent with this sentiment, we also raise a
note of caution. Whether incentivizing moonshots is beneficial depends crucially on the
current state of knowledge. Moonshots should be chosen carefully, as too much novelty
can hurt the evolution of knowledge.

We began our paper by emphasizing the role of scientific freedom. Preserving that
freedom remains a challenging task for science-funding institutions when society designs a
funding architecture (see, for example, Bourguignon, 2019). The NSF emphasizes that it
aims at funding high-risk/high-reward research to advance the knowledge frontier. Our
findings in Section 5 illustrate a particular trade-off that funding institutions face in that
context. Several known frictions absent in our model hinder efficient funding in reality.
These range from publication bias (Andrews and Kasy, 2019), to the emphasis on priority
(Bobtcheff, Bolte, and Mariotti, 2017; Hill and Stein, 2020, 2021), to career concerns
(Akerlof and Michaillat, 2018; Heckman and Moktan, 2020). While the question of optimal
market design is beyond the scope of this paper, our framework is flexible enough to
incorporate these frictions straightforwardly. It may thus be a stepping stone toward
developing structural models of science funding that focus on these issues. Such models
could be useful for evaluating funding schemes and could provide meaningful counterfactuals
to inform decision makers about the optimal provision of research incentives.

Appendix
A Notation and Properties of c̃
Notation: We use argument subscripts to denote the partial derivatives with respect to
the argument. We omit function arguments whenever it is convenient and does not cost
clarity. We use the notation df(x,y)

dx to indicate the total derivative (fx + fyyx).

Properties of c̃. Some proofs rely on the properties of the inverse error function or
more specifically on the representation c̃(ρ) = (erf−1(ρ))2. The function c̃(ρ) is convex
and increasing on [0, 1) with c̃(0) = 0 and limρ→1 c̃(ρ) =∞.26 The derivative

c̃ρ(ρ) =
√
πerf−1(ρ)ec̃(ρ)

is increasing and convex with the same limits.
We make use of the fact that, for ρ ∈ (0, 1), c̃(ρ) has a convex and increasing elasticity

bounded below by 2 and unbounded above. Its derivative c̃ρ(ρ) has an increasing elasticity
bounded below by 1 and unbounded above. We want to emphasize that these properties
are not special to our quadratic cost assumption. To the contrary, erf−1(x)k for any k ≥ 2
admits similar properties with only the lower bounds changing. Formally, the following

26Due to this limit and the researcher’s ability to choose ρ = 1, we augment the support of the cost
function to include ρ = 1 with c̃(1) =∞. However, the optimal ρ is always strictly interior unless the cost
parameter η is chosen to be zero in which case we assume that ηc̃(ρ = 1) = 0.
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properties are invoked in the proofs:

ρ
c̃ρ(ρ)
c̃(ρ) ∈ (2,∞) and increasing,

ρ
c̃ρρ(ρ)
c̃ρ(ρ) ∈ (1,∞) and increasing,

ρc̃ρ(ρ)− c̃(ρ) ∈ (0,∞) and increasing,

c̃−1
ρ (x) = erf

√W (2x2/π)
2

 .
with W (·) the principal branch of the Lambert W function. We prove the properties that
do not directly follow from the definition of the inverse of the error function in Appendix H.

B Proofs
At various points we make use of inequality relations the proof of which we relegate to
Appendix H. In each of these cases, proving the inequalities is done via straightforward
algebra that produces little additional insight.

B.1 Proof of Proposition 1

Proof. The value of knowing Fk is∫ ∞
−∞

max
{
q − σ2

x(y|Fk)
q

, 0
}

dx.

No matter which point of knowledge (x, y(x)) is added to Fk, the value of knowledge
outside the frontier is identical for both Fk and Fk∪ (x, y(x)). Area lengths X1 = Xk =∞
do not depend on Fk and neither does the variance for a question x < x1 or x > xk with
a given distance d to Fk. The conjectures about all questions outside [x1, xk] deliver a
total value of

2
∫ q

0

q − x
q

dx = q,

which is independent of Fk.
Moreover, if the answer to a question x̂, deepens knowledge, that is, x̂ ∈ [xi, xi+1]

with (xi, y(xi)), (xi+1, y(xi+1)) ∈ Fk, it only affects questions in the area [xi, xi+1], i.e.,
G(x|Fk) = G(x|Fk ∪ (x̂, y(x̂)) ∀ x /∈ (xi, xi+1).

To simplify notation, let us consider the points in terms of distance to the lower bound
of the area with X, d ≡ x− xi.

The value of a given area [xi, xi+1] is (with abuse of notation)

v(X) =
∫ X

0
max

{
q − d(X−d)

X

q
, 0
}

dd.

Note that whenever X ≤ 4q, d(X−d)
X ≤ q. Hence, we can directly compute the value of any
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area with length X ≤ 4q as

v(X) = X − X2

6q .

Whenever X > 4q, value is only generated on a subset of points in the area. As the
variance is a symmetric quadratic function with X/2 as midpoint, there is a symmetric
area centered around X/2 which has a variance exceeding q. The points with variance
equal to q are given by d1,2 = X

2 ±
1
2
√
X
√
X − 4q. On all such points the decision makers

losses are limited to 0. Hence, the value of an area with X > 4q is (due to symmetry)

v(X) = 2
∫ d1

0

q − d(X−d)
X

q
dd

= X − X2

6q + X − 4q
6q

√
X
√
X − 4q.

If knowledge expands beyond the frontier, a new area is created and no area is replaced.
The value created is thus

V (d;∞) = v(d) = d− d2

6q +
{

0, if d ≤ 4q
d−4q

6q
√
d
√
d− 4q, if d > 4q.

If a knowledge point is added inside an area with length X with distance d to the
closest existing knowledge, it generates two new areas with length d and X−d that replace
the old area with length X. The total value of the two intervals new is

v(d) + v(X − d) = d− d2

6q+
{

0, if d ≤ 4q
d−4q

6q
√
d
√
d− 4q, if d > 4q

+X − d− (X − d)2

6q )+
{

0, if X − d ≤ 4q
X−d−4q

6q
√
X − d

√
X − d− 4q, if X − d > 4q

.

The benefit of discovery is then V (d;X) = v(d) + v(X−d) − v(X). Noticing that
σ2(d;X) = d(X−d)/X and replacing accordingly results in the expression from the
proposition follow. Taking the limit of X → ∞ corresponds to the value of expanding
research beyond the frontier.

B.2 Proof of Corollary 2

Proof. The first-order condition for d ≤ 4q is

∂V (d;∞|d ≤ 4q)
∂d

= 1− d

3q = 0.

Moreover, the benefit is decreasing in d for d > 4q which can be seen from the derivative
with respect to d which is

∂V (d;∞|d > 4q)
∂d

= − d

3q + 1 +
√
d− 4q
d

d− q
3q < 0.

The inequality holds by Lemma 23 in Appendix H.
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B.3 Proof of Corollary 3

We prove Corollary 3 via a series of lemmata.
• Lemmata 1 and 2 shows that the distance that maximizes deepening knowledge is
d0(X) = X/2 for small X and d0(X) < X/2 for large X.

• Lemma 3 shows that d0(X) < X/2 implies decreasing benefits in X.
• Lemma 4 shows that once d0(X) < X/2 for some X it is true for all X ′ > X and

thus establishes X̃.
• Lemma 5 shows our convergence and d0(X > 6q) > 3q.
• Lemmata 6 and 7 establishes single peakedness and determine qX0 and X̂0.
• Lemma 8 determines the order of the cutoffs.
Throughout, we refer to the distance d that maximizes V (d;X) as d0(X). Recall that

d ≤ X/2.

Proof.

Lemma 1. d0(X) = X/2 if X ≤ 6q.

Proof.
1. Assume X ≤ 4q.

The benefits of discovery are

V (d;X|X ≤ 4q) = 1
3q (Xd− d2)

which is increasing in d for d ∈ [0, X/2] and hence maximized at d = X/2. Moreover,
V (X/2;X|X ≤ 4q) = X2/(12q) which is increasing in X.
2. Assume X ∈ (4q, 6q].

(i) d ≥ X − 4q implies (since d ≤ 3q)

V (d;X|d ≥ X − 4q,X ∈ (4q, 6q])) = 1
6q
(
2dX − 2d2 −

√
X(X − 4q)3/2

)
which is the same as in the first case up to constant −

√
X(X − 4q)3/2. Thus, the optimal

d conditional on d ≥ X − 4q is d = X/2.
(ii) For d ≤ X − 4q the benefit becomes

V (d;X|d ≤ X − 4q,X ∈ (4q, 6q])) =
1
6q
(
2dX − 2d2 +

√
X − d(X − d− 4q)3/2 −

√
X(X − 4q)3/2

)
,

with derivative

Vd = 1
3q

X − 2d− (X − d− q)
√
X − d− 4q
X − d


which is positive for d ≤ X − 4q,X ∈ (4q, 6q] by Lemma 24 from Appendix H. Hence,

Vd(d;X|d ≤ X − 4q,X ∈ [4q, 6q]) > 0 for all d and X in the considered domain. Thus,
d = X − 4q maximizes V (d;X|d ≤ X − 4q,X ∈ (4q, 6q])) and hence d = X/2 maximizes
V (d;X|X ∈ (4q, 6q]).

Lemma 2. If X > 8q then d0(X) 6= X/2. If d0(X) 6= X/2, then d0(X) ≤ 4q.
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Proof. Take d = 4q < X/2. That implies

V (d;X|X > 8q) = 1
6q

(
8Xq − 32q2 −

√
X(X − 4q)3/2 +

√
(X − 4q)(X − 8q)3/2

)
.

By comparison

V (X/2;X|X > 8q) = 1
6q

(
X2

2 −
√
X(X − 4q)3/2 + 1

2
√
X(X − 8q)3/2

)

The difference of the two is thus

V (d;X|·)− V (X/2;X|·)

= 1
6q
(√

X − 4q(X − 8q)3/2 −
√
X

2 (X − 8q)3/2 − (X − 8q)2

2
)

= 1
6q

(X − 8q)3/2

2
(
2
√
X − 4q −

√
X −

√
(X − 8q)

)
,

which is positive if
4(X − 4q) > 2X − 8q ⇔ X > 4q

and holds by assumption.
To establish the second part of the lemma, note that d > 4q can only occur for X > 8q.

We will show that Vd(d;X) < 0 for all d > 4q when X > 8q. Towards this, observe that

VddX(d;X) = − 24q3

(X − d) 5
2 (X − d− 4q) 3

2
< 0.

Thus, the Vdd(d;X) is lowest for X →∞ which is

Vdd(d;X)|limX→∞ = 2d
2 − d

3
2
√
d− 4q − 2q(d+ q)
d

3
2
√
d− 4q

> 0.

Thus, Vd(d;X) is highest for d = X
2 which is

Vd(d;X)|d=X/2 = 0.

Hence, V (d;X) is decreasing in d for X > 8q and d > 4q. The optimal distance cannot be
larger than 4q.

Lemma 3. d0(X) < X/2 ⇒ dV (d0(X);X)
dX < 0.

Proof. By the envelope theorem,

dV (d0(X);X)
dX

= VX(d0(X);X).

This derivative is negative for X ≥ 4q and for all d ∈ [0, X − 4q] by Lemma 25 in
Appendix H. If X ≥ 8q, that claim is sufficient. By Lemma 1 we know that X ≥ 6q
whenever d0(X) 6= X/2. In 2.(i) in the proof of Lemma 25, page S.14, we show that Vd > 0
for d ∈ [X − 4q,X/2) if X ≤ 8q. Hence, if d0(X) 6= X/2, then d0(X) ≤ X − 4q and the
inequality proved in Lemma 25 proves Lemma 3.
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Lemma 4. d0(X) < X/2 for some X ∈ [6q, 8q) ⇒ d0(X) < X/2 for all X ′ > X.

Proof. It suffices to consider X ′ < 8q by Lemma 2. We prove the claim by showing
that V (d0

c(X);X) for any interior critical point d0
c(X) < X/2 cuts V (X/2;X) from below

at any potential intersection. Thus, there is at most one switch from d0(X) = X/2 to
d0(X) < X/2 and no switch back. Continuity then implies the statement.

V (d;X) is a continuously differentiable function in X and d. Thus, any interior (local)
optimum d0

c(X) is continuous as well and so are V (d0
c(X);X) and V (X/2;X). We now

show that if V (d0
c(X);X) = V (X/2;X) for some local optimum d0

c(X) < X/2 and X ∈
[6q, 8q], then dV (d0

c(X);X)/dX > dV (X/2;X)/dX. Note that dV (d0
c(X), X)/dX < 0 by

Lemma 3. The first intersection therefore can occur only in a region when V (X/2, X) is
decreasing and must be such that dV (X/2, X)/dX < dV (d0

c(X), X)/dX. We prove that
this is the only potential intersection in Lemma 26 in Appendix H where we show that
d2V (X/2, X)/(dX)2 < 0 and d2V (d0

c(X), X)/(dX)2 > 0.

Lemma 5. V (d0(X);X) is continuous in X. As X → ∞, it converges uniformly to
V (d;X) and d0(X)→ d0(∞). For any X > 6q we have d0(X) > 3q and V (d0(X), X) >
V (3q,∞).

Proof. Continuity follows because V (d0(X);X) = maxd V (d;X) with V (d;X) continuous
in both d ∈ [0, X/2] and X. Now take any sequence of increasing Xn with limn→∞Xn =∞.
For any δ(d), ∃n such that Vn(d;Xn)−V (d;∞) < δ(d) as can be seen from the formulation
in the proof of Proposition 1. Hence, V (d;Xn) converges uniformly to V (d;∞). By
uniform convergence the maximizer d0(Xn) of V (d;Xn) converges too. To see convergence
from above, observe that V (3q;X) > V (3q;∞) for any 6q < X <∞.

Finally, from Corollary 2 and the proof of Proposition 1 we know that V (d;∞) describes
the value of an area of length d. That value is increasing for d < 3q and decreasing for
d > 3q. Now suppose X > 6q and d0(X) < 3q. Then by increasing d both areas created
become closer to 3q and are thus increasing in value. A contradiction to d0(X) being the
maximizer.

Lemma 6. V (d0(X);X) is single peaked with an interior peak at qX0 ≈ 6.204q with
d0( qX0) ≈ 3.102q.

Proof. Lemma 6 follows from continuity of V (X/2;X) (by Lemma 5) and Lemmata 1 to 4.
The peak can be computed. It is the (real) solution to

X

X − q
= 2
√
X − 4q√
X

. (2)

Defining m := X
q and the above reduces to

m

m− 1 = 2

√
(m− 4)
m

.

For m > 4, the LHS decreases and the RHS increases in m. The solution is:

m = 2
3
(
4 + (19− 3

√
2)(1/3) + (19 + 3

√
2)(1/3)

)
≈ 6.204.

Lemma 7. Expanding knowledge trumps deepening knowledge if and only if X < X̂0 ≈
4.338q.
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Proof. V (3q;X) > V (3q;∞) for X ≥ 6q by direct comparison at X = 6q and Lemmata 3,
5 and 6. For X ∈ [0, 6q] we need to consider only d0(X) = X/2 by Lemma 1. We compare

V (X/2;X) = X2

12q −
√
X(X − 4q)3/2

6q

with V (3q;∞) = 3q
2 . Defining ` := X

q , the two intersect at(
`2

12 −
√
`

6 (`− 4)(3/2) − 3/2
)

= 0

which has one solution such that ` ≤ 6 at ` ≈ 4.338.

Lemma 8. 4q < X̂0 < 6q < qX0 < X̃0 < 8q.

Proof. The first two inequalities follow from Lemma 7, the third from Lemma 6. Existence
of X̃0 and the fourth inequality follow from Lemma 4. Lemma 2 implies the last inequality.

B.4 Proof of Proposition 2

The proof contains several steps and we break it into parts. Part 0 provides preliminary
observations used in the following steps. Part 1 proves the results for expanding knowledge.
Part 2 proves the results for deepening knowledge.

Throughout, we make use of the first-order necessary conditions for an interior solution
which we show are sufficient to characterize the researcher’s optimal choice when we use
them:

ηc̃ρ(ρ) = V (d;X)
σ2(d;X) , (FOCρ)

ρVd(d;X) = ηc̃(ρ)σ2
d(d;X). (FOCd)

Proof.

Part 0: Preliminaries. We begin by showing that an interior choice of (d, ρ) is optimal
and that the relation of d and ρ depends on the ratio of the benefit of discoveries and the
variance of the conjecture.

Lemma 9. There is a non-trivial optimal choice with ∞ > d > 0, 1 > ρ > 0 on any
interval with positive length, X ∈ R+ ∪∞. Solving the first-order condition is a necessary
for optimality of ρ(X).

Proof. The researcher can always guarantee a non-negative payoff by choosing either d = 0
or ρ = 0. Hence, her value is bounded from below, UR(X) ≡ maxd,ρ uR(d, ρ;X) ≥ 0.
Next, note that uR(ρ = 0, d > ε;X) = 0 for some small ε > 0 and that ∂uR(ρ=0,d>ε;X)

∂ρ =
V (ε,X) > 0 by Proposition 1. Therefore, on any interval X there is a maximum with
d > 0, ρ > 0.

Moreover, by Corollary 3 the value of knowledge is bounded V (d,X) ≤M <∞ and
lim
ρ→1

c̃(ρ) = ∞. Therefore, the optimal ρ < 1. Finally, V (d,∞) is decreasing in d for d

36



large enough while the cost ηc̃(ρ)σ2(d,∞) is increasing in d. Hence, the optimal distance
is bounded d ≤ D <∞.

It follows from Lemma 9 and continuous differentiability of the objective that a
necessary condition for the optimal ρ(X) is that it solves (FOCρ). Note that for the
distance, d(X), this result is not immediate as for deepening intervals the distance has an
exogenous upper bound at X/2.

To determine whether d and ρ are substitutes, we make use of the previous lemma;
in particular, of the first-order necessary condition for an optimal ρ(X). The left-hand
side of the first order condition (FOCρ) is increasing in ρ for any ρ and independent of d.
Thus, we only need to derive under which conditions the right-hand side of this equation
is increasing or decreasing. When the right-hand side is increasing (decresing) in d, ρ and
d are complements (substitutes).

Part 1. Expanding knowledge.

Step 1. Proof of Item 1 i.).
When expanding knowledge, the ratio of benefit of discovery and variance of the

conjecture is

V (d;X)
σ2(d;X) = 1

6q

(
6q − d+ 1d>4q

(d− 4q)3/2
√
d

)

which has derivative

1
6q

(
−1 + 1d>4q

(d+ 2q)
√
d− 4q

d3/2

)
< 0.

Thus, output and novelty are substitutes in the expanding area.

Step 2. Proof of Item 1 ii.).
Next, we characterize the optimal choice when expanding knowledge.

Lemma 10. When expanding knowledge, the optimal choice is characterized by the first-
order conditions (FOCs). The FOCs are sufficient and the optimal d∞ ∈ (2q, 3q). The
researcher’s value is strictly positive UR(X =∞) > 0.

Proof. We proceed in three steps. First, we show that the distance is at most 3q. Second,
we show that the first-order conditions are sufficient when expanding knowledge. Third,
we characterize the optimal choice of the researcher.

Step 2.1. d ≤ 3q. Fix any ρ ≥ 0. Since σ2(d;∞) is increasing in d, it is immediate
that the researcher’s utility is non-increasing in d if V (d;∞) is decreasing in d. Combining
this observation with Corollary 2, it is sufficient to restrict attention to d ≤ 3q.

Step 2.2. FOCs sufficient. By Lemma 9, the researcher’s optimal choice is interior and,
hence, characterized by the first-order conditions. To see the sufficiency of the first-order
conditions, note that the first principal minor of Hessian is ρVdd − ηcσ2

dd = −ρ 1
3q < 0 as

σ2
dd = 0 and that the second principal minor is given by the determinant of the Hessian at

the critical point:

− ρVdd(d;∞)ηc̃ρρ(ρ)σ2(d;∞)− (Vd − ηc̃ρ(ρ)σ2
d(d;∞))2
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=ρ 1
3q ηc̃ρρ(ρ)d−

(
− d

3q + 1− ηc̃ρ(ρ)
)2

(3)

=ρc̃ρρ(ρ)
c̃ρ(ρ)

V (d;∞)
3q −

(
− d

3q + 1− V (d;∞)
σ2(d;∞)

)2
.

The first equality follows from Vdd = − 1
3q and σ2(d;∞) = d. The second equality

follows from combining σ2(d;∞) = d with the first-order condition (FOCρ) from above
via ησ2(d;∞) = V (d;∞)

c̃ρ(ρ) and replacing accordingly.
Substituting for V (d;∞) = d − d2/(6q) (as we restrict attention d ≤ 3q because of

Step 2.1.) yields the following condition for a positive second principal minor:

0 < ρ
c̃ρρ(ρ)
c̃ρ(ρ)

V (d;∞)
3q −

(
− d

3q + 1− V (d;∞)
σ2(d;∞)

)2

⇔ ρ
c̃ρρ(ρ)
c̃ρ(ρ) >

− d

3q + 1−
−d2

6q + d

d

2
3q

−d2

6q + d

⇔ ρ
c̃ρρ(ρ)
c̃ρ(ρ) >

d

2(6q − d) .

The inequality in the last line holds because the properties of c̃(ρ) imply LHS ≥ 1 while
RHS ≤ 1

2 for d ≤ 3q.
Step 2.3. Characterization. Substituting the expressions for V (d;∞) and σ2(d;∞) for

expanding knowledge into the first-order condition (FOCd) yields

ρ

(
1− d

3q

)
= ηc̃(ρ). (4)

Replacing η via equation (FOCρ) and solving for d we obtain

d∞ = 3q
(

1− c̃(ρ)
2c̃ρ(ρ)ρ− c̃(ρ)

)
∈ (2q, 3q)

where the bounds follow from the properties of c̃.

Part 2. Proof for deepening knowledge.

Step 1. Proof of Item 2 i.).27 We prove the result for the different regions separately. In
particular, we distinguish between different area lengths X and different distances d.

Step 1.1. X < 4q. Consider deepening knowledge when X < 4q. In this case,

V (d;X)
σ2(d;X) = 2X

6q .

Thus, output and novelty are independent in short research areas.
Step 1.2. X ∈ (4q, 8q).

Step 1.2.(i). d < 4q, and X − d > 4q. In this case,

V (d;X)
σ2(d;X) = 1

6q

(
2X −

√
X(X − 4q)3/2

σ2(d;X) +
√
X − d(X − d− 4q)3/2

σ2(d;X)

)
27A Mathematica file verifying the computations is available from the authors.
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with derivative

1
6q
σ2
d(d;X)
σ4(d;X)

(
√
X(X − 4q)3/2 −

√
X − d(X − d− 4q)3/2 − 2σ2(d;X)(X − d− q)

√
X − d− 4q√

X − d

)
.

Note that evaluated at the limit d→ 0 and d = X − 4q, this derivative is

∂

∂d

(
V (d;X)
σ2(d;X)

)∣∣∣∣
limd→0

= −X
2 − 8qX + 10q2

6qX3/2√X − 4q
∂

∂d

(
V (d;X)
σ2(d;X)

)∣∣∣∣
d=X−4q

= X3/2 X − 8q
96q3√X − 4q > 0.

Thus, for d→ X − 4q, output and novelty are always complements. However, for limd→0,
the derivative is positive (negative) if X < (>)(4 +

√
6)q.

It remains to show that the derivative has one root for X ∈ [(4 +
√

6)q, 8q] and no root
for X < (4 +

√
6)q for the result to follow.

To see that this is indeed the case, solve for the root of the derivative of the ratio to
obtain

d̂± = 2
X − 6q

(X2 − 6qX + 6q2)± (X − 2q)

√
18q2 − 8qX +X2

2

 . (5)

Note first that d̂+ > X
2 . Thus, the only feasible root is d̂−. However, d̂− ∈ [0, X − 4q] only

for X > (4 +
√

6)q.
Step 1.2.(ii). d < 4q and X − d < 4q. In this case,

V (d;X)
σ2(d;X) = 1

6q

(
2X −

√
X(X − 4q)3/2

σ2(d;X)

)

with derivative

σ2
d(d;X)

√
X(X − 4q)3/2

σ4(d;X) > 0.

Thus, output and novelty are complements.
Summary Step 1.2. For X ∈ (4q, 8q) output and novelty are substitutes for small d

when X > (4 +
√

6)q and complements for large d. They are complements throughout
when X < (4 +

√
6)q.

Step 1.3. X > 8q.
Step 1.3.(i). d < 4q. This case is analogous to the case of Step 1.2.(i) because for

all X > 8q and for all d < X/2, X − d > 4q.28 However, the root from Equation (5)
d̂− > 4q. Thus, output and novelty are substitutes.

Step 1.3.(ii). d > 4q. Note that in this case, Vd(d;X) < 0. Thus, the ratio is
decreasing for all d > 4q when X > 8q as the variance is always increasing in d.
Step 2. Proof of Item 2 ii.).

The following lemma which we also prove in steps implies the result.
28Note that whenever X − d < 4q, d > 4q and a simple relabeling of d and X − d brings us back to the

discussed case.
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Lemma 11. The researcher’s optimal choice of distance is on the midpoint of the area,
d = X

2 , for X ≤ X̃ and interior, d < X
2 . At X̃, payoff UR(X) is decreasing. Further,

lim
X→∞

d(X) = d∞ from above. Any optimal distance satisfies d ≤ 4q.

Proof. Define db := X/2 which we refer to as the boundary solution, and di as the solution
d to (FOCd) assuming d < X/2 (if that exists) which we refer to as the interior solution.

Step 2.1. db always a candidate solution. Note first that the choice db always constitutes
a local maximum as the marginal cost of distance is zero at this point, ∂σ

2(d,X)
∂d = 1− 2d

X .
Moreover, we see in the proof of Corollary 3 that also the marginal benefit is zero at
d = X/2. Finally, for any choice of d, there is a unique ρ that solves (FOCρ) because
(FOCρ) given d, has a continuous, strictly increasing, left-hand side that starts at c̃ρ(0) = 0,
has limit limρ→1 c̃ρ(ρ) = ∞ and has a constant right-hand side. Hence, the boundary
solution with db is always a candidate solution.

Step 2.2. d(X) = X/2 if X ≤ 4q. Recall the first-order conditions (FOCρ) and (FOCd).
Assuming an interior solution di, replacing η via (FOCρ) in (FOCd) we obtain for (FOCd)

Vd(d,X)
σ2
d
(d,X)

V (d,X)
σ2(d,X)

=
c̃(ρ)
ρ

c̃ρ(ρ) .

It follows from the properties of c̃(ρ) that the RHS ∈ [0, 1/2] and decreasing. Thus, if the
LHS > 1/2 for all ρ, it is beneficial to increase d if possible and the boundary choice db is
optimal. For X ≤ 4q

Vd
σ2
d

V
σ2

=
2(X−2d)
X−2d
X

2(dX−d2)
d(X−d)
X

= 1.

Hence, for small areas, the boundary choice is indeed optimal.
Step 2.3. d(X) < X/2 if X > 8q. Note first that the variance of the question on the

boundary is always larger than for any interior question as σ2 = d(X−d)
X is increasing in d.

Hence, if the benefit of research V is larger for an interior question than for the boundary
question, the researcher can obtain a higher payoff by choosing an interior question with
the same ρ as for the boundary question: the cost are lower, the success probability is
the same, and the benefit upon success are higher. The benefit of finding an answer on
the boundary of an area with X > 8q is always smaller than for some interior distance by
Lemma 2 from the proof of Corollary 3. Hence, an interior choice is optimal for X > 8q.

Step 2.4. We prove the following (sub-)lemma.

Lemma 12. If di is optimal it must be that di < 4q and that X − di > 4q.

Proof. For X ∈ (4q, 8q) and X − d < 4q,

Vd(d,X)
σ2
d
(d,X)

V (d,X)
σ2(d,X)

= 2d(X − d)
−2d2 + 2dX −

√
X(X − 4q)3/2

which is decreasing in d with limit

lim
d→X/2

2d(X − d)
−2d2 + 2dX −

√
X(X − 4q)3/2

= X2/2
X2/2−

√
X(X − 4q)3/2
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which, in turn, is increasing in X and 1 for X = 4q. Hence, any interior solution must be
such that X − d > 4q by the same logic as in Step 1.2. For X − d < 4q, the first-order
condition with respect to d is always positive. For any area with X > 8q, X − di > 4q.
That di < 4q follows from the benefit of a discovery being decreasing in d whenever d > 4q
(see Corollary 3).

Summary Step 2.1-2.4. We know that (i) in areas with X < 4q, the researcher’s
distance choice on the deepening area will be db, (ii) in areas with X > 8q the researcher’s
distance choice will be di, (iii) in areas with X ∈ [4q, 8q] the researcher’s distance choice
may di or db, but (iv) if the solution is di, it has to satisfy X − d > 4q and d < 4q.29

Step 2.5. Single crossing of the payoffs. Next, we show that the payoffs, UR(db;X) and
(UR(di;X) cross only once assuming ρ(d,X) is chosen optimally. We use three observations
to show this.

1. First, at area length X for which UR(db;X) = UR(di;X), the payoff at the boundary
solution must be decreasing faster than the payoff at the interior solution.

2. Second, on the interval [4q, 8q] the payoff of the boundary solution, UR(bd;X) has a
strictly lower second derivative with respect to X for all X than that of the interior
solution UR(di;X). Hence, the two values can cross at most once on this interval.

3. Third, UR(db;X) ≤ UR(di;X) if X ≥ 8q.
The first observation follows because the first switch is from the boundary solution to

the interior solution by continuous differentiability of all terms and the observation from
above that d(X) = X/2 for X < 4q. The third observation is shown in Step 2.3 above.

The second observation follows from totally differentiating UR for the two types of local
maxima. Using envelope conditions, we obtain that the payoff is concave in the boundary
solution and convex in the interior solution which implies the second observation. Define
ϕ(X) := maxρ u(d = X/2, ρ,X) for the boundary; we show in Lemma 27 in Appendix H
that ϕ(X) is concave. In Lemma 28 in Appendix H we show that UR(X) = maxρ,d u(d, ρ,X)
is convex in X provided that the maximizer d(X) < X/2. The result follows.

Step 2.6. Asymptotics. It remains to show the asymptotics. As X → ∞, V (d,X)
converges to V (d,∞) and σ2(d,X) to σ2(d,∞) and the researcher’s optimization on the
deepening interval converges to the optimization on the expanding interval which has a
unique and interior maximum at (d∞, ρ∞). In particular, if such an interior optimum
exists, the envelope condition implies that

dUR(di(X);X)
dX = ρVX(di, X)− ηc̃(ρ)σ2

X(di, X) < 0

as VX(d,X) < 0 according to Corollary 3 for X > 4q and X − d > 4q and σ2
X(d,X) > 0.

Hence, the payoff of any optimal interior choice is decreasing in X.

B.5 Proof of Proposition 3

We prove the statements in Proposition 3 in reverse order. Some parts rely on the lemmata
from the proof of Propositions 1 and 2.

Proof.
29From Lemmata 2, 4 and 5 any interior choice that maximizes V (ignoring cost) satisfies X − d > 4q

and d < 4q.
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Step 1: Proof of Item 3. We use a series of lemmata to show that a local maximum,
qX, exists (Lemmata 13 and 14) and that it is global (Lemma 15).

Lemma 13. Fix d = X/2 and assume that an interior optimum exists. Then UR(X|d =
X/2) is maximal only if the total differential dV (d=X/2;X)

dX ≥ 0.

Proof. Under the assumption that d = X/2, UR(X) is defined and continuously differ-
entiable for all X ∈ [0,∞) despite the indicator functions.30 Because X = 0 implies
UR(X = 0) = 0, because UR(X) declines for X large enough and because Lemma 9 holds,
there is an interior X at which UR(X) is maximized.

Then, because UR(X) is maximal for some interior X and differentiable, it needs to
satisfy

∂UR
∂X

= 0.

By assumption, we have d( qX) = X/2 and the first order condition with respect to ρ holds.
Thus,

ρ
dV (d = X/2;X)

dX = η

4 c̃(ρ).

The right-hand side is non-negative, which implies the desired result.31

Lemma 14. The value of the deepening boundary solution UR(d ≡ X
2 ;X) peaks in X at

qX ∈ (4q, qX0].

Proof. Note that U ′R(d = X/2;X) > 0 for X ∈ [0, 4q]. This follows because in this case
UR(d = X/2, X) = ρX

2

12q − ηc̃(ρ)
X
4 and, hence, U ′R(d ≡ X/2, X) = ρX6q − ηc̃(ρ)

1
4 . Using

optimality of ρ via the (FOCρ),

X

3q = ηc̃ρ(ρ)⇒ X

6q = ηc̃ρ(ρ)
2

which yields

U ′R(X) =ρηc̃ρ(ρ)
2 − ηc̃(ρ)1

4

= c̃ρ(ρ)
4 ρη

(
2− c̃(ρ)

ρc̃ρ(ρ)

)
> 0

where the inequality follows again from the properties of c̃(ρ).
Moreover, UR(X) is strictly concave on [4q, 8q] as V (d = X/2, X) is concave on this

interval (see the proof of Corollary 3) and σ2
XX(d = X/2, X) = 0 implying32

U ′′R(X) = ρ
ddV (d = X/2;X)

dXdX < 0.

30Note that the terms appearing in the indicator functions are of the form
√
a(a− 4q)3/2. Taking the

limit of their derivative from above to 4q yields zero such that the left and right derivative coincide at the
point at which the indicator functions become active.

31The RHS is only 0 if η = 0, ρ(X) = 1 and UR(X) = V (X).
32Note that we totally differentiate the value twice and all ρ′(X) and ρ′′(X) terms drop out by optimality

of ρ by applying the first-order condition directly and total differentiation of the first-order condition.
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For X > qX0, dV (d=X/2;X)
dX < 0 by the definition of qX0 implying that for X > qX0 the

researcher’s value is decreasing. By Lemma 13, it follows that the value-maximizing area
length qX ∈ (4q, qX0].

Lemma 15. The researcher’s payoff UR(X) is single-peaked in X with the maximum
attained at qX.

Proof. The result follows from 3 observations: First, X̃ > qX > 4q by Lemmata 11 and 14.
Second, VX(d;X) < 0 ifX > 4q and d < X/2 by Lemma 3. Third, by the envelope theorem,
if d(X) < X/2 it holds that ∂UR(X)/∂X = ρ(X)VX(d(X);X)− ηc̃(ρ(X))σX(d(X);X) <
ρ(X)VX(d(X);X). Thus, the payoff of the interior solution cuts the payoff of the boundary
solution from below at an area where both payoffs are decreasing. The single peak is at
qX.

Step 2. Proof of Item 2.
Step 2.1 Maximum of d(X) at X̃. By Lemma 11, d(X) is increasing for X < X̃. By
Lemma 12, we know that any interior solution di is such that di < 4q < X − di and thus
strictly smaller than X/2. Thus, d(X) decreases when it switches from the boundary to
interior solution. Thus, d(X̃) is a maximum.
Step 2.2 Maximum of ρ(X) at Ẋ. We guess (and verify in step 4. below) that a maximum
of ρ(X) exists in the range [X̂, X̃], that is the region in which it is optimal to deepen
knowledge and to select the mid point d = X/2.

Lemma 16. Suppose d = X/2 is optimal for a range [X,X] such that d(X) = X/2. Then
the optimal ρ(X) is single-peaked in that range. It is highest at Ẋ = 8 cos( π18 )√

3

Proof. By Lemma 13, we know that dV (d=X/2;X)
dX ≥ 0 and by Lemma 14X > X̂0. Moreover,

recall σ2(d = X/2;X) = X/4. The first-order condition with respect to ρ becomes

V (X/2;X)
X

= η

4 c̃ρ(ρ),

With
V (X/2;X)

X
= X

12q − 1X>4q
(X − 4q)3/2
√
X6q

.

The latter is continuous and concave. Since c̃(ρ) is an increasing, twice continuously
differentiable and convex function, ρ increases in X if and only if V (X/2;X)/X increases
in X. By concavity of V (X/2;X)/X that implies single peakedness.

Thus, Ẋ is independent of η and given by Ẋ = 8 cos( π18 )√
3 ≈ 4.548q.

Step 3. Proof of Item 1. The following lemma proves the item.

Lemma 17. X̂ exists, lim
X↘X̂ ρ(X) > ρ∞, and X̂ decreases in η.

Proof. As X → 0, d(X)→ 0 and thus UR(X)→ 0. By Lemma 10, UR(∞) > 0. Thus, by
continuity of UR(X), ∃X̂ > 0 such that expanding research dominates deepening research
for all X < X̂. Cost are increasing in X and by Corollary 3, V (d;X ∈ (X̂0,∞)) > V (d;∞)
which implies UR(X ∈ (X̂0,∞)) > UR(∞). By Lemma 15 and again continuity of UR(X)
, that payoff is maximal at qX. Thus, we obtain that X̂ exists and that X̂ < qX.
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We now show that lim
X↘X̂ ρ(X) > ρ∞ holds if X̂ < 6q, then we show X̂ decreases in

η which together with the observation that X̂0 < 6q is sufficient to prove the lemma.
At X̂ we have

UR(X̂) = UR(∞)

ρ(X̂)V (X̂/2; X̂)− ηc̃(ρ(X̂))X̂4 = ρ∞V (d∞;∞)− ηc̃(ρ∞)d∞.
(6)

where the fact that d(X̂) = X̂/2 follows from Lemmata 11, 14 and 15. Moreover, the
following has to hold by optimality

V (d∞;∞) = ηc̃ρ(ρ∞)d∞ (FOC ρ∞)

V (X̂/2; X̂/2) = ηc̃ρ(ρ(X̂))X̂4 (FOC ρX̂)

Claim 1: ρ∞ < ρ(X̂) if X̂ < 6q. Using (FOC ρ∞) and (FOC ρX̂) we obtain that by the
properties of the error function ρ(X̂) > ρ∞ if and only if

4V (X̂/2; X̂/2)
X

>
V (d∞;∞)

d∞
.

Case 1: X̂ > 4q. Substituting for the V (·)’s the above becomes33

X̂

3q −
2
3q

(X̂ − 4q)3/2√
X̂

> 1− d∞

6q

⇔ d∞ + 2X̂ − 4 (X̂ − 4q)3/2√
X̂︸ ︷︷ ︸

<(X̂−4q)

> 6q

A sufficient condition for the above to hold is thus that

d∞ − 2X̂ + 10q > 0

Using that d∞ > 2q by Lemma 10 we obtain that a sufficient condition for ρ(X̂) > ρ∞

is that X̂ < 6q.
Case 2: X̂ ∈ (2q, 4q]. Performing the same steps only assuming that X̂ ∈ [2q, 4q] we

X̂

3q > 1− d∞

6q
⇔ 2X̂ > 6q − d∞ > 4q

which implies the desired result.
Case 3: X̂ < 2q We show that case 3 never occurs, that is X̂ > 2q. To do so we

compare UR(d = 2q;∞) with UR(d = 1q;X = 2q) and show that the former is always
larger. Hence, X = 2q < X̂ for any η.

33Since X̂ ≤ qX ≤ 8q that case is irrelevant.
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For X = d = 2q we have that
X

3q = 1− d

6q ,

and thus ρ(X = 2q) = ρ(d;∞) = ρ (cf. case 2). Moreover, we have that

V (1q; 2q) = q/3 V (2q;∞) = 4/3q,

and (FOC ρX) implies
4V (1q; 2q)/2q = 2/3 = ηc̃ρ(ρ)

Since c̃ρ(ρ) > c̃(ρ)/ρ for any ρ > 0 that implies ηc̃(ρ)/ρ < 2/3.
Now take

UR(d = 2q;∞)− UR(X = 2q)

ρ
4q
3 − ηc̃(ρ)− ρq3 + ηc̃(ρ)q2

q

(
ρ− 3

2ηc̃(ρ)
)
,

which is positive whenever ηc̃(ρ)/ρ < 2/3 which we know has to hold. Thus, UR(d =
2q;∞) > UR(X = 2q) and therefore X̂ < 2q.

Claim 2: If ρ∞ < ρ(X̂) then X̂ decreases in η.
Using (FOC ρ∞) and (FOC ρX̂) to replace the V (·)’s in equation (6) and dividing by

η we obtain

d∞ (ρ∞c̃ρ(ρ∞)− c̃(ρ∞)) = X̃/4
(
ρ(X̂)c̃ρ(ρ(X̂))− c̃(ρ(X̂))

)
from which we get

X̂/4 = d∞
(ρ∞c̃ρ(ρ∞)− c̃(ρ∞))(

ρ(X̂)c̃ρ(ρ(X̂))− c̃(ρ(X̂))
) .

Now we use the envelope theorem to calculate

∂UR(X̂)− UR(∞))
∂η

= c̃(ρ(X̂))X̂4 − c̃(ρ
∞)d∞.

Replacing for X̂ implies that the RHS is positive if and only if

(c̃(ρ∞))− c̃(ρ(X̂)) ρ∞c̃ρ(ρ∞)− c̃(ρ∞)
ρ(X̂)c̃ρ(ρ(X̂))− c̃(ρ(X̂))

> 0.

Using that ρc̃ρ(ρ) > c̃(ρ) by the properties of the inverse error function and factoring
out the denominator of the first term, the above holds if and only if

c̃(ρ∞)ρ∞c̃ρ(ρ(X̂))− c̃(ρ(X̂)ρ∞c̃ρ(ρ∞) > 0
ρ(X̂)c̃ρ(ρ(X̂))

c̃(ρ(X̂))
>
ρ∞c̃ρ(ρ∞)
c̃(ρ∞)

which holds if and only if ρ(X̂) > ρ∞ by the properties of the error function. Thus, X̂
decreases if ρ(X̂) > ρ∞.
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Conclusion: Since X̂0 ∈ [2q, 6q], ρ∞ < ρ(X̂) implying that X̂ is decreasing in η.

Step 4. X̂ < Ẋ < qX < X̃.
Step 4.1: qX > Ẋ. By the envelope theorem we need for X = qX

∂UR( qX)
∂X

= ρ
dV (d = qX/2; qX)

dX − η

4 c̃(ρ) = 0. (7)

The FOC for ρ implies

V

qX
= η

4 c̃ρ(ρ)

Now assume for a contradiction that ρ( qX) is increasing, then V (·)/ qX must be increasing
which holds if and only if

dV (d = qX/2; qX)
dX

qX > V (d = qX/2; qX).

But then we obtain the following contradiction to UR( qX) being maximal

dV (d = qX/2; qX)
dX >

V (d = qX/2; qX)
qX

= η

4 c̃ρ(ρ) > η

4
c̃(ρ)
ρ
.

The first inequality follows because V (d = qX/2; qX)/ qX must be increasing, the equality
follows by equation (7). The last inequality is a consequence of the properties of the
inverse error function. By Lemma 16, ρ(X) is single peaked in the relevant range which
proves the claim.
Step 4.2: Ordering. By Lemma 17 we know that X̂ < X̂0. Thus, because X̂0 < Ẋ ⇒
X̂ < Ẋ. Moreover, X̃ > qX by Lemma 11 which concludes the proof.

B.6 Proof of Proposition 4

Proof. To prove the claim, we show that selecting a moonshot of length 6q is preferred to
selecting the myopically optimal interval 3q for some (η, η) and δ(η) < 1.

We first list the respective data. We restrict attention to η-levels such that d(6q) = 3q.
These levels exist by continuity of the cost term and the fact that X̃0 > 6q by Lemma 8.

Moonshot:
• Value created in the first period: V (6q;∞) = 2√

3q

• Value created in the second period (if successful): V (3q; 6q) =
(
3− 2√

3

)
q

• Probability of discovery in the second period: Solution to researcher’s first-order
condition

4V (3q; 6q)
6qη = c̃ρ(ρ(6q))

which implies

ρ(6q) = erf


√√√√W (

2
( 4V (3q;6q)

6qη

)2

π

)
√

2

 = erf


√√√√√W

(
8(3−2/

√
3)

9η2π

)
2
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where W (·) is the Lambert W function.
• Continuation payoff: Conditional on discovery in t = 2, the per-period continuation

payoff from t = 3 onwards is ρ∞V (d∞;∞). The node (discovery in t = 2) is
reached with probability ρ(6q). The t = 1 net present value of the decision maker’s
continuation payoff at t = 3 is thus

δ2ρ(6q)ρ∞
1− δρ∞ V (d∞;∞).

Myopic Optimum:
• Value created in the first period: V (3q;∞) = 3

2q
• Value created in the second period (if successful): V (d∞;∞) = d∞ − (d∞)2/6q
• Probability of discovery in the second period: Given d∞ it is the solution to

V (d∞;∞)
ηd∞

= c̃ρ(ρ∞)

which implies

ρ∞ = erf


√√√√√√W

(
2
( 6q−d∞

6qη

)2

π

)
2


where W (·) is the Lambert-W (or product log) function.

• Distance chosen by the researcher in period 2: Solution to

d∞ = 3q − η c̃(ρ
∞)

ρ∞

• Continuation payoff: Conditional on discovery in t = 2, the continuation payoff
from t = 3 onwards is ρ∞V (d∞;∞). The node (discovery in t = 2) is reached with
probability ρ∞. The t = 1 net present value of the decision maker’s continuation
payoff at t = 3 is thus

(δρ∞)2

1− δρ∞V (d∞;∞).

The values follow directly from Proposition 1, the first-order conditions are discussed
in the proof of Proposition 2.

The moonshot has two benefits: ρ(6q) > ρ∞, that is, discovery is more likely in period
t = 2 (by construction and Proposition 3) and V (3q; 6q) > V (d∞;∞), that is, conditional
on a discovery that discovery is more valuable (by Proposition 1). It comes at the cost in
the first period as V (6q;∞) < V (3q;∞), that is, the first period discovery is suboptimal
(by Corollary 2).

We prove a stronger version of moonshot optimality by ignoring the persistent effect
of ρ(6q) > ρ∞. We treat the t = 1 net present value of continuation payoffs at t = 3 as
identical, thereby underestimating the value of the moonshot because:

δ2ρ(6q)ρ∞
1− δρ∞ V (d∞;∞) > δ2(ρ∞)2

1− δρ∞V (d∞;∞).

The losses of a moonshot in t = 1 are(
3/2− 2√

3

)
q. (8)
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To compute the gains, consider the beginning of period t = 2 in both scenarios. The
expected payoff from that period is

• for Moonshot: ρ(6q)V (3q; 6q),
• for Myopic Optimum: ρ∞V (3q;∞).
Total gains in t = 1 net present value are thus

δ (ρ(6q)V (3q; 6q)− ρ∞V (3q;∞)) = δ

(
ρ(6q)

(
3− 2√

3

)
q − ρ∞d∞

(
1− (d∞)

6q

))
. (9)

By continuity in η and δ it suffices to show that for δ = 1 and some η > 0 we have that
(8)<(9). (Numerically) solving for d∞, ρ∞, ρ(6q) using, e.g., η = 1 verifies that this is the
case.34 In Lemma 29 in Appendix H, we show that d∞ is linear in q which implies that
ρ∞ is constant in q. Linearity of distance and invariance of probability in the moonshot
case can directly be observed. Thus restricting attention to, e.g., q = 1 is without loss.

B.7 Proof of Proposition 5

Proof.

Part 1. Existence of s(K) and ξ.
Step 1. d ≤ s, interior d ≤ 4q, and continuity. First notice that ζf(σ2) is constant if d ≥ s.
Because s > 3q by assumption it follows from Lemma 10 that the optimal novelty d∗ ≤ s.
Moreover, by Corollary 7 d ≤ 3q if ζ = 0. The researcher’s problem is

UR(d, ρ) = ρ

(
V (3q;∞) + σ2(3q;∞)

s

)
− ηc(ρ(3q; s)σ2(3q;∞))

We can re-write the researcher’s problem substituting from the budget constraint as

max
d,ρ

ρ
(
V (d;∞) + σ2(d;∞)

s
ζ
)
−
(
η − K − ζ

κ

)
c̃(ρ)σ2(d;∞)

which is continuous in ζ for any (d, ρ). Thus its maximum is continuous too.
Note that by Lemma 24, Vd < 0, Vdd > 0 for d > 4q. Thus, if an interior solution

exists, it must be such that d ≤ 4q. Suppose otherwise and that an interior solution with
d ∈ (4q, s) exists with corresponding ρ. Then, the researcher can increase her payoff by
marginally increasing d and keeping ρ constant. By the first-order condition with respect
to d, Vd + ζ/s− ηc̃(ρ)/ρ = 0. Therefore, a marginal increase of d increases the payoff as
Vdd > 0 implies that Vd(d+ ε) > Vd(d) while all other terms remain the same. Thus, any
interior d ≤ 4q.

Step 2. Existence of ξ. Again because s ≥ 3q and Lemma 10, for ζ = 0 it holds that

UR(d∞, ρ(d∞)) > UR(s, ρ(s)),

with d∞ the arg max in d. Because both terms are continuous in ζ, the inequality has to
hold in a positive neighborhood of ζ = 0.

Define ξ to be minζ≤K{ζ : UR(d∞, ρ(d∞)) = UR(s, ρ(s))} if it exists or ξ := K
otherwise. Then, by definition of ξ and continuity, for ζ ∈ [0, ξ), d < s.

34In this case, ρ(6q) = 0.453226, ρ∞ = 0.31075, d∞ = 2.74272. This yields as benefit of the moonshot:
0.0283413.
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Step 3. Existence of s(K). As s → ∞ the researcher’s payoff assuming d = s goes to q.
To see this fix ζ, η and consider the researcher’s problem assuming d = s and let s→∞.
By construction f(σ2) = 1 and by Proposition 1 lims→∞ V (s;∞)→ q. Because σ2 →∞
the optimal ρ(s) → 0 and so does UR. By Lemma 10 the researcher’s payoff assuming
f(·) ≡ 0 is positive for any η <∞ with some d∞ ≤ 3q. Thus, for ζ > 0 and f(·) > 0, the
payoff for the distance defined in Lemma 10 is strictly larger than for d = s. Continuity
implies that there is an s > 0 such that for any s > s, d∞ ≤ 4q is optimal by step 1.

Note that the cutoff s depends on K. Fist observe that for any K, s(K) ≤ s. However,
observe that for K = 0, d < 3q by Lemma 10 and by continuity s(K) = 0 in a positive
neighborhood of K = 0.

Part 2. Proof of relationship (1). We make use of the Marginal Rate of Substitution
(MRS) between ζ and η for the probability ρ and the distance d. The MRS describes the
slope of the iso-ρ curve and the iso-d curve, respectively, in the (η, ζ)-space.

Step 0. Defining the MRS. The MRS for ρ is

MRSρζη := −
∂ρ
∂η
∂ρ
∂ζ

,

and MRSdζη analogously.
Lemma 30 in Appendix H derives

MRSρζη = s (2c̃ρ(ρ)− c̃(ρ)/ρ) , (10)

and

MRSdζη = c̃ρ
c̃/ρ− c̃ρ + c̃

c̃ρ
c̃ρρ

c̃/ρ− c̃ρ + ρc̃ρρ
. (11)

Step 1. Deriving the Research Possibility Frontier. Note that because rewards do not in-
crease beyond s and s > 3q, the researcher is never selecting a distance d > s.

Assuming d < s can use the two first order conditions of the researcher and solve for ζ
and η. We obtain

η = d

6q
ρ

ρc̃ρ − c̃

ζ =
(
d

3q − 1 + d

6q
c̃

ρc̃ρ − c̃

)
s.

(12)

Replacing in MRSρζη and MRSdζη we observe that any (ρ, d) can be implemented
through at most one (η, ζ)-combination because each iso-ρ curve crosses each iso-d curve
at most once: both slopes (the respective MRS) are positive and MRSρζη > MRSdζη if
s > 0.1 by the properties of c̃(ρ).

Plugging h = η0 − η as well as conditions (12) into the budget line, K = ζ + κh, and
solving for d yields the interior solution

d(ρ) = 6q(K + s− κη0) ρc̃ρ(ρ)− c̃(ρ)
2sρc̃ρ(ρ)− sc̃(ρ)− κρ. (13)

The minimum then constitutes the research possibility frontier.
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Step 2. Deriving the bounds ρ, ρ.
Step 2.1. Assuming s > s(K).
Recall from the proof of Proposition 2 that

d∞ = 3q
(

1− c̃(ρ)
2c̃ρ(ρ)ρ− c̃(ρ)

)
.

Replacing d in its first order condition (FOCd) (equation (4) on page 38) yields

η(ρ) = ρ

(2ρc̃ρ(ρ)− c̃(ρ))
which describes the largest cost parameter η(ρ) (assuming ζ = 0) that implies a

probability ρ selected by the researcher. The parameter η is decreasing in ρ.
Next, recall that MRSρζη describes the slope of the iso-ρ curve in the (η, ζ)-plane. As

MRSρζη(ρ) is independent of η that slope is constant and each iso-ρ curve is given by

ζ(η; ρ) = (η − η(ρ))MRSρζη(ρ).

Because MRSρζη(ρ) is increasing (and convex) in ρ and η(ρ) decreases in ρ, iso-ρ curves
are ordered in the (η, ζ)-space. If ρ′ > ρ the iso-ρ curve of ρ′ is steeper and than the iso-ρ
curve of ρ.

Now, consider the budget line in the (η, ζ)-plane which is

ζ = K − κ(η0 − η)

which is linearly increasing with slope κ and root at η̌ = η0 − K/κ, the polar case
(ζ = 0, h = K/κ). Let ρ̌ be the probability of discovery at that root. Then, by construction
η̌ = η(ρ̌).

If MRSρζη(ρ̌) > κ, then the iso-ρ curve for ρ̌ is steeper than the budget line. Because
iso-ρ curves are ordered and the budget line is increasing, all iso-ρ curves that cross the
budget line must have ρ < ρ̌ which implies ρ = ρ̌. The minimum implementable ρ crosses
the budget line at the largest attainable η = η0 and hence corresponds to the other polar
case.

If instead MRSρζη(ρ̌) < κ then all iso-ρ curves that cross the budget line must have
ρ > ρ̌ which implies hat ρ = ρ̌ and the largest attainable ρ is induced by η = η0 and
ζ = K.

Step 2.2. Assuming s<s(K).
Restricting the domain of ζ to [0, ξ) and applying the arguments from Step 2.1. yields

the result.

Part 3. Substitutes or Complements. We focus on the case s > s(K).35 To show
that d and ρ can be both substitutes and complements from the funder’s perspective, we
need to consider the slope of (13). The first term in brackets is independent of ρ but may
be positive or negative depending on parameter.

For the second term, let num(ρ) be the numerator of the last term of (13) and den(ρ)
its denominator. Then, that last term is increasing in ρ if and only if

35For the case of s < s(K) observe that for a (generic) funding schemes such that d = s, d does not
vary with local changes in to the funding scheme and only ρ adjusts, the results are thus not particularly
interesting.
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num′(ρ)den(ρ) > num(ρ)den′(ρ)

or equivalently using that num′(ρ) = ρc̃ρρ(ρ) > 0, den′(ρ) = s (2ρc̃ρρ + c̃ρ)− κ if and only
if

κ

s
<
c̃ρ(ρ)c̃(ρ) + ρc̃(ρ)c̃ρρ(ρ)− ρ (c̃ρ(ρ))2

c̃ρρ(ρ)ρ2 − ρc̃ρ(ρ) + c̃(ρ)︸ ︷︷ ︸
=MRSd

ζη
(ρ)

.

Thus, d(ρ) is increasing if and only if

(K + s− κη0)(sMRSdηζ(ρ)− κ) > 0. (14)

Which, depending on parameters, may or may not hold. The figures in the main text
provide examples for both cases.
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Supplementary Material
C Graphical example
Here, we present a short graphical example to highlight our model ingredients and
fosters intuition. Suppose the following snapshot of the realization of the Brownian path
constitutes the truth on [−2, 2].

-2 -1 0 1 2

40
42
44
46
48

x

y
(x
)

Figure 13: The color of the truth is gray.

The next graphs depict knowledge if the answer to a single question is known, F1 =
{(0, 42)}, and in if two answers are known, F2 = {(−1.2, 46.6), (0, 42)}.
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Figure 14: Conjectures and their precision under F1 (left) and F2 (right). The red dots represent
known question-answer pairs. The solid lines represent the expected answer to each question x given the
existing knowledge. The dashed line represents the 95-percent prediction interval—that is, the interval in
which the answer to question x lies, with a probability of 95 percent, given Fk.

In the situation represented in the left panel of Figure 14, under F1, only the answer
to question 0, which is 42, is known. We represent that knowledge by a dot ( ). Given the
martingale property of a Brownian motion, the current conjecture is that the answer to
all other questions is normally distributed with mean 42. We represent the mean of the
conjecture by the solid lines. However, the farther a question is from 0, the less precise is
the conjecture (see Figure 2). We depict the level of precision by the dashed 95-percent
prediction interval. For each question x, the truth lies, with a probability of 95 percent,
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between the two dashed lines given the knowledge Fk.
In the right panel of Figure 14, in addition to F1, the answer to question x = −1.2,

which is 46.6, is known. The additional knowledge changes the conjectures for questions in
the negative domain compared to the left panel. The conjecture about questions between
−1.2 and 0 is represented by a Brownian bridge. The expectation of answers is decreasing
from −1.2 to 0 and is 46.6 to the left of −1.2. Moreover, uncertainty decreases for all
questions in the negative domain, and the prediction bands become narrower. The positive
domain is unchanged because of the martingale property of the Brownian motion.

Now, consider moving to knowledge F3 = {(−1.2, 46.6), (0, 42), (1.2, 41.8)} (left panel
of Figure 15) and then to F4 = {(−1.6, 46.6), (0, 42), (0.8, 40.8), (1.2, 41.8)} (right panel of
Figure 15).
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Figure 15: Conjectures and their precision under F3 (left) and F4 (right).

Moving from F2 to F3, the change is similar to that from F1 to F2, but this time in
the positive domain. All conjectures in the positive domain become more precise, but
the negative domain is unaffected. Further, a Brownian bridge between the known points
(0, 42) and (1.2, 41.8) arises.

Moving from F3 to F4, knowledge of an answer to a question that lies between two
already-answered questions is added. Conjectures about answers to questions between 0
and 1.2 become more precise. Further, since 40.8 < 41.8, answers to all questions between
0 and 1.2 are expected to be lower compared to the conjecture based on knowledge F3.
Moreover, the expected answers are decreasing in x from 0 to 0.8 and increasing from 0.8
and 1.2.

D The Cost of Research
In this section, we provide a microfoundation for the cost function assumed in Section 4.
The cost implies an endogenous measure of the productivity of research. Here, we
conceptualize research as the search for an answer. That is, we model research as sampling
a set of candidate answers to question x with the goal of discovering the actual answer,
y(x).

Formally, we assume that the sampling decision consists of selecting an interval
[a, b] ∈ R. If the true answer lies inside the chosen interval, such that y(x) ∈ [a, b], research
succeeds and a discovery is made. If y(x) /∈ [a, b], research fails and no discovery is made.
Thus, the choice of the research interval entails an ex ante probability of successful research.
Restricting the sampling decision to a single interval [a, b] comes without loss for our
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Figure 16: Cost of research and interference. The dotted vertical lines represent the 95 percent
prediction intervals for the answers to questions x = −0.2 and x′ = 0.2, assuming the answer to questions 0
and −0.4 are known. Both x and x′ have distance d = 0.2 to existing knowledge. However, the 95 percent
prediction interval at question x is shorter because the variance is smaller because researching x = −0.2
deepens knowledge. Research on question x = 0.2 expands knowledge, which implies a larger variance.

purposes, as conjectures Gx(y|Fk) follow a normal distribution.
We now characterize the cost of research in terms of three variables of interest: the

research area, the novelty of the question, and the expected output. The area length,
X, and the novelty, d(x), of a research question are familiar concepts from Section 3.
Output describes the expected probability that search leads to discovery which denote
that probability by ρ.

We begin by defining a prediction interval.

Definition 6 (Prediction Interval). The prediction interval α(x, ρ) is the shortest interval
[a, b] ⊆ R such that the answer to question x is in the interval [a, b] with probability ρ.

Next, we describe the prediction interval α(x, ρ) based on the conjecture Gx(y|Fk).

Proposition 6. Suppose α(x, ρ) is the prediction interval for probability ρ and question
x when answer y(x) is normally distributed with mean µ and standard deviation σ. Then,
any prediction interval has the following two features:

1. The interval is centered around µ.
2. The length of the prediction interval is 23/2erf−1(ρ)σ, where erf−1 is the inverse of

the Gaussian error function.

Proof. The normal distribution is symmetric around the mean with a density decreasing
in both directions starting from the mean. It follows directly that the smallest interval
that contains the realization with a particular likelihood is centered around the mean.

Take an interval [zl, zr] of length Z <∞ that is symmetric around the mean µ and let
it be such that it contains a total mass of ρ < 1 in the interval. Then, a probability mass of
(1− ρ)/2 lies to the left of the interval by symmetry of the normal distribution. Moreover,
the left bound zl of the interval has (by symmetry of the interval around the mean µ) a
distance µ− Z/2 from the mean. From the properties of the normal distribution,

Φ(zl) = 1/2
(

1 + erf

(
zl − µ
σ
√

2

))
= 1/2

(
1 + erf

(−Z/2
σ
√

2

))
.
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Solving using symmetry of erf yields

1/2
(

1− erf
(

Z

σ23/2

))
= 1− ρ

2

or equivalently

erf

(
Z

σ23/2

)
= ρ

⇔Z = 23/2erf−1(ρ)σ.

The properties of the prediction interval can be seen in the figures depicting the
Brownian path. The dashed lines depict the ρ = 95 percent–prediction interval (as,
for example, in Figure 16). Figure 16 indicates that the prediction interval depends
on the location of the question. Two questions with the same distance from existing
knowledge (that is, distance from question x = 0) have different 95 percent prediction
intervals depending on whether research deepens knowledge or expands it. That difference
translates into different costs.

Proposition 6 implies that if the cost function is homogeneous of any degree in interval
length (b − a), we can represent it with an alternative cost function proportional to
c(ρ, d,X) that is multiplicatively separable in (d,X) and ρ without having to keep track
of the exact location of the search interval [a, b], which proves to be convenient.

It also implies that, fixing ρ, the changes in the cost with respect to novelty d and area
length X vary in their effect on σ(d;X) only. Similarly, holding distance and area length
constant, changes in ρ translate into cost changes according to a function of erf−1(ρ)—a
convex increasing function.

Proposition 6 intuitively links the cost of research effort to the probability of a discovery.
Because the inverse error function is increasing and convex, the cost of finding an answer
with probability ρ is increasing and convex in ρ. Discovering an answer with certainty
implies an infinitely large interval; short of certainty, there is always a chance that the
answer is outside the sampled interval.

Importantly, Proposition 6 also links output and novelty: for a given level of effort,
the probability of success depends on the precision of the conjecture about a question.
Research on a more novel question inside the same research area with the same level of
effort entails a higher risk.

In the paper we assume, for concreteness, we assume that cost is proportional to (a−b)2.
As should be clear from Proposition 6, the quadratic formulation is for convenience only.
What matters for our results qualitatively is that the cost is (i) homogeneous, (ii) increasing,
and (iii) convex in the sampling interval (a − b). Under the quadratic assumption, the
cost function is characterized by a simple corollary to Proposition 6.

Corollary 10. For knowledge Fk, probability ρ, and question x, the minimal cost of
obtaining an answer to question x with probability ρ is proportional to

c(ρ, d;X) = c̃(ρ)σ2(d;X).

Given Corollary 10, cost is increasing in d and X and concave in d; the concavity
decreases in X with the limiting case in which cost is linear in d as X →∞.
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E Maximizing the Myopic Return to Funding
Here, we provide a general result on optimal myopic funding. Corollary 8 in the main text
follows from it.

Proposition 7. Suppose the funder aims at maximizing the myopic expected benefit
from research, ρV (d;∞). The optimal funding scheme can be a combination of the two
instruments (ζ > 0, h > 0) or can focus only on one of the two (ζ = 0, h > 0 or
ζ > 0, h = 0). Moreover, the following statements are true :

1. If output decreases in novelty on the research possibility frontier throughout, optimal
funding cannot induce excessive novelty.

2. Otherwise, optimal funding may induce excessive novelty. If output increases in
novelty for funding schemes that induce d < s, moderate excessive novelty d ∈ (3q, s)
can be optimal.

Proof.
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Figure 17: Funding schemes that maximize immediate benefits. In both panels we have κ = 7, q = 1. In
the left panel we have in addition K = 30, η0 = 10, s = 6, in the right panel we have K = 3, η0 = 1, s = 600.

Step 1. Restraint Novelty. Assume that d(ρ;K) is monotone and decreasing. It
follows that it is beneficial for the funder to induce a marginally higher ρ whenever
d ∈ (3q, s). This increase in ρ decreases d marginally. Both effects increase ρV (d;∞) if
d > 3q. What remains is to show that inducing d = s is never optimal from the funder’s
perspective.

Consider the (ζ, h)-combination that induces the largest d̃ such that (13) applies.
Because d(ρ;K) decreases by assumption and d̃ ≤ s we have that the associated

ρ(d̃) ≥ ρ(s). Thus, for any implementable d < s, ρ(d < s) > ρ(s) because d(ρ;K) is
decreasing. It suffices to find an implementable d̃ < s such that V (d̃;∞) ≥ V (s;∞) to
prove the claim.

Let d be the distance induced by the funding scheme (ζ, η) = (0,K/κ). Because ζ = 0,
Proposition 2 implies d > 2q.

Now, recall from Proposition 1 that V is symmetric around d = 3q on the interval
d ∈ [2q, 4q], increasing in d if d < 3q and decreasing if d > 3q. Because s ≥ 4q we have
that V (s;∞) < V (4q;∞) = V (2q;∞) < V (d;∞) and hence ρ(d)V (d;∞) ≥ ρ(s)V (s;∞)
which proves the statement.
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Figure 18: Funding schemes that maximize immediate benefits. The dashed elliptical curves depict all
points that deliver the same expected value ρV (d;∞). The solid line is the funder’s budget line. In both
panels, K = 3, s = 6, q = 1, and η0 = 1. In the left panel, the relative price of cost reductions is κ = 7; on
the right, that price is κ = 16. The funder’s optimal choice (•) in both cases consists of a mix of ex-ante
cost reductions and ex-post rewards, (ζ, h) > 0. The circle (◦) depicts the outcome if the funder invest
exclusively into rewards, ζ = K,h = 0; the square (�) the outcome if the funder invests exclusively into
cost reductions, ζ = 0, h = K/κ.

Step 2. Excessive Novelty. The parameters used to calculate the example leading
to Figure 12, right panel provide an example of moderate excessive novelty, d ∈ (3q, s).
Using, e.g., parameters K = 30, η0 = 10, κ = 7, q = 1, s = 6 provides an example in which
it is optimal to incentives d = s and to focus exclusively on rewards. However, even if ρ
and d are complements throughout, excessive novelty need not be optimal. An example is
K = 3, η0 = 1, κ = 7, q = 1, s = 600. Here it is optimal to focus entirely on cost reductions.
Figure 17 provides the respective graphs.

Figure 18 illustrates Proposition 7. It highlights the fundamental difference between
the case in output and novelty complement each other in the budget constraint, and when
they are not. In the left panel, output and novelty do not complement each other. Thus,
the funder trades off novelty and output and settles optimally for a funding mix in the
interior of what can be achieved in terms of novelty and output. The optimal funding
scheme is a mix of both instruments. In the right panel, there are complementarities. The
funder chooses to combine the two instruments. The funder’s optimal solution includes
excessive novelty: the novelty induced is larger than the value-maximizing level d = 3q.
The reason for excessive novelty is that it comes with higher output. The researcher’s
desire to win the award induces her to work harder on finding a solution, meaning output
increases. However, the funder does not want to go to the extreme d = s as that would
imply a reduction in output.

The optimal funding scheme combines ex ante cost reductions and ex post rewards.
If the funder were to concentrate on awards alone, she would induce novelty d = s. In
response, the researcher takes too much risk in her effort to win the award. Output—and
thus the expected benefits—decline.

F Different Rewarding Technology
In this section, we briefly discuss a variant of the model from Appendix E. The model is
identical to that in Appendix E apart from the functional form f(σ2). Instead of assuming
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a linear relationship, we assume

f(σ2) = 1− e−sσ2
.

Changing the reward technology in this way has two implications. First, rewards are
not guaranteed no matter how difficult to answer the question is. Second, the likelihood
to receive an ex-post reward is now strictly concave in the variance, which implies a
decreasing return to novelty in the reward function.

Using this specification, we lose the closed-form expression of the research possibility
frontier from Proposition 5; however, the findings we discuss around Proposition 7 remain
largely unchanged as Figure 19 illustrates: d and ρ can be substitutes (left panel) or
complements (right panel) from the funder’s perspective; if they are complements, it
may be optimal to induce excessive novelty to increase output (right panel); if they are
substitutes, excessive novelty is never optimal (left panel). A combination of the two
funding schemes may be optimal to maximize the expected benefits to society (both
panels).
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Figure 19: Funding schemes that maximize immediate benefits. The dashed elliptical curves depict
all points that deliver the same expected value ρV (d;∞). The solid line is the funder’s budget line. In
both panels, K = 30, κ = 70, q = 1, and η0 = 1. In the left panel, the return parameter s = 6; in the right
panel, that parameter is s = .6. The funder’s optimal choice (•) in both cases consists of a mix of ex-ante
cost reductions and ex-post rewards, (ζ, h) > 0. The circle (◦) depicts the outcome if the funder invests
exclusively into rewards, ζ = K,h = 0; the square (�) the outcome if the funder invests exclusively into
cost reductions, ζ = 0, h = K/κ.

G Different Universe of Questions
Our baseline model assumes that the universe of questions can be represented on the real
line. That is, we assume an implicit order on questions. In this part, we show that all our
results extend to a more general question space.

To begin with, consider our baseline model and fix some knowledge Fm. As described
in Section 2, knowledge pins down Xk—a set composed of (half-)open intervals: bounded
intervals [xi, xi+1) of length Xi each, and two unbounded intervals (−∞, x1) and [xk,∞) of
length ∞. As we describe in Propositions 1 to 3, we can determine the benefits and cost of
every new discovery to both researcher and decision maker by replacing the exact identity
of the question x with the tuple (d,X), that is, through the distance of the question x to
existing knowledge and length of the research area in which x lies.

Now, consider any set X̂m = X̂k ∪ X̂n that contains k + n elements: k convex-valued
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and bounded intervals on R with Euclidean distance between its upper and lower bound,
X
i∈X̂k

, and n convex-valued but unbounded intervals on R of infinite length, X
i∈X̂n

=∞.
For any tuple (d,X) with X ∈ X̂m and d ∈ [0, X/2] all our definitions and expressions for
benefits and cost are well-defined regardless of how X̂m was generated.

For any given set X̂m generated by some existing knowledge Fm, suppose that the
truth-generating process Y is such that the answer to question x characterized by (d,X)
is normally distributed with a variance of σ2(d;X).36 Then, all of our results continue to
hold.

G.1 Generalization to a Multidimensional Universe of Questions

Here, we show a mapping from a model with an n−dimensional independent Brownian
motion as the truth-generating process to our baseline model with a one-dimensional
Brownian motion as truth-generating process.

Assume that there is a standard n-dimensional Brownian motion Wz = (W 1
z , ...,W

n
z )

whose components W i
z are independent one-dimensional standard Brownian motions.37

Suppose F ij(i) is the finite set of j(i) known realizations of the Brownian path in dimension
i and Fk = ∪ni=1F ij(i) is knowledge. As described in Section 2, each F ij(i) determines a
partition of the domain of W i

z denoted by X ij(i) with j(i) + 1 elements. As in the baseline
case, the knowledge in dimension i decomposes the dimension-i process into j(i) − 1
independent Brownian bridges each associated with a length Xi

l , l = {1, ...j(i)} and two
independent Brownian motions. Therefore, the union Fk determines k = ∑n

i=1 j(i) − 1
independent Brownian bridges of length Xi

l each and 2n Brownian motions. By the
martingale property of the Brownian motion and the fact that realizations are not directly
payoff relevant, the setting is isomorphic to one in which we have k independent standard
Brownian bridges of length Xi

l each and 2n standard Brownian motions. Thus, the set
X̂k = {Xi

l(i)}∪∞ is a sufficient statistic to calculate any of the results in the text. However,
the set X̂k = {Xi

l(i)} ∪ ∞ can also be generated with an appropriate realized path of a
one-dimensional Brownian motion with a corresponding Fk.

G.2 Seminal Discoveries

We conclude this part by presenting a model with seminal discoveries—discoveries that
open new fields of research—that builds on the multidimensional universe of questions
described above. For example, Friedrich Miescher’s isolation of the “nuclein” in 1869 was
initially intended to contribute to the study of neutrophils, yet, in addition, it opened up
the new and, to a large extent, orthogonal field of DNA biochemistry.

Formally, consider the following model of the evolution of knowledge. Initially, there is
a single field of research A and a single known question-answer pair, (x0, y(x0)) = (0, 0).
The set of all questions in field A is known to be one-dimensional and represented by R.
The truth is known to be generated by a standard Brownian path Y passing through (0, 0).
However, with an exogenous probability p ∈ [0, 1] any discovery (x, y(x)) is seminal and
opens a new, independent field of research Bx. A seminal discovery is a question-answer

36Note that the dependence of the variance of the conjecture depends only on d and X. Thus, the
truth-generating process has to satisfy a Markov property as the Brownian motion on the real line in our
main model. Moreover, note that the specification of the expected value of the answer is not relevant for
our results as long as it is well-defined given Fm

37Thus, each process starts at an initial point (0, 0), has a drift of zero, a variance of one and independent,
normal increments.
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pair (x, y(x)) that is an element of two independent Brownian paths crossing only at
(x, y(x)). Thus, upon occurrence, a seminal discovery generates knowledge in multiple
dimensions. Because it is a priori unknown whether a discovery is seminal, the payoff from
generating knowledge in another dimension is constant in expected terms—it does not
influence a researcher’s (or funder’s) choices. After the seminal discovery, the updated
model of truth and knowledge is the one described above with the multi-dimensional
universe of questions. As we showed above, that model can, in turn, be mapped into our
baseline. The special case p = 0 is our baseline model.

It should become clear from our discussion that even the case in which the probability
of a seminal discovery depends on the question is qualitatively similar to what we discuss
in the baseline model. The quantitative differences in such a model come from the fact
that questions which are likely to be a seminal discovery are more attractive to address
for all parties involved.
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H Omitted Proofs

H.1 Properties of c̃(ρ)
To simplify notation, we suppress the argument ρ and denote the inverse error function by
ι := erf−1(ρ).

Lemma 18. The derivatives of the inverse error function satisfy
1. d

dρ ι = 1
2
√
πe(ι2)

2. d2

dρ2 ι = 2ιι′2

3. d3

dρ3 ι = 2ι′3
(
1 + 4ι2

)
.

Proof. See Dominici (2008).

Lemma 19. 1. limρ→0 ρ
ι′

ι = 1
2. limρ→1 ρ

ι′

ι =∞
3. limρ→0

d
dρ

(
ρ ι
′

ι

)
= 0

4. limρ→0
d2

dρ2

(
ρ ι
′

ι

)
= π

3

Proof. We will make use of L’Hôpital’s rule and the derivative properties from Lemma 18
in the following.

The first item follows from

lim
ρ↓0

ρ
ι′

ι
= lim

ρ↓0

ι′ + ρι′′

ι′

= lim
ρ↓0

ι′ + 2ριι′2
ι′

= lim
ρ↓0

(1 + ριι′)

= 1.

The second item follows from

lim
ρ↑1

ρ
ι′

ι
= lim

ρ↑1

ι′ + ρι′′

ι′

= lim
ρ↑1

ι′ + 2ριι′2
ι′

= lim
ρ↑1

(1 + 2ριι′)

=∞.

The third item follows from

lim
ρ→0

d

dρ

(
ρ
ι′

ι

)
= lim

ρ→0

ι′

ι

(
1− ρι

′

ι

)
+ lim
ρ→0

ρ
ι′′

ι

= lim
ρ→0

ι′︸ ︷︷ ︸
=
√
π/2

lim
ρ→0

ι− ρι′

ι2
+ lim
ρ→0

2ρι′2︸ ︷︷ ︸
=0

= − lim
ρ→0

√
π

2
ρι′′

2ιι′

= − lim
ρ→0

√
π

2
ρι(ι′)2

2ιι′ = − lim
ρ→0

√
π

2 ρι′ = 0.
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The fourth item follows from38

lim
ρ→0

d2

dρ2

(
ρ
ι′

ι

)
= lim

ρ→0
2 ι
′′ι− ι′2

ι2

(
1− ρι

′

ι

)
+ lim
ρ→0

4ρ ι′ι′′︸︷︷︸
=2(ι′)3ι︸ ︷︷ ︸

=0

= lim
ρ→0

2 ι
′′ι− ι′2

ι2

(
1− ρι

′

ι

)
= lim

ρ→0
2 ι
′′ι

ι2

(
1− ρι

′

ι

)
− 2 lim

ρ→0

ι′2

ι2

(
1− ρι

′

ι

)
= lim

ρ→0
4ι′2

(
1− ρι

′

ι

)
︸ ︷︷ ︸

=0

−2 lim
ρ→0

ι′2

ι2

(
1− ρι

′

ι

)

= −2 lim
ρ→0

(
ρ
ι′

ι

)2 ι− ρι′

ρ2ι

= 2 lim
ρ→0

ρι′′

2ρι+ ρ2ι′

= 4 lim
ρ→0

ι′2

2 + ρ ι
′

ι

= 4
3 lim
ρ→0

ι′2 = π

3 .

Lemma 20. The following statements hold:
1. For all ρ ∈ (0, 1), d

dρ (ρc̃ρ(ρ)− c̃(ρ)) > 0
2. For all ρ ∈ (0, 1), ρc̃ρ(ρ)− c̃(ρ) > 0
3. limρ→0 ρ

c̃ρ(ρ)
c̃(ρ) = 2

4. limρ→1 ρ
c̃ρ(ρ)
c̃(ρ) =∞

Proof. The first statement holds because

d

dρ
(ρc̃ρ(ρ)− c̃(ρ)) = ρc̃ρρ(ρ) > 0.

by convexity of the inverse error function.
The second statement holds because of the first statement and (ρc̃ρ(ρ)− c̃(ρ)) |ρ=0 = 0.
The third statement holds by observing that the elasticity is equal to 2ρ ι′ι and the first

statement of Lemma 19.
The fourth statement holds by the same observations and the second statement of

Lemma 19.

Lemma 21. The elasticity of c̃(ρ), ρ c̃ρ(ρ)
c̃(ρ) , is increasing in ρ.

Proof. Recall that ρ c̃ρ(ρ)
c̃(ρ) = 2ρ ι′ι and that it is therefore sufficient to prove that the inverse

error function has an increasing elasticity.
38To arrive at the first line let λ := ι′/ι and observe that (ρλ)′′ = (λ + ρλ′)′ = 2λ′ + ρλ′′ and

λ′ = 2(ι′)2 − λ2 which implies λ′′ = 4ι′ι′′ − 2λλ′.
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Note that
d

dρ

(
ρ
ι′

ι

)
= ι′

ι
+ ρ

ι′′ι− ι′2

ι2
.

From Lemma 19 know that

lim
ρ→0

d

dρ

(
ρ
ι′

ι

)
= 0

lim
ρ→0

d2

dρ2

(
ρ
ι′

ι

)
= π

3 .

Thus, there exists an ε > 0 such that the elasticity is increasing for ρ ∈ (0, ε). To show
that it is increasing for all ρ ∈ (0, 1) suppose –toward a contradiction– that the derivative
of the elasticity crosses 0. In this case, it has to hold that

ι′′ι− ι′2

ι2
= − ι

′

ρι
.

Consider the second derivative of the elasticity at such a critical point

d2

dρ2

(
ρ
ι′

ι

)
| d
dρ

(
ρ ι
′
ι

)
=0 = 2 ι

′′ι− ι′2

ι2

(
1− ρι

′

ι

)
+ ρ

ι′′′ι− ι′′ι′

ι2

= −2 ι
′

ιρ

(
1− ρι

′

ι

)
+ ρ

ι′′′ι− ι′′ι′

ι2

= 2 ι
′

ιρ

(
ρ
ι′

ι
− 1

)
+ 2ρι

′3

ι
4ι2

> 0

where the last inequality follows because the elasticity is weakly greater than one and all
other terms are positive.

Thus, any critical point must be a minimum. However, the elasticity is continuous and
increasing at ρ ∈ (0, ε). Thus, there is no interior maximum and the elasticity is increasing
throughout.

Lemma 22. The elasticity of c̃ρ(ρ), ρ c̃ρρ(ρ)
c̃ρ(ρ) , is increasing in ρ.

Proof. The derivative of the corresponding inverse error function elasticity (which is one
half the one of our cost function) is

d

dρ

(
ρ
ι′

ι

)
= ι′′

ι′
+ ρ

ι′′′ι′ − ι′′2

ι′2

= ι′′

ι′
+ 2ρι′′2(1 + 2ι(2ι− 1)).

Next, we will show that 1 + 2ι(2ι− 1) > 0. Note that this is a convex function of ρ with a

minimum at ιι′ = 1
4 which is solved by ρ = erf

(√
W( 1

2π )
2

)
≈ 0.29 where W denotes the

principal branch of the Lambert-W function. Evaluating 1 + 2ι(2ι− 1) at this minimum
yields

1 +
(√

2W
( 1

2π

)
− 1

)√
2W

( 1
2π

)
≈ 0.75.

S.12



H.2 Omitted Steps in Proofs

Here, we provide the steps that we have omitted in the proofs because they involve
cumbersome algebraic manipulation with little economic or mathematical insight.

Lemma 23. ∂V (d;∞|d>4q)
∂d < 0.

Proof.
∂V (d;∞|d > 4q)

∂d
= − d

3q + 1 +
√
d− 4q
d

d− q
3q

Letting τ := d/q(> 4 by assumption) the statement is negative if

3− τ
3 +

√
τ − 4
τ

τ − 1
3 < 0

The left-hand side is increasing in τ and converges to 0 as τ →∞.

Lemma 24. V (d;X) > 0 if d ∈ [0, X − 4q] and X ∈ (4q, 6q].

Proof. We show that the derivative Vd is a convex function which is positive at its minimum
on [0, X − 4q] and hence throughout on that domain.

The relevant derivatives to consider are

Vd = 1
3q

X − 2d− (X − d− q)
√
X − d− 4q
X − d

 .
Vdd = 1

3q

(
−2 + 1√

X − d− 4q(X − d)3/2 ((X − d− 4q)(X − d) + (X − d− q)2q)
)
.

Vddd = 4q2

(X − d)5/2(X − d− 4q)3/2 > 0.

where Vddd > 0 follows immediately from (X − d) > 0 and (X − d− 4q) > 0. It follows
that, Vd is strictly convex over the relevant range. The maximal distance in this range,
d = X − 4q, Vd|d=X−4q = 8q−X

3q > 0.
Hence, the minimum of the first derivative is either at d = 0 or at some interior d such

that Vdd = 0. Suppose the minimum is at d = 0, then Vd|d=0 = 1
3q

(
X − (X − q)

√
X−4q
X

)
>

0 because X−4q
X < 1.

Hence, the only remaining case is when Vd attains an interior minimum. In this case,
Vdd = 0 must hold at the minimum and hence

√
X − d− 4q(X − d)3/2 = (X − d− 4q)(X − d) + (X − d− q)2q

2 .

The first derivative can be rewritten as

Vd = 1
3q

(
X − 2d− 1√

X − d− 4q(X − d)3/2 (X − d− q)(X − d− 4q)(X − d)
)

and plugging in for the minimum condition we obtain

Vd|Vdd=0
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= 1
3q

(
X − 2d− 2(X − d− q)(X − d− 4q)(X − d)

(X − d− 4q)(X − d) + (X − d− q)2q

)
= 1

3q
(X−2d)((X−d−4q)(X−d) + (X−d−q)2q)−2(X−d−q)(X−d−4q)(X−d)

(X−d−4q)(X−d) + (X−d−q)2q .

As the denominator and 1
3q are both positive, the sign of Vd at its minimum is determined

by the sign of its numerator only. Note that the numerator is increasing in d because
its derivative is 2(X − 6q)(X − d− q) > 0. Thus, the numerator of the derivative of Vd
evaluated at the interior minimum d such that Vdd = 0 is greater than

−X(X2 − 8qX + 10q2) = −X((X − 4q)2 − 6q2) > 0.

Lemma 25. VX(d0(X);X) < 0 if X ≥ 4q and d ∈ [0, X − 4q].

Proof. Observe that for any X ≥ 4q and d ≤ X − 4q

VXd = 1
24q

(
8− 3

√
X − d

X − d− 4q − (5(X − d) + 4q)
√
X − d− 4q

(X − d)3/2

)
.

Denote a := X − d, this is an increasing function in a as

dVXd
da

= 4q2

a5/2(a− 4q)3/2 > 0.

Hence, the highest value of VXd is attained for a→∞ and

lim
a→∞

1
24q

8− 3
√

a

a− 4q︸ ︷︷ ︸
→1

−5 a
√
a− 4q
a3/2︸ ︷︷ ︸
→1

+4q
√
a− 4q
a3/2︸ ︷︷ ︸
→0

 = 0.

It follows that the VXd converges to zero from below implying that VXd < 0. Thus,
VX(d0(X), X) < VX(d = 0, X) and we obtain

VX(d,X|d ≤ 4q,X − d ≥ 4q)

= 1
3q

d+ (X − d− q)
√
X − d− 4q
X − d

− (X − q)
√
X − 4q
X


< V (d = 0, X|d ≤ 4q,X − d ≥ 4q)

= 1
3q

(X − q)
√
X − 4q
X

− (X − q)
√
X − 4q
X

 = 0.

as desired.

Lemma 26. If X ∈ [6q, 8q), d2V (X/2, X)/dX2 < 0 and d2V (d0(X), X)/(dX)2 > 0.

Proof. Considering the boundary solution we obtain

d2V (X/2, X)
dX2 = −X

2 − 2qX − 2q2

3qX3/2√X − 4q
+ 1

6q
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d3V (X/2, X)
dX3 = 4q2

X5/2(X − 4q)3/2 > 0

implying that d2V (X/2,X)
dX2 ≤ d2V (4q,8q)

dX2 with

d2V (4q, 8q)
dX2 = −64q2 − 16q2 − 2q2

3q83/2q3/22q1/2 + 1
6q = − 46q2

96
√

2q3 + 1
6q = 8− 23/

√
2

48q < 0.

Next, consider the value of any interior solution and apply the envelope and implicit
function theorem to obtain

dV (d0(X), X)
dX

= VX + d′(X) Vd︸︷︷︸
=0 by optimality of d

= VX

d2V (d0(X), X)
dX2 = VXX + d′(X)VdX + d′(X) (VXd + Vddd

′(X))︸ ︷︷ ︸
=0 by IFT on FOC

+d′′(X) Vd︸︷︷︸
=0 by optimality

= VXX(d0(X), X) + d′(X)VdX

= VXX(d0(X), X) −V
2
dX

Vdd︸ ︷︷ ︸
>0 as Vdd<0

.

Observing that

VXXd(d,X|d ≤ 4q,X − d ≥ 4q) = 4q2

(X − d)5/2(X − d− 4q)3/2
> 0

we can compute as lower bound for

VXX(d0(X), X) = 1
24q

3
(√

X − d
X − d− 4q −

√
X

X − 4q

)
+ 6

√X − d− 4q
X − d

−

√
X − 4q
X


+
(
X − 4q
X

)3/2
−
(
X − d− 4q
X − d

)3/2)
≥ VXX(d = 0, X) = 0

implying that d2V (d0(X), X)/(dX2) ≥ 0.

Lemma 27. Assume X ∈ [4q, 8q], then d2UR(d = X/2;X)/(dX)2 < 0.

Proof. Take the case of the boundary solution: we are analyzing a one-dimensional
optimization problem with respect to ρ. Denote the objective f(ρ;X) and the optimal
value by ϕ(X) = maxρ f(ρ;X). Then, the optimal ρ solves fρ = 0. We obtain

ϕ′(X) = fρ︸︷︷︸
=0 by optimality

ρ′(X) + fX

ϕ′′(X) = fρ︸︷︷︸
=0 by optimality

ρ′′(X) + (fρρρ′(X) + fXρ)︸ ︷︷ ︸
=0 by total differentiation of FOC

ρ′(X) + fXX + ρ′(X)fXρ

= fXX −
f2
Xρ

fρρ
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= ρ(X)VXX(X/2;X) +
(VX − V

X )2

V c′′

c′

which yields as condition for the value to be concave

ρ(X)c
′′

c′
> −

(VX − V
X )2

VXXV

where the inequality sign changed direction as VXX < 0.
Note that at the boundary solution the right-hand side simplifies to

X3/2 − 2(X + 2q)
√
X − 4q

X3/2 − 2(X − 4q)
√
X − 4q

16q2 + 4qX − 2X2 +X3/2√X − 4q
8q2 + 8qX − 4X2 + 2X3/2√X − 4q

where both fractions are less than one. Finally, we know that the left-hand side is above
two by the properties of the inverse error function. Hence, the optimal value at the
boundary solution is strictly concave as σ2

XX(X/2;X) = 0 and VXX < 0 in the region
considered by Corollary 3

Lemma 28. Let di < X/2 be a local maximum of uR(ρ, d,X). If di(X) exists on
X ∈ [4q, 8q], then d2UR(d = di(X);X)/(dX)2 > 0.

Proof. The implicit function theorem yields for d′(X) and ρ′(X)(
d′(X)
ρ′(X)

)
= − 1

fddfρρ − f2
ρd

(
fdXfρρ − fρXfdρ
fρXfdd − fdXfdρ

)
.

Note that − 1
fddfρρ−f2

ρd
< 0 as this is − 1

det(H) and the determinant of the second principal
minor being positive is a necessary second order condition for a local maximum given that
the first (fρρ) is negative.

Denote the objective f(ρ, d;X) and the optimal value by ϕ(X) = maxρ,d f(d, ρ;X).
Then, the optimal (d, ρ) solves fρ = 0 and fd = 0. Differentiating the value of the
researcher twice with respect to X yields

ϕ′(X) = fρ︸︷︷︸
=0 by optimality

ρ′(X) + fd︸︷︷︸
=0 by optimality

d′(X) + fX

ϕ′′(X) = fρ︸︷︷︸
=0 by optimality

ρ′′(X) + fd︸︷︷︸
=0 by optimality

d′(X)

+ d′(X)
(
fdX + fddd

′(X) + fdρρ
′(X)

)︸ ︷︷ ︸
=0 by total differentiation of foc wrt d

+ ρ′(X)
(
fρX + fρdd

′(X) + fρρρ
′(X)

)︸ ︷︷ ︸
=0 by total differentiation of foc wrt ρ

+ fdXd
′(X) + fρXρ

′(X) + fXX

= fdXd
′(X) + fρXρ

′(X) + fXX .

Observe first that fXX > 0 as fXX = ρVXX(d;X) − ηc̃(ρ)σ2
XX(d;X) and VXX > 0 by

proof of Corollary 3 (in particular, Lemma 26) and σ2
XX(d;X) = −2d2

X3 . Next, we show
fdXd

′(X) + fρXρ
′(X) > 0 using the implicit function theorem together with the property
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of the local maximum that fρρfdd > f2
ρd.

fdXd
′(X) + fρXρ

′(X) = −fdX
(
fdXfρρ − fρXfdρ
fddfρρ − f2

ρd

)
− fρX

(
fρXfdd − fdXfdρ
fddfρρ − f2

ρd

)
.

As we only need the sign of this expression we can ignore the positive denominator to
verify

−fdX(fdXfρρ − fρXfdρ)− fρX(fρXfdd − fdXfdρ) > 0
f2
dXfρρ + f2

ρXfdd − 2fdXfρXfdρ < 0
fdX
fρX

fρρ
fdρ

+ fρX
fdX

fdd
fρd

> 2.

where we used the signs of the terms that follow because

fρρ = −ηc̃ρρ(ρ)σ2 < 0
fρX = VX − ηc̃ρ(ρ)σ2

X

< VX − η
c̃(ρ)
ρ
σ2
X < 0

fdρ = Vd − ηc̃ρ(ρ)σ2
d

< Vd − η
c̃(ρ)
ρ
σ2
d = 0

fdX = ρVdX − ηc̃(ρ)σ2
dX < 0

which in turn follow from the first-order conditions and Corollary 3.
Because fρρfdd − f2

ρd > 0, we can replace fρρ
fdρ

with fdρ
fdd

as fρρ
fdρ

>
fdρ
fdd

yielding

2 < fdX
fρX

fdρ
fdd

+ fρX
fdX

fdd
fρd

which is true as the right-hand side can be written as g(a) = a+ 1
a with a = fdX

fρX

fdρ
fdd

> 0.
Note that g(a) is a strictly convex function for a > 0 and minimized at a = 1 with
g(a = 1) = 2.

Lemma 29. d∞ is linear in q and ρ∞ is constant in q.

Proof. The lemma follows because σ2(mq;∞) = mq and thus (by Proposition 1) the
functions f(m, q) := V (mq;∞)/σ2(mq;∞) and g(m, q) := Vd(mq;∞) are homogeneous of
degree 0 in q.

It is then immediate from (FOCd) and (FOCρ) that d∞ is homogeneous of degree 1 in
q and ρ∞ is homogeneous of degree 0. Noticing that d∞(q = 0) = 0 implies the result.

Lemma 30. MRSρζη = s(2c̃ρ(ρ)− c̃(ρ)/ρ) and MRSdζη = c̃ρ
c̃/ρ−c̃ρ+ c̃

c̃ρ
c̃ρρ

c̃/ρ−c̃ρ+ρc̃ρρ .

Proof. For any (η, ζ) the system of first-order conditions for a non-boundary choice is
given by

Vd(d,∞) + ζσ2
d(d,∞)/s = ηc̃(ρ)/ρ

V (d,∞) + ζσ2
d(d,∞)/s

d
= ηc̃ρ(ρ)
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For an interior optimal choice of (d, ρ), we obtain using σ2(d,X) = d, σ2
d(d,X) = 1 and

σ2
dd(d,X) = 0 

dd
dη
dd
dζ
dρ
dη
dρ
dζ

 = − 1
det(H)


d(c̃ρ(Vd + ζ/s− ηc̃ρ) + ηc̃c̃ρρ)
−d(Vd + ζ/s− ηc̃ρ + ρηc̃ρρ)
−ρσ2c̃ρVdd + c̃(Vd + ζ/s− ηc̃ρ)
−ρ/s(Vd + ζ/s− ηc̃ρ − dVdd)


where det(H) is the determinant of the Hessian matrix of the objective function which

is given by

−ησ2c̃ρρρVdd − (Vd + ζ/s− ηc̃ρ)2 > 0.

Note that the determinant of the Hessian matrix for a local maximum is positive as the
Hessian is negative semidefinite and the first principal minor −ηc̃ρρσ2 < 0 by convexity of
the inverse error function.39

It follows that the sign of the derivatives are determined only by the negative of the
sign of the respective terms in the matrix. Using the first-order conditions to rewrite these
equations yields

dd
dη = − dη

det(H)

(
c̃ρ

(
c̃

ρ
− c̃ρ

)
+ c̃c̃ρρ

)
< 0

dd
dζ = dη

det(H)

(
c̃

ρ
− c̃ρ + ρc̃ρρ

)
> 0

where the inequalities hold due to the properties of the inverse error function.

dρ
dη =− ρη

det(H)
(2c̃ρ − c̃/ρ) (c̃ρ − c̃/ρ) < 0

where we have used that σ2Vdd = − d
3q and from the first-order conditions we know that

d
3q = 2η(c̃ρ − c̃/ρ). The properties of c̃ imply that c̃ρ > c̃/ρ. Finally,

dρ
dζ = ρη/s

det(H) (c̃ρ − c̃/ρ) > 0

where the analogous reasoning as for the previous inequality applies. To conclude, we
have:

39In our case, one can actually show that this has to hold given that d < ∞. Plugging in from the
first-order conditions yields

η2(c̃ρ − c̃/ρ)2(ρc̃ρρ − c̃ρ + c̃/ρ) > 0
where the inequality follows from the properties of c̃.
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dd
dη < 0 dd

dζ > 0
dρ
dη < 0 dρ

dζ > 0.

We obtain for the marginal rate of substitution between ζ and η on the expanding
interval

−
dρ
dη
dρ
dζ

= MRSρζη = s(2c̃ρ − c̃/ρ)

where we used the simplifications from above.
Similarly, we obtain

−
dd
dη
dd
dζ

= MRSdζη = c̃ρ
c̃/ρ− c̃ρ + c̃

c̃ρ
c̃ρρ

c̃/ρ− c̃ρ + ρc̃ρρ
.
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