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Abstract

This paper examines high-speed mobile network investments in a market challenged

by a new entry that induced a breakdown of incumbents’ practice of locking in customers

with high switching costs. The entry led to both diminished market power and extended

rivalry among the incumbents, two forces known to generate opposite incentives for

firm’s investments in product innovation. We explore which of the two effects prevailed

by estimating a dynamic model of innovation competition where the sizes of locked-in

demand are determined by the network’s pricing and investment strategies. We find

evidence that the entry had adverse effect on the incumbents’ investment despite the

product-market competition softened by consumer switching costs.

Keywords: competition, innovation, investment, dynamic, switching cost

1 Introduction
We examine investments in high-speed networks in the French mobile telecommunications

market challenged by a new entry, which was facilitated by the competition authority to

stimulate product-market competition in recent years. Before the entry, a predominant

share of consumers had long been locked into three established network services that

imposed on their customers high barriers to terminating contracts. The limited competition

motivated the government’s policy to open the market with a spectrum license reserved for

the fourth entrant.

The new entry gave rise to the emergence of new products characterized by the absence

of contractual switching costs. Contract-free services were introduced not only by the

entrant, but also by the incumbents through new product lines that provided them with

access to consumers no longer deterred from switching to competing networks.1 The new

products of both entrant and incumbents continued to gain adoption by growing number

of consumers, weakening the effectiveness of the existing switching barriers. Hence, it is

not surprising that the entrant, along with the fighting brands, has generated significant

social surplus at least in the short run (Bourreau, Sun and Verboven, 2021b).
1In the literature, it is often called fighting brand when the incumbents release such products as a strategic

response to the arrival of a new competitive entrant but are unwilling to do so in the absence of the new
competition (Johnson and Myatt, 2003; Bourreau, Sun and Verboven, 2021b).
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Nevertheless, it is not as straightforward to measure the long run welfare impact of

the entry since it produces ambiguous implications for the investment of the incumbent

networks. On the one hand, the contract-free services were made available to a broad

range of consumers, thus creating new rivalry for consumers who were free to switch.

This indicates a possibility that the investment race may have accelerated in the post-

entry market (Shapiro, 2011).2 On the contrary, the intensified competition may have

led to reduced demand and market power, diminishing the incentives for investment.

This Schumpeterian view is shared by a long line of research including the literature of

industrial organization.3 However, no empirical study has so far analyzed entry in a market

operating under high switching costs.

Our goal is to understand how investments respond to competition in a market where

the effective barriers to customer’s switching behavior are shaped by strategic considera-

tions. We build our analysis on the previous study that analyzes the incumbent’s incentives

for the fighting brands in the same market (Bourreau et al., 2021b). They find empirical

evidence that the extended product lines, which became available only after the entry,

came as a result of breakdown in collusion on the restricted supply of contract-free ser-

vices. Adopting their conclusion, we measure the impact of entry on the innovation of

the incumbent high-speed networks under the premise that the entry was an exogenous

change of market structure.

The regulated nature of the entry poses at least two important challenges to model-free

analysis. First, the entry was a simultaneous nationwide event, leaving no cross-sectional

or temporal variation in entry across markets. Thus without directly analyzing the profit

incentives, one can only compare investment levels before and after entry, which would

be invalid if the entry coincides with other changes omitted in the model. Even if valid

instruments were available, they would still be insufficient for a reduced form analysis of

our sample since the firms may have already been reacting to the anticipated entry, which

was publicly announced in advance.4

We develop a dynamic oligopoly model of innovation to measure the impact of entry

on the incumbent’s incentives for investment in high-speed cellular base stations.5 The

model is characterized by mobile network operators (MNOs) that compete on prices

and network qualities under customer switching costs and irreversible investment, both

of which generate dynamic implications for investment strategies. To characterize the

2This view has its origin from Arrow (1962), who argued for the positive role of competition. In addition to
the literature reviewed by Shapiro (2011), Vives (2008) discusses a few oligopoly models where an increase
in product substitutability can stimulate product quality innovations. Goettler and Gordon (2011) confirm in
a variant of their model that the innovation of technology leaders can increase monotonically with product
substitutability.

3Some prominent examples include Gilbert and Newbery (1982) and Vives (2008) for theoretical analysis.
The empirical literature also finds evidence supporting the same view that innovations are stimulated by increased
market concentration (Xu, 2008; Goettler and Gordon, 2011; Hashmi and Van Biesebroeck, 2016).

4The announcement was made about two years before the arrival of the entrant in January 10, 2012. It was
only two days before the date on which the entrant committed to initiate its service as a part of the 3G spectrum
license agreement (ARCEP, 2012, p.63).

5We quantify the innovation by the growth of network capitals that determine the quality of communications
services. We consider it as a progressive innovation that is continuation of existing innovations. It is analogous to
the non-drastic innovation of Tirole (1988), which contrasts with radical or drastic innovation that replaces the
legacy technology.
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dynamic competition, we adopt the Markov perfect equilibrium framework of Ericson and

Pakes (1995) and Doraszelski and Satterthwaite (2010), which has been employed in the

relevant empirical literature (Goettler and Gordon, 2011; Ryan, 2012; Collard-Wexler,

2013; Hashmi and Van Biesebroeck, 2016).

We use the two step approach proposed by Bajari, Benkard and Levin (2007) for

estimating the sunk cost of investment. The first stage analysis involves estimating the

consumer demand and firm’s pricing and investment strategies in geographically separated

markets. Given the estimated structural parameters, we conduct a counterfactual analysis

that excludes the entrant from the market for measuring the impact of entry on the

incumbent investments. To solve the large scale dynamic optimization problem, we adopt

the Smolyak method of Judd, Maliar, Maliar and Valero (2014), which provides an efficient

solution approach that allows us to relax the commonly imposed assumptions such as

symmetry, anonymity, and time homogeneity in firm’s dynamic strategies.6 In benchmark

analysis, we find that equilibrium network investment increases for all the incumbents in

the absence of the entrant. This result confirms the previous findings that the efficiency

effect dominates the innovation incentives.

Our analysis adds a new perspective to the broad literature on the role of market

structure for innovation, productivity, and economic growth. In the existing literature,

extensive evidence has been found for more nuanced effects of competitive pressure

(Blundell, Griffith and Van Reenen, 1999; Aghion, Bloom, Blundell, Griffith and Howitt,

2005; Aghion, Blundell, Griffith, Howitt and Prantl, 2009). In particular, Aghion et al.

(2005) developed a theory of inverted-U relationship governed by the steady state of

innovation race between two rivals. While the nonlinear relationship is identified under

varying degrees of market power arising from collusive behavior in their model, the

switching costs are not considered in their analysis as a source of market power.

Our work is also closely related to the debate on the role of mergers on innovation.

Motta and Tarantino (2017) and Federico et al. (2018) both analyze a oligopoly model

of investments under horizontal mergers and find that a merged firm lowers investment

since it internalizes the competitive pressure from the innovated product on its other

products. Haucap et al. (Forthcoming) provide theoretical and empirical evidence from

a pharmaceutical industry that R&D investments decline in the post-merger market. In

contrast, Genakos et al. (2018) examine mobile telecom markets across 33 OECD countries

and find positive relationship between market concentration and operator’s investment.

Schmutzler (2013) highlights the asymmetric effects of mergers on the innovation of

firms that vary with factors such as cost efficiency. Bourreau, Jullien and Lefouili (2021a)

identify various countervailing effects of mergers, which may generate overall ambiguous

implications for investments.

In a separate stream, there have been numerous studies in economics and marketing

on the relationship between competition and switching costs (for survey of the literature,

see Klemperer (1995) and Farrell and Klemperer (2007)). Yet, their analysis has primarily

focused on price competition and welfare consequences (e.g., Viard (2007), Dubé, Hitsch

6See page 1,894 of Doraszelski and Pakes (2007) for the formal definitions of the first two.
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and Rossi (2009), Dubé, Hitsch and Rossi (2010), Biglaiser, Crémer and Dobos (2013),

and Shcherbakov (2016)). In contrast, there is still a lack of understanding of how the

innovation incentives depend on competition under switching costs. Our empirical study

complements this body of research.

Our methodological contribution is concerned with the solution approach for our large

scale dynamic model. The firms operate a portfolio of product lines differentiated by pro-

duction costs, product qualities, and switching costs. In order to account for the persistent

variation in the composition of firms and products, we have to relax the assumption of

symmetric and anonymous firms that are typically imposed for the sake of tractability.

Our model also needs to include multiproduct firms to analyze the innovation incentives

generated by extended product portfolios. These considerations require multiple state

variables to characterize each firm’s competitive position, resulting in the widely known

problem of the curse of dimensionality (Aguirregabiria and Nevo, 2013). Furthermore, the

anticipated timing of the entry renders the firm’s dynamic investment to be nonstationary,

i.e., the firm’s optimal investment depends on time in addition to the state variables until

the arrival of the entrant. Our empirical strategy departs from the empirical IO literature

by accommodating these extensions with an efficient empirical strategy.

2 Market and data
As commonly observed in industries operating with high customer switching costs, the

French mobile market, prior to the latest entry in 2012, was heavily concentrated around

three dominant incumbent mobile network operators (MNOs) that had not faced a sub-

stantive competition for a long time since 1996.7 Despite the government’s effort to

stimulate competition through the entry of mobile virtual network operators (MVNOs),

their reliance on the network supply and marketing of the incumbents had limited the

ability to aggressively compete with their host operators. As a result, the incumbent MNOs

used to control around 88.7% of total subscribers in mainland France in 2011 (ARCEP,

2012, p.64).

In addition, the incumbents had been able to maintain substantial market power by

limiting the consumer’s mobility between services providers. It was a common practice

for the incumbents to lock in consumers with high switching costs from various sources,

which include contractual commitment, bundling with other services (e.g., broadband

Internet, TV, and fixed telephone, often called as triple or quadruple play) or mobile

handset, and the limited duration of prepaid balances that could be extended only through

purchasing new credits continuously. The lack of competitive pressure, even in comparison

to other OECD countries, had motivated the regulation authority, ARCEP,8 to set aside a 3G

frequency spectrum license for a new entrant (ARCEP, 2012). Finally, Free Mobile obtained

the license through a beauty contest and entered the market nationwide in January 2012.

The entry changed the competition through extended rivalry in supplying the contract-

free services. Free Mobile began offering postpaid services at competitive prices, most

7The last entry was made by the third incumbent in 1996 by Bouygues Telecom.
8Autorité de régulation des communications électroniques et des postes.
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Figure 1: Filling the void in the supply of contract-free services

significantly without demanding contractual commitment from the consumers. In response

to the new competition, the incumbents immediately followed by introducing similar

contract-free services via extended product lines. Interestingly, the extended product

line was supplied by each incumbent’s new subsidiary that emerged as a fighting brand
(Bourreau et al., 2021b).

Figure 1, from the ARCEP’s annual report, shows that the share of contract-free

subscribers had remained stable at 20% until it started to grow rapidly immediately after

the entry in early 2012 (ARCEP, 2013, p.85). The continued rise in the contract-free

customer base indicates that there may have been a gap in the supply for such products.

Our interpretation is supported by an accompanying empirical analysis of Bourreau et al.

(2021b), where they find evidence consistent with collusive agreement on the undersupply

of products of low switching costs among the incumbents to avoid intense competition in

the market without entry.9 In our analysis, we adopt their view that the expansion of the

incumbent’s product portfolios was triggered by the change of market structure.

For our analysis, we compile a panel dataset of mobile services in France from January

2011 to December 2014.10 We obtain average prices and subscriber shares from Kantar

consumer survey, which collects the self-reported measures of subscription and consump-

tion from about 7,000 consumers on a monthly basis. The dataset provides information

on the demand for the three incumbent MNOs (Orange, SFR, and Bouygues) and the

entrant (Free) across 21 geographic divisions called régions in mainland France. For the

remaining operators, we observe 28 MVNOs, which are then aggregated according to their

host networks due to highly sparse observations.

The extensive product variety in the modern mobile market presents a nontrivial

challenge to empirical studies. The continuum of price menus available under diverse tariff

9Bourreau et al. (2021b) find that the collusion became no longer sustainable due to the competitive pressure
from the entrant.

10The same data source has also been used by Bourreau et al. (2021b). While they focus on product differentia-
tion by a variety of product lines and subscription types, we consider the market at a more aggregated level of
network operators.
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structures makes it particularly difficult to construct a price index representing the entire

universe of products.11 As a solution, we adopt a simple approach by defining product as a

group of services supplied under each product line brand and considering price as monthly

total expenditure on service package, which encompasses subscription and consumption

of all component services such as voice call, mobile data, and short messaging services

(SMS).12 Since we study how demand responds to innovation across the product lines,

we obtain the price from the average of individual prices for each product line in a given

region and time period.13 We exclude mobile handset payments from the measurement

since the competition in the mobile handset industry is not the focus of our analysis.

We measure the network supply by the total number of cellular base stations (often

called cell towers) activated by mobile operators in each local region. We obtain informa-

tion on the location, the date of activation, and the technology generation (2G, 3G, and

4G) from L’Agence nationale des fréquences (ANFR), a government agency that authorizes

the operation of radio communications facilities. The installed base of the cell towers is an

important source of product differentiation for the mobile services since it determines the

strength of radio signals and the speed of data transmissions to a large extent. It occupies

a major share of capital expenditure for the mobile operators competing to provide a

faster and more reliable service. Hence, we use the quantity of cellular base stations as an

operating measure of network quality provision and investment.

Prior to the entry, consumer demand appears to have been largely driven by nontrivial

switching costs. Table 1 shows that less than 4-5% of the incumbent’s subscribers were

switching operator from quarter to quarter in the pre-entry periods. After the entry of Free

Mobile, we can see in the lower panel new subsidiary brands added to the product lines

of the incumbents.14 The incumbents’ main product lines (Orange, SFR, and Bouygues)

exhibit a slight drop in the customer retention rates in the post-entry market. But we find

that the loss is partly offset by the sales from their subsidiaries, which tends to be relatively

high among the customers switching within the same network. Yet, product substitutability

is likely to have increased as more consumers migrated to the new contract-free plans

supplied by the entrant and the incumbents.

11The mobile operators typically offered three types of tariff: prepaid, postpaid, and forfait bloqué. Prepaid is a
linear tariff that charges only usage fees, and postpaid (called forfait in French) is a three-part tariff composed of
fixed subscription fee and consumption allowances along with variable fee for usages exceeding the allowances.
Forfait bloqué is a flat rate service that comes with fixed allowances only and can thus be viewed as a variation of
the postpaid with blocked overusage as its name suggests. Among many factors adding to the complexity of tariff
structure are financing for handset device, discounts for within-network call rates or bundling with other services,
and duration of contractual commitment.

12Only the three incumbent MNOs operated product lines under different brands: Orange, SFR, and Bouygues
introduced Sosh, Red, and B&You as fighting brand, respectively.

13The individual prices are aggregated across prepaid, postpaid, and forfait bloqué with equal weights to avoid
price variation due to fluctuation in demand composition.

14Orange, SFR, and Bouygues have introduced Sosh, Red, and B&You, respectively.
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Last period
Orange SFR Bouygues Others

Pre entry
Orange 0.967 0.012 0.009 0.021
SFR 0.010 0.962 0.006 0.017
Bouygues 0.005 0.005 0.957 0.015

Post entry
Orange 0.940 0.009 0.010 0.014
SFR 0.009 0.940 0.010 0.012
Bouygues 0.004 0.004 0.934 0.008
Free 0.016 0.015 0.016 0.328
Sosh 0.012 0.003 0.002 0.070
Red 0.001 0.013 0.002 0.048
B&You 0.002 0.003 0.011 0.058

The figures display the average share of customer switching
on a quarterly basis.
The column heading denotes the network from which con-
sumers switch, and the rows list the network of their destina-
tion.

Table 1: Quarterly share of customer switching

3 Model

3.1 Framework

We begin with a model of demand for mobile services of network operators. The list of

mobile operators includes all four MNOs (Orange, SFR, Bouygues, and Free) and two

MVNO groups (Virgin and others). Their combined market shares are approximately 92.2%

on average in our sample. Virgin is the only MVNO that has roaming agreements with

all three incumbent operators and occupies the largest share among the MVNOs. The

rest of the MVNOs are highly fragmented and thus are grouped by their associated host

networks.15

Often the MNOs provide multiple product lines through subsidiary brand. Each product

line represents a universe of service contracts available to consumers under unique product

brands operated by the same operator. For convenience, we use the terms product line and

service interchangeably.

For consumer ι subscribing to service k in the preceding time period t − 1, mobile

network operator i ∈ N = {1, ..., N} offers service j ∈ J = {1, ..., J}, which at present

time t yields indirect utility

uιjt|k = γ logAjt − αpjt + χjkt + ξjt + ϵjkt + ϵιjt, (1)

15The other choices range from relying on alternative technology such as Wi-Fi to roaming services of foreign
operators.
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where Ajt is a metric of mobile network quality of service j defined as

Ajt = δt−1Ãjt,

where Ãjt is the number of cellular base stations adopting 3G (UMTS) and 4G (LTE)

cellular network technology standards. To account for the continual progress in cellular

technology, Ãjt is scaled by spectral efficiency multiplier δ defined as δ = δS/δD, where

δS represents the rate of spectral capacity made by network equipment suppliers, and δD

corresponds to the rate of cellular network traffic growth. Therefore, Ajt provides an index

of quality measured in the effective unit of network traffic normalized to the first quarter

of 2011. δS is calibrated to be 1.043 based on 18.5% annual growth of spectral capacity

reported by Real Wireless Ltd. (2011), and δD is set to 1.1 based on the industry estimate

of 40% annual mobile traffic growth (Ericsson, 2014, p.12).

The utility function also includes price pjt defined as average fee for both subscription

and usage of service j. As discussed in the previous section, we abstract away from

particular details on tariff structure to simplify the analysis. On the other hand, ξjt
denotes unobservable component of product quality exogenous to network innovations.

For expositional purpose, we omit the expression for observable product quality in this

section. ϵjkt is an independently and identically distributed (i.i.d.) random shock to the

utility of switching from k to j, and ϵιjt is an i.i.d. random taste shock drawn from a

normalized extreme value distribution.

In Equation 1, χjkt captures the costs of switching to alternatives (including outside

option) other than service k at time t. Instead of including χjkt in the utility of every

option other than k, without loss of generality we can normalize the utility of outside good

to uι0t|k = ϵι0t by parametrizing the switching costs as χjkt = χ1{j = k}, where χk can be

conversely interpreted as savings in opportunity costs of switching from service k. To avoid

the curse of dimensionality, we further assume that χ ̸= 0 only if k is one of the services of

the incumbent MNOs under existing contract-based tariff models. The set of such services

are denoted by K ⊂ J , from which consumer switching entails nontrivial costs.

Since network is shared by all product lines Ji ⊂ J of each operator i, it follows that

Aj = Ai for all j ∈ Ji. Then, the share of consumers switching from service k to j ex post

the demand shock ϵjkt can be written as

Sϵ
jt|k =

eδjt+χjkt+ϵjkt

1 +
∑

l∈J e
δlt+χlkt+ϵlkt

for j ∈ J , (2)

where δjt = γ logAjt − αpjt + ξjt. Subsequently, the share of subscribers of service j at

time t is determined as

Sjt =
∑
k∈J

Sϵ
jt|kSkt−1.

In each period, each operator i ∈ N = {1, ..., N} sets price and network investment

(pit, ait) simultaneously to maximize the net present value of flow profits expected to
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receive over the infinite time horizon.16 The one-period profit of firm i has the form

Πit =
∑
j∈Jit

(pjt − cjt)Djt(st, pt)− Ci(ait, νit),

where Djt is an ex ante expected demand for service j at prices pt = (p1t, ..., pJt); cjt
is marginal cost, and st is a collection of payoff-relevant states observed by the firms;

Ci(ait, νit) is the cost of investing ait units of network capital, which is assumed to be a

convex function of ait. νit is a cost shock that is private information to firm i.

We assume that firms have imperfect knowledge of demand shocks ξt = (ξ1t, ..., ξJt)

and ϵkt = (ϵ1kt, ..., ϵJkt). Our assumption is motivated first of all by the need to ensure

the existence and stability of price equilibrium. Under high switching costs, the firm’s

price strategy often responds discontinuously to a purturbation in the price of rivals such

that pure-strategy equilibrium does not exist. The problem is solved when uncertainty is

introduced in ξt and ϵkt. At time t, the firms are assumed to form rational expectations

of ξjt based on a first-order autoregressive (AR 1) process. The firm’s belief about ϵjkt is

represented by a normal distribution N(µϵ
jt, σ

ϵ
j), where its mean µϵ

jt varies across products,

time and markets with product-specific variance σϵ
j . Then under the belief denoted by Fξ,ϵ

about the shocks, the ex ante demand is Djt = MSjt, where M is the population of the

corresponding region,17 and Sjt is ex ante market share

Sjt =
∑
k∈J

∫
Sϵ
jt|kdFξ,ϵ(ξt, ϵkt)Skt−1.

Therefore, each firm’s period payoff is characterized by a collection of common knowl-

edge states st and a private information cost shock νit, where st will be defined in the

next section. After observing sit and νit, firm i simultaneously sets the price and network

investment. We assume that it takes one period for the investment to take effect while price

decision becomes effective immediately. After the decisions are made, the firms receive the

revenue net of the investment cost, and the next-period states are determined. In each

time period t, firm i accumulates network capital by investing ait units of base stations in

network Ait to obtain

Ait+1 = δ(Ait + ait),

where ait is the effective investment in new base stations satisfying ait = δt−1(Ãit+1− Ãit).

We focus on the Markov perfect equilibrium (MPE), where firm’s strategy depends

only on the payoff-relevant state variables (Ericson and Pakes, 1995; Doraszelski and

Satterthwaite, 2010). For given pair of the states (st, νit), firm i’s best response σi(st, νit) =

16For a model of collusive investment, see Nocke (2007).
17The information on M is obtained from the census provided by the national statistics agency, L’Institut

national de la statistique et des études économiques (INSEE).
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(pit, ait) maximizes the intertemporal profit formally defined by value function

Vi(st, νit) = max
{σiτ}∞

τ=t

∞∑
τ=t

βτ−tE
[
Πi(sτ , ντ , σiτ , p−iτ )|st, σt

]
, (3)

where σit = σi(st, νit), σt = (σ1t, ..., σNt), and E is the expectations operator for (sτ , ντ )

conditional on (st, σt) for τ = t, ...,∞. The firms are assumed to have rational expectation

on the state transition that follows a Markov process F (st+1|st, σt) and the private shock

distribution Fν(ν). The equilibrium strategy profile σ = (σ1, ..., σN ) is a collection of the

best responses that jointly satisfy the Bellman equation

Vi(st, νit) = max
σit

[
Πi(st, νit, σit, p−it)+β

∫
Vi(st+1, νt+1)dF (st+1|st, at)dFν(νt+1)

]
, (4)

for all i = 1, ..., N .18 Under static price competition, pt does not affect the future state and

is thus omitted in the state transition process F (st+1|st, at).
Under the assumptions made so far, the MPE is a subgame perfect Nash equilibrium

that maps payoff-relevant state space S × V to action space A: σi(s, νi) =
(
pi, ai

)
for all

i = 1, ..., N . The existence of MPE in dynamic game with continuous actions is established

by Escobar (2013) and has been assumed in the empirical literature (e.g., Ryan (2012)).

However, the existence and uniqueness of pure-strategy equilibrium is not guaranteed for

our oligopoly pricing game, due to the departure from the standard logit demand. Our

demand system does not belong to the class of models that satisfy the quasi-concavity in

profit function (Caplin and Nalebuff, 1991), or the independence of irrelevant alternatives

property in demand (Nocke and Schutz, 2018). Hence, there is a priori no guarantee that

price equilibrium exists in our model. The problem is solved by our assumption on firm’s

uncertainty about the demand shocks ξjt, which recovers the existence of price equilibrium

in our empirical analysis.19

3.2 Investment incentives and market structure

Before setting up the econometric specifications, we seek to obtain a simpler representation

of the investment competition from the theoretical model that will guide our understanding

the underlying incentives. To simplify the analysis, we consider the network stock At as

the sole component of the state vector st. The Bellman equation (Equation 4) can then be

expressed as

Vi(s, a−i) = max
ai

[
Πi(s, ai) + βE

[
Vi(s

′, a′−i)
∣∣∣s, a]], (5)

where we denote the next period actions and states as a′ = at+1 and s′ = st+1 and suppress

the time index t for a = at and s = st as well as cost shock νit to simplify the discussion.
18Given any opponent strategy (p−it, a−it), the value function is a unique solution to the Bellman equation by

Bellman’s principle of optimality under certain regularity conditions (Rust, 1988). However, there could exist
multiple sets of equilibrium strategy profile satisfying the above Bellman equation.

19Without the assumption, the price equilibrium does not exist almost in all cases. A small change in the rival’s
prices induces a discontinuous jump in the best response price function, such that no configuration of prices
satisfies the optimality condition for all firms.
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From this, we can derive an Euler equation (the details of derivation are available in the

appendix)

E
[
C ′(ai)− βδC ′(a′i)

∣∣∣s, ai] = βδE
[
∂Πi(s

′, a′i)

∂s′i
+
∑
j ̸=i

∂Vi(s
′, a′−i)

∂a′j

∂a′j
∂s′i

∣∣∣∣s, a]. (6)

This Euler equation demonstrates the tradeoff of accelerating the investment schedule in

equilibrium. The difference in the left hand side of Equation 6 represents an increase in

the expected cost of shifting one unit of future investment a′i to the present ai. The right

hand side determines the marginal increase in the profit flow as a result of the accelerated

investment.

Inside the bracket on the right hand side, the first term reflects the profit incentives of

the investment, which can be further decomposed as

∂Πi(s)

∂si
= (pi − ci)

[
∂Di(s)

∂si
+
∑
j ̸=i

∂Di(s)

∂pj

∂pj
∂si

]
(7)

by the envelope theorem applied to the equilibrium flow profit Πi(s), where firm i has

a single product, and {pj}∀j are the Nash equilibrium prices. Within the above bracket,

the first term determines the direct impact of investment on demand, and the second

characterizes the indirect effect on demand through intensified price competition. In

general, the increase in si imposes downward pressure on the rival’s prices, counteracting

the direct impact ∂Di/∂si to some extent. Hence, the price competition effect generates

an incentive to delay the investment to avoid excessive competition (Vives, 2008; Motta

and Tarantino, 2017).20

Going back to Equation 6, the second term in the bracket defines the strategic effect

of investment.21 It takes into account the impact of rivals’ best response a′j to a marginal

improvement in s′i on the discounted sum of profit flows Vi. Its direction may not be

straightforward to determine a priori since the derivative ∂a′j/∂s
′
i depends on the model

primitives as well as the market states. The theoretical literature has considered general

cases where the competitive reaction ∂aj/∂si is simply assumed to be either positive

(Aghion et al., 2005) or neutral (Segal and Whinston, 2007), or instead analyzed a

specific framework where the rival’s equilibrium response can be decreasing in si (Nocke,

2007). Similalry, empirical studies have identified negative or non-monotonic relationship

between investment and quality of the rivals (Goettler and Gordon, 2011; Hashmi and

Van Biesebroeck, 2016; Igami, 2017). Provided that ∂Vi/∂aj < 0, the downward-sloping

strategy in rival’s quality motivates firms to accelerate the investment in order to deter the

rival’s investment.

It can be challenging to characterize the overall impact of market structure on the

investment incentives in theoretical analysis. Yet, the direct demand effect ∂Di/∂si

20It is also identified as the main source of negative investment impact of mergers by Motta and Tarantino
(2017) and Federico et al. (2018).

21Without competition, the second term would disappear, and Equation 6 would be reduced to the simplified
Euler equations of Pakes (1996) and Aguirregabiria and Magesan (2013) derived for single agent dynamic
models.
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generally goes down if the incumbent’s demand moves to more inelastic area of the curve

after the entry. This is analogous to the S-shaped value function of Pakes and McGuire

(1994) as described by Whinston (2011). In their model, the R&D rate tends to be high

when the firm is located at intermediate states where the value function curve is steepest

while it becomes lower as the firm moves away from the steep area of the curve. Our model

may also generate similar effect, considering that our framework employs a variation of

their discrete choice demand specification.

Nevertheless, there exists one important difference with the standard setting: i.e., the

expansion of product lines into the space of contract-free products. The incumbents, by

making contract-free services available, began to face different parts of the demand curve

depending on the products. Hence, it is not obvious how the overall incentives have

responded to the changes in the product-market competition. The analysis is further com-

plicated by the persistent firm heterogeneity in multiple dimensions. Hence, it motivates

our empirical analysis to determine which incentive had a prevailing effect.

3.3 Empirical specification

Dynamic games can easily become computationally intractable due to the curse of di-

mensionality (Doraszelski and Judd, 2012; Aguirregabiria and Nevo, 2013). To mitigate

the burden, simplifying assumptions are needed to reduce the state space. We begin by

reformulating the profit as a function of margins mt = (m1t, ...,mNt) instead of prices as

Πit =
∑
j∈Jit

(pjt − cjt)Dj(At, ξt, St−1, pt)− Cit(ait, νit)

=M
∑
j∈Jit

mjt

∑
k∈J

∫
eδjt+χjkt+ϵjkt

1 +
∑

l∈J e
δlt+χlkt+ϵlkt

dFξ,ϵ(ξt, ϵkt)Skt−1 − Cit(ait, νit),

where the common knowledge states st are constituted by {Ait}i∈N , {ξjt − αcjt}j∈J ,

and {Skt−1}k∈K. With abuse of notation, ξjt denotes the observed part of the exogenous

product quality not integrated out above. From this alternative representation, we can see

that both product and process innovations, which shift ξjt and cjt respectively, would have

the same implications for the firm’s innovation incentives (Motta and Tarantino, 2017).

We abstract away from the pricing decision of the fringe firms by assuming the marginal-

cost pricing, i.e., pjt = cjt or equivalently mjt = 0 for the MVNO products. This assumption

allows us to treat the quality of the MVNO products as exogenous and thus focus on the

strategic interactions among the MNOs. This allows us to normalize the product qualities

with respect to a composite quality ωt = log
(
1 +

∑
j /∈J e

δjt
)
, where J is modified to

denote the products of the MNOs only. The inclusive value ωt effectively summarizes the

quality of the products of those who are outside the investment competition.22 Then we

can use a new measure µjt = ξjt − αcjt − ωt to characterize the exogenous component of

the quality of service j relative to the non-investment goods. Under these notations, we

22Since we normalize the switching costs to the new products and MVNOs, χjk = 0 for all j /∈ J .
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can simplify the profit function as

Πit =M
∑
j∈Jit

mjt

∑
k∈J

eγ logAjt+µjt+χjk−αmjt

1 +
∑

l∈J e
γ logAlt+µlt+χlk−αmlt

Skt−1 − Cit(ait, νit),

where N now denotes the set of the MNO firms without loss of generality.

Hence, the final set of state variables for firm i is (st, νit) = (At, µt, St−1, νit) ∈ S × V,

where S = [0, Ā]N ×RJ for Ā > 0, and V = R1.23 The exogenous state µjt is assumed to

follow a stationary first-order Markov process Fj(µjt+1|µjt) parametrized as

µjt+1 = ρj0 + ρ1µjt + ζjt ∀j ∈ J , (8)

where ζjt is an i.i.d. normally distributed random shock. Hence, the dimension of the state

space is N + J +K + 1 = 4 + (2× 3 + 1) + 3 + 1 = 15.

4 Estimation
While it is straightforward to recover the static parameters, the dynamic parameters in the

investment cost function are prohibitively costly to estimate since we have to repeatedly

solve the dynamic game for many times, which is infeasible even with the simplifying

assumptions introduced so far. Instead, we adopt the two-step estimator of Bajari et al.

(2007) (BBL), which provides a computationally efficient alternative.

In the first stage, the BBL algorithm estimates the state transition distribution F (s′|s)
and the equilibrium investment policy function σ(s). This step involves the estimation

of the demand in Equation 1 and the marginal cost, by which the state variables are

characterized. The equilibrium investment strategy is estimated using a reduced form

model, which will be discussed shortly. Given the estimates, the second stage is to form

inequality moments from the following necessary and sufficient condition for MPE:

Vi(s;σi, σ−i; θ) ≥ Vi(s;σ
′
i, σ−i; θ), (9)

where Vi is the value function that jointly satisfies Equation 4 for all i ∈ I, σ is a MPE

strategy profile, and σ′
i is an alternative Markov strategy. The BBL algorithm aims to find

the parameter θ0 that least likely violates this equilibrium condition at the observed data.

That is,

θ0 = argmin
θ∈Θ

∫
χ

(
Vi(s;σi, σ−i; θ)− Vi(s;σ

′
i, σ−i; θ)

)2
dH(s, σ′

i), (10)

where H is a distribution over the product of the state and action spaces S × A, and

χ = {(s, σ′
i) ∈ S × A : Vi(s;σi, σ−i; θ) < Vi(s;σ

′
i, σ−i; θ)}. Since computing the exact

value function is not feasible in practice, Bajari et al. (2007) propose a forward simulation

method that numerically computes the value function by simulating the data-generating

process. The state transition distribution and equilibrium policy function estimated in the
23For the upper bound Ā, we count the total number of antenna sites authorized during the sample period and

then multiply it by the number of frequency bands available for the network operators.
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first stage are used to calculate the next-period states given the strategy profile σ′
i.

24 Since

the estimation proceeds in multiple stages, an analytical form of asymptotic standard error

is difficult to evaluate. Hence, we compute the bootstrap standard errors following Bajari

et al. (2007) and Ryan (2012).

Table 7

Table 7 presents the results for the demand estimation. Column Logit shows the

estimates without controlling for price endogeneity. In Column IV, we account for the price

endogeneity by using the IV approach of Berry et al. (1995): we consider the network

supply as exogenous to pricing decisions and use them as basis for constructing instruments.

Specifically, they are the lagged variables of 2G and 3G/4G networks as well as their BLP-

type approximations of the theoretical optimal instruments. The IV approach produces

increased price impact and more significant estimates for other parameters. This implies

that even after controlling for the most important quality determinants such as network

outlays, the products are still differentiated in other dimensions.

Column IV-SWC further includes the opportunity costs of switching, which is signif-

icantly high. We find a downward shifts in the product fixed effects for the incumbent

operators (i.e., Orange, SFR, and Bouygues) that carry high switching costs as a result

of the change. Nonetheless, the coefficients for price and network characteristics remain

unchanged in size but their efficiency improves slightly.

For more efficient estimation, we account for heteroscedasticity and autocorrelation in

the covariance of unobservables by aggregating the moments across time for given product

and region. We also include linear and log time trends to account for the progress in the

outside technology. We use time elapsed since entry for the new products to control for the

remaining intertemporal dependence in the unobservables that may arise from the word

of mouth and learning effects in a parsimonious way.

Service Product Price M.C. Margin
provider group (AC) (AC) (p-c)

Orange Orange 25.00 10.23 14.78
Sosh 16.64 11.55 5.09

SFR SFR 20.76 8.41 12.35
Red 15.42 10.76 4.67

Bouygues Bouygues 23.23 13.53 9.70
B&You 15.86 11.87 3.99

Free Free 11.54 7.50 4.04

Bootstrap means across 21 regions for 2011Q2–2014Q4 based on
100 replications

Table 2: Markup estimates

24In practice, it may be possible that the moment inequality estimator permits only set identification. In that
case, Bajari et al. (2007) provide an alternative estimator with appropriate change of notations.
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Table 2 summarizes the average marginal cost and markup estimates generated by 100

bootstrap samples drawn from the asymptotic distribution of the parameter estimates in

Column IV-SWC of Table 7. The overall results exhibit quite a departure from the standard

logit demand, where markups tend to be homogeneous in the absence of consumer inertia.

All the subsidiary lines of the incumbents generate substantially lower markups than their

original product lines. Yet, they still charge higher margins than the entrant.

Interestingly, the marginal costs tend to be higher for the supposedly low cost subsidiary

lines than those main product lines for the incumbents. For example, Orange’s marginal

cost is AC10.71, which is lower than Sosh’s AC11.84. While negligible, the reversal may be

due to the fact that the Orange product group encompasses a wide range of heterogeneous

services ranging from prepaid, postpaid, and forfait bloqué, which could have led to the

lower marginal costs. Moreover, the new service lines (Sosh, Red, and B&You) all provide

larger consumption allowances than their older products, which may have contributed to

the increased marginal costs.

Given the demand and marginal cost estimates, we estimate the law of motion for

the exogenous quality µit (Equation 8). The bootstrap estimation results are reported in

Table 3. The high estimate of ρ1 (ρ1=0.913) indicates that there is a relatively strong state

dependence in the product quality process. On the other hand, the product fixed effects

show a relatively weak heterogeneity in the quality generating process.

Parameter Estimate Std. err

ρ0 0.638 0.278
ρ1 0.711 0.039
SFR 0.027 0.136
Bouygues -0.410 0.106
Free -0.108 0.104
Sosh -0.736 0.137
B&You -0.777 0.122
Red -0.666 0.125

Observations 1,822
R2 0.805

Based on 100 Bootstrap estimations. Orange’s
fixed effect normalized to 0.

Table 3: AR 1 process of exogenous
quality

For estimating a reduced form of investment policy, we encounter a challenge due to the

complexity in the firm’s strategic considerations. While various flexible models have been

employed in the literature to obtain close approximated equilibrium policy functions,25

it would be difficult to obtain similarly reliable estimates for a market characterized by a

large state space and a high degree of firm heterogeneity. Instead, we adopt random forests

25Among the examples are cubic b-splines (Ryan, 2012), local linear regressions (Bajari et al., 2007), or higher
order polynomials (Hashmi and Van Biesebroeck, 2016).
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of Breiman (2001), which is a flexible yet robust machine learning method that requires

minimal tuning efforts by the researcher. Random forests has been found to produce

superior out-of-sample predictions in a test of various demand estimation methods (Bajari

et al., 2015). While a carefully selected parametric function may outperform random

forests in fitting the data, our machine learning method has the advantage of accurate and

reliable predictions without the need for user interventions due to model sensitivity.
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Figure 2: Impact of entry on the incumbent networks

In random forests, we regress the log investment of each firm on the states st =

(At, µt, St−1), population, market fixed effects and time trend.26 We use 500 trees to

obtain function estimates

f̂it =
1

B

B∑
b=1

Tb(st),

where Tb is a single regression tree generated by random selection of training samples and

regressors. For each node splitting, the square root number of regressors are selected at

random.

Figure 2 shows how the investments vary with some of its state variables. In the top

panel, the log investment is displayed as a function of own firm’s innovation stock, while
26Time trend is included to test for the stationarity of the Markov strategy.
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in the middle and bottom panels it is related to share of locked-in customers and sum

of rival networks. The dots represent the observed investments, and the lines are the

predicted values from one of the random forests estimations. The fitted curves exhibit

high fluctuation due to variation in the other states. Still, the overall prediction appears to

match the observations reasonably well.27 While the figure suggests that there might be a

positive relationship between investment and own firm’s network, a caution is needed for

such interpretation since both are endogenously determined.

1 2

Estimate Std. error Estimate Std. error

Invest 50,589 13,803
Invest2 435.98 219.95
Log σν -14.68 13.18 -3.82 13.70

Bootstrap 100 100
Simulation paths 100 100

Discount factor β=0.925; each simulation with one shot perturbation above & below
the observed equilibrium investments. Investment median=15.4; mean=28.0.

Table 4: Estimation of investment cost

Table 4 displays estimates for the cost function under two different specifications. The

first uses a linear specification, and the following column for the quadratic function. In

each column, we simulate 100 history paths for future states with a fixed time horizon of

100 quarters, so as to maintain the computation cost within feasible range. Each column

simulates two counterfactuals from one-period perturbation of the equilibrium investment

policy by one antenna unit upward and downward, respectively.28

We find the estimates to be mostly significant. However, the dispersion of cost shock

distribution is excessively small. This appears to be an artifact in a computational problem

that will be addressed in the future draft. We present Table ?? in the appendix, where the

cost function is estimated for a benchmark model that does not incorporate the customer

switching costs. The magnitude of the investment costs is in line with those estimates from

the benchmark, suggesting that our estimates may not be too far from the correct values.

5 Counterfactual analysis

5.1 Impact of entry on network investment

Given the estimates of the benchmark model, we now analyze the equilibrium investments

in counterfactual market that excludes the entrant. It is typically infeasible to numerically

solve dynamic games without imposing restrictive assumptions to reduce the state space

(Aguirregabiria and Nevo, 2013). To alleviate the problem, the industrial organization

27The average R2 was 0.80 (Orange), 0.79 (SFR), 0.74 (Bouygues), and 0.83 (Free).
28We find this approach to be more informative than random or permanent perturbations. The same approach

has been used by Hashmi and Van Biesebroeck (2016).
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literature usually assumes strategies to be invariant with respect to the identity of own and

rival firms (Doraszelski and Pakes, 2007). Often researchers limit the maximum number of

active firms or restrict the state space into a small number of discrete values Ryan (2012);

Collard-Wexler (2013); Hashmi and Van Biesebroeck (2016). However, these assumptions

are overly restrictive in our context since the regulated market accommodates fixed set of

firms that operate under heterogeneous quality-generating processes.

Moreover, our model is not time stationary in the pre-entry periods since the optimal

investment strategy would adjust to the time remaining until the anticipated entry. Hence,

it is necessary to solve the stationary dynamic game in the post-entry periods and then solve

backwards the nonstationary games played before the entry recursively. This approach can

easily become intractable even in models of relatively small scale.

We overcome the challenge by adopting a sparse-grid algorithm developed by Smolyak

(1963). The Smolyak method implemented by Judd et al. (2014) provides an efficient

approximation for the value functions in Equation 4. The Smolyak method constructs a

sparse set of grid points in the state space on which the value functions are approximated by

an efficiently chosen set of basis functions. It has also been used in large scale applications

in economics (Winschel and Krätzig, 2010; Brumm and Scheidegger, 2017). Additional

implementation details are available in the appendix.

We quantify the changes in the growth of the incumbent networks when the entrant’s

and incumbent’s new products are excluded from the market. This exercise allows us

to examine how the innovation incentives respond to an unexpected change in market

structure in the long run. To simplify the analysis, we focus on the region of Île-de-France,

which is the most populated province that includes Paris as a part of the region. We

simulate 200 paths of the network growth for the incumbents starting from the second

quarter of 2012 for 15 years. By starting from 2012 Q2, our exercise allows us to abstract

away without loss of generality from the transitory periods preceding the arrival of the

new products from the entrant and incumbents.29

Figure 3 displays the growth of the networks starting from 2012 Q2 until the market

approximately reaches a steady state. Label “No entry” indicates the effective network

supply Ait in the market where both Free Mobile and fighting brands are excluded. Label

“+Free only” represents the market entered by the entrant exclusively while still excluding

the incumbent’s new products. Finally, the curve for “+Free/FB” includes all contract-free

services from both the entrant and the incumbents.

First of all, the investments in the “No entry” market are highest in all cases across

the incumbents. The gap between the curves “No entry” and “+Free/FB” indicates that

the investments have gone down for all the incumbents with increased competition in

the post-entry market. This result is consistent with the theoretical prediction of Vives

(2008) and the empirical findings of Goettler and Gordon (2011) and Hashmi and Van

Biesebroeck (2016).

Yet, we find the entry effects to be asymmetric across the firms. In Table 5, the impacts

29By the ergodicity of our Markov framework, the long run equilibria remain unaffected by the timing of the
counterfactual change.
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Figure 3: Impact of new competition on the growth of incumbent networks

of the counterfactuals are displayed as changes of network supply with respect to the

baseline no entry case. Not surprisingly, we find in Column ∆Free/FB that the competitive

effect is largest for SFR because it becomes the investment leader in the long run. In terms

of relative changes, however, the follower firm Bouygues is predicted to scale down the

investment the most by 16% in comparison to Orange and SFR, which had 10% and 14%

reductions, respectively. It appears that Bouygues was most vulnerable to the new rivalry

since it had the least share of locked-in customers among the incumbents as shown in

Figure 6 in the appendix. This may have exposed Bouygues the most to the competitive

pressure from the new contract-free products despite its relatively small market share.

Network No entry ∆Free ∆Total

Orange 1,384 -135 -142
SFR 1,458 -183 -205
Bouygues 1,230 -147 -193
Free 0 868 818

Total 4,072 403 279

Long run equilibrium network supplies displayed
in the market without Free & fighting brands (No
entry), with Free only (Free), and with both Free
& the three fighting brands (Total), respectively.

Table 5: Steady state network supply

We find that the new products of the incumbents had moderately negative impact on

the investments. Column ∆Free/FB reports larger losses than Column ∆Free, implying

that the positive demand curvature effect of the new product introductions is outweighed

by the negative competition effect perhaps due to the collective introductions. Indeed,

we find significant drop in the incumbent’s markups when their new products are taken

into account, as shown in Figure 5 in the appendix. Hence, it appears that the rival’s new
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products had prevailing effect on the investment incentives, which was partly offset by the

own firm’s new customers.

In summary, we confirm the dominant effects of demand and market power in de-

termining the relationship between competition and innovation, despite the substantial

increase in the product-market rivalry. In contrast to the new products released by the

incumbents that had only moderate or negligible effect, the new entrant imposed intense

competitive pressure on the investment incentives of all the incumbents.
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Figure 4: The growth of total networks

In Figure 4, we examine the total investments of all the networks including the entrant.

The three curves are the industry-level network supplies in the market without entry (No

entry), with Free’s entry (Free’s entry), and with the new products from both the entrant

and the incumbents (Total), respectively.

We find that the entrant drives up the total investments substantially. The figure shows

that the overall investment under Free’s entry reaches above what is obtained without

any entry. This implies that the reduced investments of the incumbents are more than

compensated by the entrant’s incentive to build its own network. Table 5 reports that the

entrant adds 868 units of network stations while the incumbents dropping 465 stations

collectively, resulting in the net increase of 403 stations or 10% in proportion. This result

can be explained by considering that the entrant does not offer long term contracts to

lock in customers. Since the main part of the entrant’s demand consists of the competitive

market segment not locked into the incumbents, it faces a larger incentive to invest in

quality than the incumbents.

20



5.2 Welfare impacts of entry

While we have found an increase in total network investments with the new competition,

it is unclear which market structure generates the optimal outcome in the social planner’s

perspective. Hence, we measure the average welfare of consumers and producers during

the last 15th year of the simulated market estimated for the same Île-de-France region

in Table 6. As in the previous table, figures in each column correspond to the markets

excluding the entrant and the incumbent’s new products (No entry), including the entrant

only (Free’s entry), and all new products from both the entrant and the incumbents (Total),

respectively.

No entry Free’s entry Total

Consumer 331.2 378.5 404.4
Producer 312.4 271.6 237.9

Total 643.6 650.0 642.3

Quarterly welfare estimates at steady state network supply
in region Île-de-France based on 200 simulation paths. The
unit is in million AC.

Table 6: Long run welfare impacts of new com-
petition

As expected, we find that the consumer surplus increases monotonically as more

products become available. The entrant alone contributes to about 14% increase in

consumer welfare while the incumbent’s new products generate additional 7.8% gain.

With Free’s entry, consumers benefit from intensified price competition as well as the new

contract-free service of the entrant. While the remaining customers of the incumbents

may suffer moderate deterioration of network quality, the entrant heavily invests in its

own network, which likely compensates the loss of welfare. On the other hand, while the

incumbent’s new products offset the gain in investment incentives generated by the entry,

they still produce additional consumer surplus by creating further competitive pressure

through their own contract-free services.

In contrast, the producer profits as a whole suffer from the increasing level of competi-

tion. Judging by net impacts, Free’s entry inflicts the largest loss upon the industry profit

since the incumbents stand to lose the customer base to the new competitor particularly

when they have no similar products with which to fight back the challenge. With the shift

of the demand toward the entrant holding the lowest market power, the industry profits

are diminished. The new product lines of the incumbents also cannibalize the customer

base with high profit margins, so as to further reducing the total producer surplus.

Overall, the social surplus turns out to be little affected by the market structure changes

because of the opposite welfare effects largely cancelling each other. The net impact

of Free’s entry amounts to only about 1% increase in social surplus, or AC6 million per

quarter. The welfare estimate becomes even slightly lower than the no entry case when

the incumbent’s new product lines are included. Hence, it is obvious that even though the
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concentration and market power have greatly diminished while industry-level investments

went up significantly, they merely played a role of redistributing the producer surplus to

the consumers without raising the total surplus. If we take into account the cost of entry

and new product launches, the estimate may become even lower.

6 Conclusion
In this paper, we examined how an exogenous entry changed firm’s investments in product

quality in a mobile telecom market where the majority of consumers were already locked

into the incumbent networks bearing high switching costs. The entry gave rise to two

opposing impacts on the incumbent’s investment incentives: reduced profit gains from

locked-in customers of the main product line and a new secondary revenue source to extract

innovation rents from. To decompose the incentives, we develop a dynamic oligopoly

model of investment and estimate the steady state network supplies under counterfactual

market structure. We find that the diminished profits from the existing product lines

bearing high switching costs dominated the entry’s impact on the investment incentives

for all the incumbent networks. Nevertheless, the aggregate investments are estimated to

rise in the long run due to the intensive investment of the entrant. However, the welfare

analysis suggests its limited impact on social surplus because of the opposite effects on

consumers and producers cancelling each other. If we take into account the cost of entry

and new product introductions, it is possible to obtain even net welfare loss from entry.

Our conclusion contrasts with the conventional view of long-term contracts as an-

ticompetitive strategy. While they undoubtedly insulate the firms from product-market

competition, they help protect the appropriability of investments. As the locked-in customer

base becomes diminished with competitive pressure from both entrant and incumbent’s

contract-free services, the individual firm’s investment fall unambiguously.

Our analysis provides evidence on the adverse effect of competition. While it may

appear to contradict many predictions from the literature, it can be reconciled by the

fact that the market structure is exogenously determined in our analyzed market. As

Vives (2008) points out, the presence of potential entry threat determines the incumbent’s

investment and thus their response to actual entry. In the absence of such threat, our

finding confirms the prediction of Vives (2008) albeit through different mechanism.
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A Tables

Logit IV IV-SWC

Estimate Std. err Estimate Std. err Estimate Std. err

Price 0.002 (0.011) -0.542** (0.236) -0.543*** (0.199)
SW cost 6.625*** (0.112)
Log (2G) -0.203 (0.864) 0.958 (0.919) 0.984* (0.567)
Log (3G&4G) 0.101 (0.112) 0.415** (0.190) 0.421*** (0.133)
Orange 1.129 (0.953) 0.376 (1.009) -1.322** (0.572)
SFR 1.019 (0.823) -1.281 (1.388) -2.980*** (0.986)
Bouygues 0.638 (0.814) -0.283 (0.957) -1.976*** (0.560)
Free 1.578* (0.861) -5.442* (3.213) -5.493** (2.624)
Sosh 0.154 (0.982) -4.520* (2.320) -4.582** (1.807)
B&You -0.050 (0.798) -4.374** (2.172) -4.417*** (1.674)
Red -0.123 (0.815) -4.684** (2.275) -4.727*** (1.760)
Virgin 0.537 (0.459) -2.828* (1.459) -2.842** (1.237)
MVNO:O&S 0.127 (0.439) -1.105* (0.633) -1.118** (0.489)
MVNO:Orange 0.316 (0.460) -3.192** (1.518) -3.207** (1.287)
MVNO:SFR 0.451*** (0.136) -4.048** (1.954) -4.053** (1.644)
Time trend 0.108** (0.046) 0.011 (0.057) 0.010 (0.041)
Log time -0.336*** (0.104) -1.892*** (0.687) -1.900*** (0.589)
Time since entry -0.856*** (0.187) -1.274*** (0.238) -1.267*** (0.222)
Constant 1.240 (4.701) 10.075 (6.556) 9.793** (4.014)

Observations 12,863 12,863 12,863
J test (p value) 0.190 0.687

∗: p<0.1; ∗∗: p<0.05; ∗ ∗ ∗: p<0.01.
Market fixed effects omitted from the table.

Table 7: Estimation of mobile service demand
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Figure 5: Impact of new entry on margins
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Figure 6: Impact of new entry on the share of locked-in customers
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C Derivation of Euler equation
From Equation 5, we obtain the first order condition

0 =
∂Πi(s, ai)

∂ai
+ β

∂

∂ai
E
[
Vi(s

′, a′−i)
∣∣∣s, a]

=
∂Πi(s, ai)

∂ai
+ βδE

[
d

ds′i
Vi(s

′, a′−i)

∣∣∣∣s, a] since s′i = δ(si + ai).

On the other hand, we apply the envelope theorem to Equation 5 to obtain

dVi(s, a−i)

dsi
=
∂Πi(s, ai)

∂si
+ βδE

[
dVi(s

′, a′−i)

ds′i
+
∑
j ̸=i

dVi(s
′, a′−i)

ds′j

∂aj
∂si

∣∣∣∣s, a]

=
∂Πi(s, ai)

∂si
− ∂Πi(s, ai)

∂ai
+ βδ

∑
j ̸=i

∂aj
∂si

E
[
dVi(s

′, a′−i)

ds′j

∣∣∣∣s, a]

=
∂Πi(s, ai)

∂si
− ∂Πi(s, ai)

∂ai
+
∑
j ̸=i

∂Vi(s, a−i)

∂aj

∂aj
∂si

,

where the second equality follows from the FOC, and the third equality holds since

∂Vi(s, a−i)

∂aj
= βδE

[
dVi(s

′, a′−i)

ds′j

∣∣∣∣s, a]
by the envelope theorem. Plugging the above equation into Equation 5, we have

0 =
∂Πi(s, ai)

∂ai
+ βδE

[
∂Πi(s

′, a′i)

∂s′i
− ∂Πi(s

′, a′i)

∂a′i
+
∑
j ̸=i

∂Vi(s
′, a′−i)

∂a′j

∂a′j
∂s′i

∣∣∣∣s, a].
Rearranging and evaluating the terms produces the Euler equation

E
[
C ′(ai)− βδC ′(a′i)

∣∣∣s, ai] = βδE
[
∂Πi(s

′, a′i)

∂s′i
+
∑
j ̸=i

∂Vi(s
′, a′−i)

∂a′j

∂a′j
∂s′i

∣∣∣∣s, a].
D Solution procedure for the stationary equilibrium

1. Set up Smolyak grid X = {xg}Gg=1 and basis functions {ψg(x)}Gg=1, where xg ∈ S×V,

and ψ(x) is a G×G matrix with ψg(x) as a row vector.

2. Set a0i (x) = âi obtained from the first-stage estimation for all x ∈ X .

3. Set V 0
i (xt) = Πit(xt, a

0
it) +

∑T
τ=1 β

τΠ(xt+τ , a
0
it) for a given T < ∞, where a0it =

a0i (xt) for all xt ∈ X .

4. Solve for b0i = [ψ(x)]−1V 0
i (x) ∈ RG.

5. At kth iteration with bk−1
i , solve for ak = (ak1 , ..., a

k
N ) such that for each i ∈ N ,

aki = argmax
ai

Πit(xt, ai) + βE
[
V k−1
i (xt+1)

∣∣xt, ai, ak−i

]
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where xt = (At, µt, St−1), xt+1 = (At + ak, µt+1, St), and V k−1
i (x) = ψ(x)bk−1

i .

6. Given ak, obtain V k or bk by iterating the Bellman equation:

V k
i (xt) = Πit(xt, a

k
i ) + βE[V k−1

i (xt+1)|xt, ak]

= Ri(xt)− Ci(a
k
i ) + β

L∑
l=1

V k−1
i (At + ak, µ′

l)P (µ
′
l|µ)

⇒ ψ(x)bki = Ri(xt)− Ci(a
k
i ) + β

[ L∑
l=1

ψ(A+ ak, µ′
l)P (µ

′
l|µ)
]
bk−1
i

⇒ bki = ψ(x)−1

[
Ri(x)− λ(aki )

2 + β

[ L∑
l=1

ψ(A+ ak, µ′
l)P (µ

′
l|µ)
]
bk−1
i

]

7. Repeat steps 5 & 6 until max
{
∥ak − ak−1∥, ∥bk − bk−1∥

}
< ϵ for a given threshold

ϵ > 0.

E Definition of ã
In the counterfactual analysis, we solve for a transformed investment ã specified as

logA′ = log δ + logA+ ã,

where ã = log(A+ a)− logA. Then

a = eã+logA −A = A(eã − 1).

Therefore,

∂a

∂ã
= Aeã,

∂2a

∂ã2
= Aeã,

and

∂2C(a)

∂ã2
=

∂

∂ã

(
2λa

∂a

∂ã

)
= 2λ

[(
∂a

∂ã

)2

+ a
∂2a

∂ã2

]
= 2λA

∂a

∂ã

[
2eã − 1

]
.
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