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Abstract

Intermediation is a prominent feature of production and exchange. Two features

of intermediation are salient: coordination among traders between the ‘source’ and the

‘destination’ and competition between alternative combinations of intermediaries. We

develop a general model of posted prices in networks to study these forces and we test

its predictions in experiments.

Our theoretical analysis provides a complete characterization of equilibrium. Both

e�cient as well as ine�cient equilibrium exist. Surplus division is extremal: either

original buyer and eventual seller retain entire surplus or the intermediaries extract all

surplus. Betweenness centrality of intermediaries determines which of the two outcomes

prevails.

Laboratory experiments show that e�ciency prevails in almost all cases, subjects

coordinate on extreme surplus division: betweenness centrality plays a key role in shaping

prices and division of surplus.
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1 Introduction

Intermediation is a prominent feature of economic production and exchange.1 There are

typically multiple intermediaries between the ‘source’ and the ‘destination’: so di↵erent traders

must coordinate their pricing choices. Moreover, there may exist multiple paths between

source and destination: so intermediaries must price in the presence of competition. In this

paper, our aim is to understand how coordination and competition shape the e�ciency of

exchange and the division of surplus among the traders.

We propose a model of pricing in networks. There is one buyer, b, and one seller, s,

and many potential intermediaries. These traders are located on nodes in a network. A link

between two nodes means they can engage in direct exchange, whereas the absence of a link

means they must seek out paths involving other traders. The need of intermediation may arise

from constraints on physical location, moral hazard, search costs, or monitoring costs. We

take these restrictions as given. The surplus of trade between buyer and seller is normalized

to 1. Potential intermediaries set prices simultaneously. The buyer and seller compare the

sum of prices on every path between them and pick the cheapest one. If an intermediary lies

on the path picked she earns the posted price; if she does not lie on the path, she earns 0. This

formulation of pricing thus combines Bertrand competition and the Nash demand game.2

Our first result, Theorem 1, provides a constructive proof for the existence of equilibrium

in prices, for all networks. An intermediary has maximum between-ness centrality if she lies

on all paths between the buyer and seller; for expositional simplicity we refer to such a trader

as critical. Consider a profile of prices in which all non-critical traders set prices 0 and the set

of critical traders set positive prices that equally divide the surplus. A deviation to a positive

price by a non-critical intermediary is not profitable as buyer and seller can circumvent her

by using an alternative route. Critical traders cannot increase profits by raising prices as all

1Anderson and van Wincoop (2003) present evidence that distribution and retail costs amount to a 55%
ad-valorem tax on goods. Spulber (1999) argues that the intermediation sector constitutes about one fourth of
the US economy. In the agriculture sector of developing countries, intermediaries earn large rents (Fafchamps
and Minten (1999)).

2Choice among competing routes comprised of distinct price setting agents is common. Consumers compare
costs of alternative delivery channels; in communication networks, multiple service providers set prices and
end-users choose which combination of providers to use; transport companies – airlines, shippers and truck
companies – choose between alternative routes depending on landing and docking charges and tolls, set by
independent entities.
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surplus is already being extracted.3

An equilibrium is said to be e�cient if trade occurs with probability 1. Observe that the

equilibrium constructed above is e�cient. Do there exist other, possibly ine�cient, equilib-

rium? Consider a ring network with 6 traders and suppose that buyer and seller are 3 links

apart. There are three types of equilibrium possible in the ring network. An ine�cient equi-

librium where all intermediaries set price 1; an e�cient equilibrium where all intermediaries

set price 0, and another equilibrium where intermediaries along one path set price 1, while

the two intermediaries along the other path set price 1/2 each. Figure 1 illustrates these

outcomes. This example highlights the importance of coordination among intermediaries and

motivates a closer exploration of strategic pricing behavior in networks.

- Figure 1 here -

Theorem 2 provides a complete characterization of pricing equilibrium in networks. In

particular, it shows that if trade occurs then either intermediaries extract all surplus or buyer

and seller get to keep the entire surplus. We then turn to understanding the network features

that support the two outcomes, respectively.

Proposition 1 shows that between-ness centrality is the key to this issue: if there exists a

critical trader then all surplus must go to the intermediaries.4

While our theory provides strong predictions, there are questions that theory cannot an-

swer, mainly due to the multiplicity of equilibrium. How likely is it that we observe e�cient

outcomes? If trade occurs, which of the two extremal surplus allocations arise? How does the

presence of critical intermediaries shape the division of surplus among the di↵erent interme-

diaries? We use a laboratory experiment to address these issues.

Our experiment consists of 6 treatments with di↵erent networks (see Figure 2 in Section 3).

The first four networks involve Ring networks of varying size: 4, 6, 8, and 10 traders. Rings

have always two competing paths connecting buyer and seller and no intermediary is critical.

As we increase ring size, we retain the number of paths and thus the level of competition

constant, but the number of intermediaries along a given path grows making the problem of

3Centrality is a key concept in the study of networks; for a well known exposition, see Freeman (1979).
Criticality is also related to the notion of unilateral market power, as defined by Holt (1989): a seller has
unilateral market power if he can increase his payo↵ by raising prices given that all other sellers charge the
competitive price. This definition of market power is based on the 1984 US Department of Justice horizontal
merger guidelines.

4We note that in the ring network, there are no critical traders; yet there is an equilibrium in which all
surplus accrues to intermediaries. Thus criticality is su�cient, but not necessary, for intermediation rents.
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coordination among intermediaries harder. The goal of the experiment is to test the prospects

of successful coordination among intermediaries.

The remaining two networks introduce market power in the form of critical traders. These

networks are constructed from the Ring 6 network by adding new links and traders. First, we

add two traders to each ring node and get the Ring with hubs. Then we connect up all pairs

of intermediaries on the ring, and get the Clique with hubs. In the Clique with hubs, there is

only one path between buyer and seller and so only critical traders intermediate trade. The

Ring with hubs creates the space for both market power and competition to come into play:

in some situations both critical and non-critical traders co-exist while in others, either only

critical traders or only non-critical traders are involved in trading.

Our first experimental finding is that the level of e�ciency is very high in all network

treatments. In ring networks, exchange takes place with probability 1, regardless of the size

of ring and of the distance between a buyer and a seller. In Ring with hubs and Clique with

hubs the likelihood of trade is around 0.95. Thus, we conclude that subjects are remarkably

successful in coordinating on prices that guarantee exchange.

Our second experimental finding is that intermediation costs do take extreme values as

predicted by the theory. In ring networks, after some initial learning, intermediation costs

are quite low and lie mainly between 5% and 20%, in most cases. By contrast, in the Ring

with hubs and the Clique with hubs, with critical intermediaries, intermediation costs are very

large: they typically lie between 80% and 100% of the total surplus. These findings suggest

that critical traders are ‘necessary’ and su�cient for surplus extraction by intermediaries. In

doing so they enable us to go beyond the theory.

The third experimental finding pertains to the division of surplus among intermediaries

in the presence of critical intermediaries. The theory predicts that all surplus must accrue to

intermediaries but does not pin down the division between critical and non-critical intermedi-

aries. Our experiment reveals that in the treatments with Rings with Hubs and Clique with

hubs, critical intermediaries charge higher prices and obtain higher profits than non-critical

intermediaries.

Our paper is a contribution to the study of trading in networks. Trading in networks is

a very active field of research; prominent contributions include e.g., Kranton and Minehart

(2001), Corominas-Bosch (2004), Charness et al. (2007) and Manea (2010). This work is

almost entirely on direct exchange. By contrast, our focus is on intermediation. There is a

small body of work on intermediation which includes Condorelli and Galeotti (2010), Goyal
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and Vega-Redondo (2007) and Nava (2010).5 The distinctive element in our work is the

trading protocol: we study posted prices.

Our model o↵ers a generalization of the classical models of price competition (a la Bertrand)

and the Nash demand game (Nash, 1950), to a setting with multiple price setting players where

both coordination and market power are important. This model maps traditional concepts of

market power and competition into networks and our analysis illustrates how network struc-

ture shapes pricing and the division of surplus in exchange. In the theoretical literature, the

closest work is Acemoglu and Ozdagler (2007a, 2007b), Blume et al. (2007) and Gale and

Kariv (2009). The main di↵erence between our paper and these papers is the generality of

our network framework and the equilibrium characterization results we provide for general

networks. In particular, our work brings out the role of betweenness centrality in shaping

pricing and division of surplus in networks.6

Our experimental findings contribute to a number of major strands of work on markets.

Our finding on e�ciency of trading echoes a recurring theme in economics, first pointed out

in the pioneering work of Smith (1962), and more recently highlighted in the work of Gale

and Kariv (2009), among others. Our finding on the decisive role of market power in shaping

division of surplus, is to the best of our knowledge, novel.7 The special case of one critical

intermediary can be interpreted as a dictator game; our results on full extraction of surplus

in this setting stand in contrast to the general message from the research on dictator games,

see Engel (2011) for an overview of these experiments.

The special case of two critical intermediaries in the Clique with Hubs can be interpreted as

a symmetric Nash demand game. Our result reveals a high frequency of trade and that equal

division of surplus is focal; these results are consistent with existent literature, e.g., Roth and

Murnighan (1982) and Fischer et al. (2006).8 The special case of no critical intermedaries in

5Condorelli and Galeotti (2010) study a sequential model of bilateral bargaining with incomplete informa-
tion. Goyal and Vega-Redondo (2007) have a reduced form model of intermediation and their focus is on the
emergence of critical traders in the process of network formation. Nava (2010) studies a model of quantity
competition in networks.

6So, for instance, Acemoglu and Ozdaglar (2007a, 2007b) consider parallel paths between the source and
destination pair. This rules out the existence of ‘critical’ traders. Similarly, Blume et al. (2007) consider a
setting with only a single layer of intermediation; this rules out coordination problems and the interaction
between coordination and the market power of intermediaries. Finally, Gale and Kariv (2009) study a specific
network structure with multiple layers of intermediaries and fully connectivity across these layers; this rules
out ‘critical’ traders and precludes the study of market power.

7Earlier work has studied the role of market power in posted price institutions by introducing sellers with
capacity constraints. In our context traders’ market power results from their structural location in the network.
We refer to Holt (1989, 1995) for an overview of these experiments.

8See Roth (1995) for a review of experimental studies on bargaining and negotiations.
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the Ring 4 represents a duopoly Bertrand competition model. Our result confirms the classical

finding that in posted o↵er markets adjustment to equilibrium prices tends to be from above,

see Dufwenberg and Gneezy (2000), Plott (1982) and Holt (1995).9

The rest of the paper is organized as follows. In Section 2 we develop the model of trading in

networks and provide the theoretical results. In Section 3 we discuss the experimental design,

motivated by theory. Section 4 summarizes experimental findings and Section 5 concludes.

2 Theory

2.1 Model

There is a seller, s, and a buyer b, and N = {1, ..., n}, n � 1, potential intermediaries located

in a network. Each trader is synonymous with a node; a link between a pair of traders i and

j is denoted by gij = 1, while gij = 0 means that i and j are not directly linked. The links

between all pairs of traders taken together define an undirected network, which is denoted by

g.

The value of exchange between seller and buyer is (normalized to) 1. The value of exchange,

the network and the identity of the buyer and seller is common knowledge among the traders.

Every intermediary i 2 N simultaneously posts an ‘intermediation price’ pi � 0. Let p =

(p1, p2, ..., pn) denote the intermediation price profile.10

The seller and buyer successfully carry out an exchange if either they have a direct link

in the network g or if they can ‘reach’ each other in the network at an intermediation cost

that does not exceed the value of exchange 1. The intermediation cost is defined as the sum

of prices charged by the intermediaries connecting buyer and seller.

Formally, a path in g connecting (b, s) is a sequence of distinct traders q = {s, i1, ..., il, b}
so that gsi1 = gi1i2 = ... = gilb = 1. Let Q be the set of paths in g between s and b. The

distance between s and b along path q is the number of edges in q, and it is denoted by

9Our paper also relates to the sociological literature on social exchange. We share with this literature the
underlying question of how power may emerge in networks, but we are also interested in questions of e�ciency
and our formulation in terms of posted prices and the results are quite di↵erent. We refer to Easley and
Keinberg (2010) for a survey of this work.

10An alternative interpretation of the model is that each path between ‘origin’ and ‘destination’ represents
a bundle of complementary intermediate goods. The paths are perfect substitutes; there is a consumer with
inelastic demand. The price of the final good is then given by the sum of prices of the intermediate goods in
a bundle. A special case of this model – with two paths consisting of two intermediate goods each – has been
studied by Bornstein and Gneezy (2002).
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d(s, b|q). A network in which there is a path between any pair of traders is referred to as

connected. Since a path between buyer and seller is necessary for exchange, it is natural for

us to restrict attention to connected networks.

Given p, the intermediation cost of path q 2 Q is

c(q,p) =
X

i2q

pi.

Let c⇤(p) = minq2Q c(q,p) be the lowest intermediation cost that the pair (b, s) has to pay

for exchange. A least cost path is a path that costs c⇤(p) and the set of least cost paths is

denoted by Q⇤ = {q 2 Q : c(q,p) = c⇤(p)}.
Given a price profile p, an exchange between buyer and seller (b, s) occurs in network g if

gsb = 1 or if gsb = 0 and c⇤(p)  1. In case of multiple least cost paths, |Q⇤| > 1, we assume

that every such path q 2 Q⇤ is chosen with equal probability, given by 1/|Q⇤|. The expected

payo↵ to intermediary i 2 N is therefore

⇧i(p|(b, s)) =
(

0 if i 62 q for all q 2 Q⇤ or c⇤(p) > 1
⌘⇤i
|Q⇤|pi otherwise,

(1)

where ⌘⇤i is the number of paths in Q⇤ that contain tintermediary i.

The aggregate surplus obtained by buyer and seller is 0 if exchange does not occur and

1 � c⇤(p) if exchange occurs. Our theoretical results do not require any assumption of how

this surplus is shared between buyer and seller.11

A price profile p

⇤ is a Nash equilibrium whenever ⇧i(p⇤|(b, s)) � ⇧i(pi,p⇤
�i|(b, s)) for all

pi � 0, and for all i 2 N . We focus on pure strategy equilibrium. An equilibrium with

exchange realizes the full surplus and is e�cient. An equilibrium with no exchange is called

ine�cient.

Traders who lie on many paths between the buyer and seller potentially have more opportu-

nities to act as intermediary. We define betweenness centrality of trader i 2 N as the fraction

of paths between buyer and seller on which intermediary i lies.12 Let ⌘i = |{q 2 Q|i 2 q}| and
define betweenness centrality of trader i as

11In our experiments, for computation of payo↵s and earnings, we will assume that buyer and seller split
equally their aggregate surplus.

12In our context it is natural to define betweenness centrality with respect to paths connecting buyer and
seller, instead of considering all paths. Note that we consider all paths and not just the shortest paths; here
we follow a suggestion made in Borgatti and Everett (2005).
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CB
i =

⌘i
|Q| . (2)

Thus betweenness centrality of a trader i, Ci 2 [0, 1]. A trader with Ci = 1 is referred to

as critical. Define C = {i 2 N : i 2 q, 8q 2 Q} as the set of critical traders.

2.2 Results

Our first result establishes existence of an equilibrium for all networks.

Theorem 1 For every network g there exists an equilibrium.

Proof of Theorem 1. The proof is constructive. Suppose the set of critical traders is empty,

C = ;: consider a price profile p

⇤ such that p⇤i = 0 for all i 2 N . Note that no intermediary

can earn positive profits by deviating and setting a positive price. Indeed, since no trader is

critical, a positive price will mean that there remains another path between buyer and seller

where all traders set price 0. Buyer and seller will use such a zero cost path. If there are

critical traders, C 6= ;, then consider a price profile p⇤ such that p⇤i = 0 if i /2 C, and for j 2 C
set p⇤j so that

P
j2C p

⇤
j = 1. It is easily checked that no critical or non-critical intermediary

has a profitable deviation from this profile. ⌅

Observe that in the equilibrium constructed above the intermediation costs are either 0 or

1: so exchange takes place with probability 1. Theorem 1 thus establishes that, irrespective

of the network, it is possible for intermediaries to coordinate on prices that support exchange

between the buyer and seller. This result raises two questions. The first question is about the

e�ciency of trade. Are all equilibrium e�cient or does there exist an ine�cient equilibrium?

The second question is about the division of surplus between di↵erent traders. How is the

surplus distributed across buyer/seller and the intermediaries?

Our next result provides a complete characterization of equilibrium and addresses these

two questions. We say that trader i is essential for (b, s) under p if trader i belongs to every

least cost path with c⇤(p)  1. Note that essentiality depends both on the network g and the

profile of prices p.13 Given a network g, a pair (b, s), and a price profile p, for a path q 2 Q
13Essentiality is related to criticality in the following way: if trader i is critical then he must be essential

under p provided that there is at least one path whose total cost is not higher than 1. On the other hand,
criticality is not necessary for being essential: a non-critical trader may be essential due to pricing choices.
Figure 1 in the introduction illustrates this possibility. So criticality is a purely structural property but
essentiality reflects both structural as well as strategic elements.
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define c�j(q,p) =
P

i2q,i 6=j pi as the costs of all intermediaries other than intermediary j.

Theorem 2 For any network g and every pair of buyer and seller (b, s), an equilibrium p

⇤

is either ine�cient (c⇤(p⇤) > 1), intermediaries extract all the surplus (c⇤(p⇤) = 1), or buyer

and seller retain all the surplus (c⇤(p⇤) = 0). Moreover,

1. p

⇤ is an equilibrium where buyer and seller retain all the surplus if, and only if, no

intermediary is essential under p

⇤.

2. p

⇤ is an equilibrium where intermediaries extract all the surplus if, and only if, (i) for

every intermediary i 2 q, q 2 Q⇤ and p⇤i > 0, intermediary i is essential, and (ii) for

every intermediary j 2 q with q 2 Q \ {Q⇤}, c�j(q,p⇤) � 1.

3. p

⇤ is an ine�cient equilibrium, if, and only if, c�j(q,p⇤) � 1 for every intermediary

j 2 q and q 2 Q.

Theorem 2 yields a number of insights. The first observation is that in every e�cient

equilibrium intermediation costs take on extreme values: either intermediaries extract all

surplus or buyer and seller get to keep all surplus. The basic intuition is the following.

When intermediaries become essential under a network and a profile of prices, they exercise

market power. Collectively they must extract full surplus, for otherwise an essential trader

could slightly increase his intermediation price while guaranteeing that exchange takes place

through him. In contrast, when no intermediary is essential, buyer and seller can always

circumvent traders who demand a positive intermediation price. Price competition drives

down intermediation costs to zero.

The second observation is about the role of coordination among intermediaries. To see

this, let us consider a ring network with 6 traders and suppose that buyer and seller are 3

links apart. It is easy to verify that the three types of equilibrium identified by Theorem 2

all exist. In particular, it is an equilibrium for all intermediaries to set price 0, for all of them

to set price 1, and for intermediaries along one path to set price 1 whereas the intermediaries

along the other path set price 1/2 each. Figure 1 illustrates these outcomes.

This multiplicity of equilibrium naturally motivates an examination of equilibrium re-

finements. We have considered a number of possible refinements – such as trembling hand

perfection, strictness, strong Nash equilibrium, elimination of weakly dominated strategies,

and perturbed Nash demand games. We find that in some cases these refinements are too

strong, e.g., there do not exist strict or strong Nash equilibrium in some networks. In other
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cases, the refinement is not very e↵ective, e.g., a wide range of outcomes (including those

with coordination failure) may be sustained under trembling hand perfection, elimination of

weakly dominated strategies, and perturbed bargaining.14

Keeping in mind the multiplicity of equilibrium, we now move to a closer examination

of the relation between network structure and nature of equilibrium. Are there networks for

which we can rule out ine�cient equilibrium? Are there properties of networks that determine

how surplus is distributed between buyer and seller, on the one hand, and the intermediaries,

on the other hand? The following result provides a partial answer to these questions.

Proposition 1 For every network g the following holds:

1. An ine�cient equilibrium exists if, and only if, the distance of every path between buyer

and seller is strictly higher than two, i.e., d(b, s|q) > 2, 8q 2 Q.

2. Consider equilibrium p

⇤.

2a. If one or more intermediaries are critical and the equilibrium is e�cient then in-

termediaries extract all surplus.

2b. If there are at least two paths q and q0 between (b, s) with distance d(b, s|q) =

d(b, s|q0) = 2, then the equilibrium is e�cient and there is full extraction of surplus

by buyer and seller.

Part 1 of Proposition 1 establishes that we need two or more intermediaries on every path

between buyer and seller to support an ine�cient equilibrium. Theorem 1 tells us that there

always exists an e�cient equilibrium. So, the result clarifies the key role of coordination failure

in the breakdown of exchange. Part 2a of Proposition 1 clarifies the property of network

structure in establishing market power: if one or more traders has maximum betweenness

centrality then intermediaries must extract all surplus in exchange. It is worth noting that

while maximal betweenness centrality determines that surplus must accrue to intermediaries,

the theory is permissive about the division of surplus among the intermediaries. To see this

point, consider the Ring with hubs network presented in Figure 2 and suppose that the seller

and buyer are nodes (a1, d1). Then there exists an equilibrium in which all surplus accrues to

14Goyal and Vega-Redondo (2007) considered a cooperative solution concept – the kernel – in their work.
They showed that non-critical traders would earn 0 and critical traders would split the cake equally in allo-
cations in the kernel. Our analysis above reveals that this solution is a Nash equilibrium of the pricing game
but that there exist a variety of other equilibria.
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the critical intermediaries, e.g., A and D charge 1/2 and all other intermediaries charge 0, but

there is also an equilibrium in which the entire surplus is earned by non-critical intermediaries,

e.g., A and D charge 0, B and C charge 1/2, and F and E charge 1.

Finally, the last part of Proposition 1 brings out the property of network structure in

creating market competition, a la Bertrand: if two or more traders are sole intermediaries on

competing paths connecting buyer and seller then price competition eliminates all intermedi-

ation surplus.

Summarizing, our analysis brings out three points:

1. Coordination among intermediaries is key to the e�ciency of exchange.

2. Strategic interaction delivers extremal outcomes for intermediation costs and division

of surplus: either buyer and seller keep all the value of exchange or the intermediaries

extract all surplus.

3. In the presence of traders with maximal betweenness centrality all surplus in an exchange

must accrue to the intermediaries.

3 From Theory to Experiment

3.1 Design

The theory is illuminating along a number of dimensions and yields a number of predictions.

One goal of the experiment is to investigate if these predictions hold out in practice. There are

a number of interesting economic questions on which theory is silent due to the multiplicity

of equilibria. The second goal of the experiment is to explore how network structure shapes

the ways in which subjects select among the equilibria.

The design of the experiment centers on a number of network architectures. These networks

have been picked to highlight the role of two economic forces of interest: coordination and

competition. In order to examine the former, we use a class of ring networks with varying

size n = 4, 6, 8 and 10. The latter is the focus in the Clique with hubs and Ring with hubs.

Figure 2 illustrates these networks.

- Figure 2 here -
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Coordination. We first take up the issue of coordination by focusing on the class of ring

networks with n = 4, 6, 8, 10 subjects. We refer to a ring network with n traders as Ring n.

By varying the size of ring networks, we create a wide range of trading situations.

For instance, take, as a baseline, Ring 4 where any non-adjacent pair of buyer and seller

is equidistant on either path (with the distance of 2). Larger rings contain trading situations

of equidistance with more traders: (d (q) , d (q0)) = (3, 3) in Ring 6; (4, 4) in Ring 8; (5, 5) in

Ring 10.15 By comparing equidistant paths with varying distance, we can examine one type of

coordination problem among symmetric traders. Alternatively, we can fix the distance of one

path to be 2 (only one trader) and increase the distance of the other path: (d (q) , d (q0)) = (2, 2)

in Ring 4; (2, 4) in Ring 6; (2, 6) in Ring 8; (2, 8) in Ring 10. In Ring n � 6, intermediaries on

a longer path need to coordinate in order to win over a single intermediary on the other path.

The larger the distance of a longer path is the bigger the challenge of resolving coordination

problems among traders.

Market power. In examining the e↵ects of market power on e�ciency and surplus

division, we compare three networks in the design – Ring 6, Ring with hubs, and Clique with

hubs. No trader is critical in Ring 6, whereas exchange is mediated always by critical traders

in the Clique with hubs.

Ring with hubs creates the space for both market power and competition to come into

play. For instance, consider a trading situation where two leaf agents, a1 and e1, are selected

as buyer and seller. Two intermediation paths compete: a shorter path (through A, F , and

E) and a longer path (through A, B, C, D, and E). Traders A and E lie on both paths, and

so are critical. The other traders (B, C, D, and F ) lie only on one of the paths and thus are

not critical.

To put these experimental variations in perspective, we summarize the equilibrium analysis

of these selected networks. First, let us consider e�ciency. In Ring 4 every equilibrium is

e�cient. In every other network an ine�cient equilibrium exists whenever there are at least

two intermediaries in every path connecting buyer and seller. On the other hand, Theorem 1

demonstrates the existence of e�cient equilibrium in any network and any pair of buyer and

seller. Thus, theory is silent on which equilibrium – e�cient or ine�cient – is salient as we

vary networks. These observations motivate the following question:

Question 1 Does the e�ciency of trade vary with di↵erent levels of coordination (across ring

networks of di↵erent size) and with di↵erent degrees of market power (across di↵erential

15We simplify the notation of distance between buyer b and seller s on a path q with d (q) whenever necessary.
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composition of critical and non-critical traders)?

We turn next to the issue of intermediation costs. If trading does take place, theory

predicts an extremal division of trade surplus (Theorem 2): either buyer and seller keep all

the value of exchange (when no intermediary is essential) or intermediaries extract all trade

surplus (when any trader earning positive payo↵s is essential). Both types of outcome are

possible in every ring network we consider, except for Ring 4 where the intermediation cost of

the unique equilibrium is zero. In Clique with hubs and Ring with hubs, if exchange involves

critical traders then equilibrium dictates full surplus extraction by intermediaries (Proposition

1). These considerations motivate the following question:

Question 2 If trade occurs, does absence (presence) of critical traders ensure zero (full)

surplus extraction by intermediaries?

In addition to these first two questions, which are the focus of our analysis, we also analyse

in details how the network location of a trader a↵ects his pricing behavior and the rents that he

can hope to gain. Nash equilibrium analysis provides little guidance on this issue. In rings, the

theory does not predict how the distance between buyer and seller influences traders’ pricing

behavior and intermediation costs. In Ring with hubs and Clique with hubs when exchange

is mediated by critical traders, the theory predicts that intermediaries extract all surplus, but

does not pin down the division of surplus among critical intermediaries and whether critical

intermediaries should earn more than the other traders. These considerations motivate two

auxiliary questions:

Question 3 How does the distance between buyer and seller influence traders’ pricing behav-

ior and intermediation costs?

Question 4 Do critical traders acquire higher surplus than non-critical traders? When two

critical traders are present, do they share surplus equally?

3.2 Experimental procedures

We ran the experiment at the Experimental Laboratory of the Centre for Economic Learning

and Social Evolution (ELSE) at University College London (UCL) between June and De-

cember 2012. The subjects in the experiment were recruited from the ELSE pool of human

12



subjects consisting UCL undergraduate and master students across all disciplines. Each sub-

ject participated in only one of the experimental sessions and had no previous experience

about this experiment. After subjects read the instructions, an experimental administrator

read the instructions aloud. Each experimental session lasted around two hours. The experi-

ment was computerized and conducted using the experimental software z-Tree developed by

Fischbacher (2007). Sample instructions are reported in Online Appendix I.16

The experiment utilized six network treatments – Ring n = 4, 6, 8, 10, Ring with hubs, and

Clique with hubs. We ran 2 sessions for each treatment; so there were a total of 12 sessions.

Each session consisted of 60 independent rounds. The number of subjects who participated

in a session varies from 16 to 24; a total of 240 subjects participated in the experiment. The

table below summarizes the experimental design and the amount of experimental data. The

first number in each cell is the number of subjects and the second one is the number of group

observations in each treatment.

Session

Treatment 1 2 Total

Ring 4 16 / 240 16 / 240 32 / 480

Ring 6 18 / 180 24 / 240 42 / 420

Ring 8 24 / 180 24 / 180 48 / 360

Ring 10 20 / 120 20 / 120 40 / 240

Ring with hubs 18 / 180 24 / 240 42 / 420

Clique with hubs 18 / 180 18 / 180 36 / 360

In each round of a treatment subjects are assigned with equal probability to one of the pos-

sible intermediary positions of a network. In each Ring n, all nodes are possible intermediary

positions. In Ring with hubs and Clique with hubs, each leaf node is a computer-generated

agent, and the remaining nodes are the set of possible intermediary positions. The position of

a subject in each round depends solely upon chance and is independent of the subject’s posi-

tion in previous rounds. Groups with one subject per intermediary position are then randomly

formed. The groups formed in each round depend solely upon chance and are independent of

the groups formed in previous rounds.

16http://www.homepages.ucl.ac.uk/˜uctpsc0/Research/CGG I OnlineAppendices.pdf
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For each group, a pair of two non-adjacent nodes is randomly selected as buyer, b, and

seller, s. Each pair of two non-adjacent nodes is equally likely to be selected. All subjects

in each group are informed of the position in the network of the buyer and seller and that

the value of exchange is 100 tokens. Then, each subject playing an intermediary role is asked

to submit an intermediation price. Each subject chooses a real number (up to two decimal

places) between 0 and 100 and types the number in the number box in the computer screen.

The computer calculates the intermediation costs across di↵erent paths. Exchange takes place

if the least cost among all paths is less than or equal to the surplus 100. If there are multiple

least cost paths then one of them is picked at random.

At the end of the round, subjects observe the prices of all the subjects in their groups

and the trading outcome, including the earnings for intermediaries and the earnings of the

selected buyer-seller pair.17 After observing the results of the round, subjects moved to the

next round. We repeat this process for 60 rounds.

Each round earnings are calculated in terms of tokens. For each subject, the earnings in

the experiment is the sum of his or her earnings over 60 rounds. At the end of the experiment,

subjects are informed of their earnings in tokens. The tokens are exchanged in British pounds

with 60 tokens being set equal to £1. Subjects received their earnings plus £5 show-up fee

privately at the end of the experiment.

4 Experimental Results

4.1 E�ciency

We begin the analysis of the experimental data by examining the e�ciency of trade in net-

works. As summarized in Question 1 our interest lies in the impact of coordination and

market power on e�ciency. Table 1 reports the relative frequency of trade across di↵erent

treatments, along with the number of group observations in parentheses. We also present data

on frequency of trade arranged by minimum distance between buyer and seller.

- Table 1 here -

Trade occurs with probability 1 in ring networks, regardless of the size of ring and the

distance between buyer and seller. For example, in Ring 10, we have 35 group observations

17We recall that buyer and the seller are allocated each 1/2 of the net surplus, which corresponds to the
value of exchange minus the intermediation costs.
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where, despite buyer and seller need to use four intermediaries to transact, trade occurs all

the time. In Ring with hubs and Clique with hubs, the frequency of trade is also high, around

0.95. So, market power does not cause a significant e↵ect on ine�ciency of trading. In both

networks, when a single intermediary lies in the shortest path between buyer and seller, trade

always occur by default. In cases of multiple intermediaries, there is some ine�ciency around

6% to 12%. Overall, despite the need of coordination among traders along the same path, the

presence of competition between paths and of market power of some intermediaries, traders

across all treatments are remarkably successful in coordinating on prices that ensure exchange.

Finding 1 (e�ciency): The level of e�ciency is remarkably high in all networks. Trading

in rings occurs with probability 1. In Ring with hubs and Clique with hubs, trading occurs with

probability around 0.95.

4.2 Division of surplus

We next move on to Question 2 about intermediation costs. We start by examining the impacts

of coordination on intermediation costs in the class of ring networks, and then examine the

impact of critical intermediaries on surplus division.

Ring networks. Table 2 reports average intermediation costs across distinct situations of

trading across ring networks. We distinguish trading situations with respect to distances of

the two competing paths between buyer and seller, denoted by (d (q) , d (q0)). We also divide

the sample data, conditional on each situation of trading, into six blocks of ten rounds: 1-10

rounds, 11-20 rounds, ..., and 51-60 rounds. The number of group observations is reported

in parentheses. For example, in the case of (2, 4) of Ring 6 network where the distance of a

shorter (longer) path is 2 (4), we have 52 group observations in the first ten rounds with an

average intermediation cost, 41.77.

- Table 2 here -

There is a clear downward trend in the movement of costs across rounds. Average costs

in the initial 10 rounds are around 20 in Ring 4 and hover somewhere between 40 and 50 in

the other rings. Intermediation costs go down over rounds and when we look at the last 20

rounds of the data, they are positive but remarkably low. In Ring 4, intermediation costs

are around 5 percent of the total value of exchange. In the other rings, intermediation costs

vary between 10 and around 20 percent of the value of exchange (except for Ring 8 when
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the distance between buyer and seller is four where they reach almost 30%). The overall

conclusion is that intermediation costs in all ring networks are modest and, between the two

e�cient equilibria, are much closer to the one with zero intermediation cost. This pattern is

particularly stronger in smaller rings.

There are interesting di↵erences of costs across distinct cases of distance within and across

networks. In order to investigate more closely the potential e↵ects of distance on trading

costs, we present average intermediation costs with 95% confidence interval across di↵erent

cases of distance in Figure 3.

- Figure 3 here -

Our first observation is that if we hold constant a minimum distance between buyer and

seller, the size of ring network has an influence on intermediation costs in many cases. By way

of illustration, consider the case of minimum distance 2. The average cost of Ring 4 is 5%,

which is significantly di↵erent from 12% in Ring 6 (p-value for unpaired t-test of comparing

two average costs is zero). As we move from (2, 4) in Ring 6 to (2, 6) in Ring 8 and (2, 8) in

Ring 10, the costs increase significantly by 12% and 8%, respectively (p-values for t-test are

nearly zero). We do not find a significant di↵erence of average costs between (2, 6) of Ring 8

and (2, 8) of Ring 10 (p-value for t-test is around 0.14). Similarly, when we compare the cases

of minimum distance 3, the average cost for (3, 3) of Ring 6 is 13% and significantly smaller

than those for (3, 5) of Ring 8 and (3, 7) of Ring 10, respectively, 19% and 21% (p-values for

t-test are nearly zero).

Our second observation is about within-ring variations of intermediation costs: here we

don’t find significant di↵erences in costs for Ring 6 and Ring 10. In Ring 8, the average cost

in the case of (3, 5) is significantly lower than those in cases of (2, 6) and (4, 4) (p-values for

t-test are, respectively, 0.046 and 0.002).

These across-ring and within-ring variations of intermediation costs suggest that subjects’

pricing behavior responds to the length of their own path and the length of the competing

paths in a subtle manner. We investigate the pricing behavior in greater detail in section 4.3.

We look next into the “competitiveness” of the two paths to enhance our understanding on

why the overall intermediation costs in ring networks are so low. For this purpose, we directly

compare intermediation costs of two paths by computing (absolute) di↵erences between them.

Table 3 reports the sample median of (absolute) di↵erences of costs between two competing

paths, again by dividing the sample into six blocks of 10 rounds. The number in parentheses is

the relative frequency of trading on a shorter path. The median di↵erence in intermediation
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costs is less than 8 in all cases, and this di↵erence is stable over time. Considering the

problem of coordination among multiple intermediaries on a single path, we view these median

di↵erences in costs as quite small and thus that the competition between the two paths is so

tight. This tight competition is reflected in another fact about trading: the frequency of

trading along the shorter path is lower than 65% in all but one case.

- Table 3 here -

Ring with hubs and Clique with hubs. A trading situation between buyer and

seller in Ring with hubs and Clique with hubs can be characterized by (i) the number of

critical intermediaries (#Cr), (ii) the number of intermediation paths (#Paths), and (iii)

the distance of each path (d (q) , d (q0)). Table 4 presents average intermediation costs across

distinct cases of trading in Ring with hubs and Clique with hubs, (#Cr,#Paths, d (q) , d (q0)),

dividing the sample into six blocks of 10 rounds. The number of observations is reported in

parentheses.

- Table 4 here -

First, for the single-path cases with either one or two critical traders, intermediaries extract

almost the entire surplus. In Ring with hubs, they extract about 99% and 96% of the total

surplus in the last 20 rounds when there are one or two critical traders, whereas about 88%

and 96% of surplus are taken by intermediaries in Clique with hubs, respectively.

When there is only one critical intermediary, the decision problem is analogous to that of

standard dictator game, widely studied in the experimental literature (for a survey, see Engel,

2010). In this case, we found much higher surplus extraction than reported in the experimental

literature.18 There are two main di↵erences between our design and the literature. First, we

frame the decision problem as that of posted prices of intermediaries. This may give rise

to the feelings of entitlement that are distinct from standard dictator game. Second, in our

design there are two recipients – buyer and seller – whereas in the dictator game there is one

recipient.19

18Our work suggests that traders located at critical nodes in a network interpret their location as a form of
‘earned endowment’ in the sense of Cherry et al. (2002).

19We also note that in our design, in some situations, both buyer and seller are computer generated agents,
while in others one of them is a human subject. We found no behavioral di↵erence across these cases. This
leads us to believe that the human vs. computer issue does not play a major role in explaining the behavior
of subjects in our experiment.
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When there are two competing paths, trading outcomes are greatly a↵ected. In the cases

with critical intermediaries, intermediation cost ranges between 62% and 83% in the last 20

rounds. In the case without no critical intermediary, this cost falls sharply to around 28%,

which is comparable to the low-cost outcome found in ring networks. This strongly suggests

that, even in case of two competing paths, the presence of critical intermediaries dramatically

a↵ects trading. Overall, this is qualitatively consistent with the key role of criticality on

division of surplus as theory predicts. We summarize these observations in two findings:

Finding 2A (division of surplus): ( i) In ring networks, intermediation costs are small

(ranging from 5% to 30%), while in Clique with hubs and Ring with hubs, if trading is mediated

via critical traders, then intermediation costs are large (60% to over 95%).

Finding 2B (distance and costs): Distance between buyer and seller has significant

impact on intermediation costs: holding constant the minimum distance between buyer and

seller, the costs increase in the length of the longer path.

4.3 Pricing behavior

We now examine individual pricing behavior. Our interest lies in (i) the e↵ects of distance on

pricing behavior in ring networks, as addressed in Question 3, and (ii) the pricing behavior of

critical and non-critical intermediaries in Ring with hubs and Clique with hubs, as addressed

in Question 4.

Ring networks. We first look into subjects’ pricing behavior in the ring networks. Table

5 reports average prices charged by intermediaries, conditional on distances of two paths,

(d (q) , d (q0)), and the distance of their own path, along with the number of observations in

parentheses. We again partition the sample into six blocks of 10 rounds.

- Table 5 here -

Controlling out for potential learning e↵ects across rounds, we focus on the last 20 rounds

and present graphically average prices across di↵erent trading situations in Figure 4. For the

sake of comparison, we also present the resulting intermediation cost for each case.

- Figure 4 here -

Subjects lying on a longer path chose on average prices somewhere between 5 and 10

(presented with blue-colored squares), independently of the distances of two paths across all
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ring networks. Responding strategically to this, subjects lying on a shorter path chose higher

prices that are proportionate to the di↵erence of distances between two paths (presented with

red-colored cross). For example, in cases where the minimum distance between buyer and

seller is 2, subjects on the shorter path in Ring 6 chose on average a price around 15; they

charged an average price of around 25 in Ring 8; and in Ring 10 they chose an average price

of around 28. In Ring 6 and 8, the average price on the shorter path is proportionate to the

number of intermediaries on the longer path and their average prices.

The within-network comparison also reveals similar patterns of strategic competition: av-

erage prices charged by subjects lying on competing paths become closer as their respective

lengths become similar. For example, within Ring 10 average prices on the shorter path de-

creases gradually from around 28 in the case of distance 2, to around 12 in the case of distance

3, and to around 6 in the case of distance 4. Due to the tight competition between two paths,

the resultant intermediation costs (presented with green-colored circle) often get lower than

the sum of average prices charged on the shorter path. This re-confirms the result in Table 3

that trade occurs frequently along the longer path.

All this evidence on pricing behavior suggests that subjects are strategically sophisticated

in their choice of prices, while facing some uncertainty about other subjects’ behavior. In order

to evaluate this further, we consider a simple model of stochastic response under strategic

uncertainty about opponents’ behavior and fit the model to the data. The analysis and

results, presented in Appendix II, confirm that a simple model of strategic uncertainty with

noisy response provides a fairly good account of the pricing behavior in ring networks.

Ring with hubs and Clique with hubs. We now turn to the question of surplus division

among critical and non-critical intermediaries, by examining their pricing behaviors. Table 6

presents average prices of critical and non-critical intermediaries in Ring with hubs and Clique

with hubs, conditional on distinct trading case (#Cr,#Paths, d (q) , d (q0)), partitioning the

sample into six blocks of 10 rounds. The number of observations is reported in parentheses.

- Table 6 here -

We first look into the pricing behavior of two critical intermediaries when there is only a

single path connecting buyer and seller, (2, 1, 3,�). An average price of each critical inter-

mediary in Ring with hubs (resp. in Clique with hubs) is 45.6 (resp. 46.1) in the first ten

rounds and then increases slightly over time to reach 50 in the last 10 rounds (resp. 51). This

o↵ers strong evidence that both critical intermediaries successfully coordinate to extract and

divide the total surplus equally between them. Bearing in mind that this case of trading is
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strategically equivalent to Nash demand game with two symmetric players, we conclude that

our finding is consistent with the findings in the experimental literature of Nash bargaining

(e.g., Roth and Murnighan (1982) and Fischer et al (2006)).

Next we turn to cases in which critical and non-critical intermediaries co-exist in two

competing paths. The pricing behavior of critical and non-critical intermediaries is strikingly

di↵erent: Critical traders post much higher prices than non-critical traders, regardless of the

characteristics of the two competing paths. For instance, in the case where there is one critical

intermediary and the two competing paths are of distance 3 and 5 (first row of table 6), the

critical trader charges, on average, a price close to 50 in the last 20 rounds, non-critical traders

lying in the distance-3 path charge a price close to 25 and those in the other longer path post

a price around 10. Similar behavior is observed in the other cases.

This indicates strong impacts of network position on pricing behavior and thus surplus

division. Table 7 presents the average fraction of intermediation costs charged by critical

traders, conditional on exchange (here data is grouped into the blocks of 20 rounds, due

to small samples). The number within parentheses is the number of group observations.

Looking at the last 20 rounds, we observe that 67% to 80% of intermediation costs go to

critical trader(s). In all the cases, regardless of whether an exchange takes place along the

shorter or longer path, the number of non-critical traders is at least as large as the number

of critical traders. Thus, the results in Table 7 provide clear evidence that ‘critical’ network

location generates large payo↵ advantages.20

- Table 7 here -

We summarize our findings on pricing behavior as follows:

Finding 3A (criticality and pricing): In ring networks, average prices are positive but

quite low. In Ring with hubs and Clique with hubs, critical intermediaries charge higher prices

than non-critical intermediaries leading to unequal intermediation rents. Multiple critical

intermediaries set similar prices.

20There are very few observations on the cases where both buyer and sellers are on the ring in Ring with
hubs, and so there is no critical intermediary. We observe that all non-critical traders behave similarly to that
of traders in ring networks. In fact, traders on a shorter path set higher prices than those on a longer path
and, as a result, traders on both paths compete tightly. However, as compared to ring networks, non-critical
intermediaries in this case of Ring with hubs charge higher prices. It may be that subjects have few chances of
learning about opponents’ behavior in this case, due to the small sampling problem, and experiences in other
cases (with critical intermediaries) might spill over and a↵ect the behavior in this case.
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Finding 3B (distance and pricing): Relative length of two paths a↵ect prices: intermedi-

aries on a longer path set lower prices as compared to intermediaries on a shorter path. This

results in tight competition between two paths and trade takes place along the longer path in

almost one third of the cases.

5 Conclusion

We have examined, through a combination of theory and experiments, how coordination and

competition among intermediaries a↵ect the e�ciency of exchange and the division of surplus

among traders. Our model maps traditional concepts of market power, competition and

coordination into networks.

Our theoretical analysis shows that e�cient equilibrium always exists; but e�ciency is not

guaranteed, as ine�cient equilibria are also common. The experiments show that subjects

almost always select e�cient outcomes. The theory predicts that the division of surplus takes

extreme forms: either all surplus stays with the buyer and seller or all surplus is extracted by

the intermediaries. The experiments show that the division of surplus is (close to) extremal.

Moreover, they point to the key role of betweenness centrality as an organizing principle.

Surplus goes to the intermediaries if and only if there exist traders with maximal betweenness

centrality. Experiments also reveal that betweenness centrality is a key determinant of pricing

behavior and earning power among intermediaries.

We have assumed that intermediaries have complete information on the value of exchange

between buyer and seller. In on-going work, we explore the implications of demand uncer-

tainty: when intermediaries post their price they do not know the exact value of exchange

(Choi, Galeotti and Goyal (2013)). We have developed a complete characterization of pricing

in this model. A positive price equilibrium exists and in such an equilibrium traders set equal

positive prices. These prices are falling while the total intermediation costs are rising in the

number of active traders. The notion of betweenness centrality and the presence of critical

traders remain key to understanding pricing and surplus division in the new model. Finally,

in a positive price equilibrium, trade occurs with positive probability but not always: the

extent of ine�ciency and the surplus extraction by intermediaries depends on the ‘distance’

between the buyer and seller. These results relate closely to the large body of work on double

marginalization.
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Appendix I. Proof of Theorem 2 and Proposition 1.

Proof of Theorem 2. We first show that c⇤(p⇤) 2 (0, 1) cannot be sustained in equilib-

rium. We consider two cases.

Case 1. Suppose |Q⇤| = 1; in this case a trader i on q 2 Q⇤ can raise his price slightly and

strictly increase payo↵s.

Case 2. Suppose |Q⇤| > 1; consider a path q 2 Q⇤ and fix a trader i 2 q with pi > 0. Note that

such a trader always exists, given that c⇤(p⇤) > 0. We have two possibilities

2a. If intermediary i is essential, he can raise his price slightly and he will remain

essential as all other prices remain as before and the sum of prices being less than

1; hence, exchange will take place with probability 1. So there is a strictly profitable

deviation.

2b. If i is not essential, given that |Q⇤| > 1, the probability that i is used in exchange

is at most 1/2. If trader i lowers his price slightly, he ensures that he is on the

unique lowest cost path. Thus the deviation strictly increases payo↵.

Now we take up each of the remaining three possibilities with regard to intermediation

costs and characterize the conditions for which they can be sustained in equilibrium.

1. Assume c⇤(p⇤) = 0. We first establish su�ciency. In equilibrium every trader makes

payo↵ 0. Consider an increase in price by some intermediary i. As no intermediary is

essential under p, there exists an alternative path between b and s at cost 0, and this

path excludes trader i. So there is no profitable deviation, and p

⇤ is an equilibrium.

We now establish necessity. Suppose there is a trader i who is essential under p

⇤. As

c⇤(p⇤) = 0, essential trader i can raise his price slightly, still ensure that exchange takes

place through him, and thereby he strictly raises his payo↵s. So p⇤ is not an equilibrium.

2. Assume c⇤(p⇤) = 1. We first establish su�ciency. Consider intermediary j 2 q, with

q 2 Q⇤. If pj > 0 then intermediary j is essential and so trade occurs with probability

1 via j and he earns p⇤j . If j raises his price then total costs of intermediation exceed

1 and no trade takes place, yielding a zero payo↵ to j. If j lowers his price, trade does

occur with probability 1 via him, so he only succeeds in lowering his payo↵ below p⇤j .

Next consider trader k 2 q with q 2 Q⇤ such that pk = 0. It is easily verified that k
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cannot increase his payo↵ by raising his price. Finally, consider l 2 q, with q /2 Q⇤. This

trader earns 0 in p

⇤. A deviation to a lower positive price leaves the trade probability

via l at 0, as c�l(q,p⇤) � 1. We have shown that p⇤ is an equilibrium.

We now establish necessity. Suppose j 2 q, with q 2 Q⇤, pj > 0 and j is not essential. So

the probability that exchange occurs via trader j is at most 1/2. Trader j can lower his

price slightly and this will push the probability of trade via himself to 1, and thereby he

strictly raises his payo↵. Next consider k 2 q, with q /2 Q⇤ and suppose c�k(q,p⇤) < 1.

Under p⇤, the payo↵ to k is 0. But since c⇤(p⇤) = 1, there is a price pk = 1�c�k(q,p⇤)�✏

such that, for small ✏ > 0, the probability of trade via k is 1 and pk > 0. This is therefore

a profitable deviation.

3. Assume c⇤(p⇤) > 1. We first establish su�ciency. All traders earn 0 under profile p

⇤.

Consider j 2 q with price p⇤j . It can be checked that no deviation to another price can

generate positive payo↵s given that c�j(q,p⇤) � 1. A deviation to price 0 yields payo↵

0. This proves su�ciency.

We now establish necessity. Suppose that c⇤((p⇤) > 1 and that there is some j such that

c�j(q,p⇤) < 1. Then there is a price pj = 1� c⇤�j(p
⇤)� ✏, for some ✏ > 0 such that trade

takes place via trader j with probability 1. This constitutes a profitable deviation.

⌅

Proof Proposition 1: Part 1. First consider su�ciency. Set prices of all intermediaries at

1. Given that d(b, s|q) > 2, there are always at least 2 traders in any path q 2 Q. This is

an equilibrium, from part 3 of Theorem 2. Next, we establish necessity. If d(b, s|q) = 2 then

there exists a path in g between b and s, with only one intermediary, say, i. If c⇤(p⇤) > 1

then there is no trade and all paths between the buyer and seller cost more than 1 and all

traders makes zero payo↵s. However, by setting a positive price p  1 intermediary i ensures

exchange and earns positive payo↵.

We now consider part 2a. If the equilibrium is e�cient then c⇤(p⇤)  1. If c⇤(p⇤) = 0

then any intermediary k 2 C can raise price slightly, retain probability one of exchange, and

so increase his payo↵. From Theorem 2 it then follows that c⇤(p⇤) = 1.

Finally, consider part 2b. From part 1 we know that equilibrium is e�cient. Suppose

c⇤(p⇤) = 1; for this to be an equilibrium it must be the case that intermediaries who lie on

distance 2 paths set price 1. This also implies that each of those intermediaries earns at most

1/2. But this is clearly sub-optimal. An intermediary on a path of distance 2 can strictly
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raise payo↵s by slightly lowering his price as this guarantees that he is on the trading path,

and ensures a payo↵ close to 1. ⌅
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Appendix II. A Model of Strategic Uncertainty with Stochastic

Choice

We employ a tractable and parsimonious model of noisy behavior to account for pricing

behavior in rings.21 The model is built on a set of structural assumptions: First, we assume

that individuals on a given path q against a competing path q0 use a symmetric strategy,

described by the distribution of price choice. Second, we assume that an individual subject

has correct beliefs about opponents’ strategies. Third, each individual is assumed to choose a

price to maximize his expected payo↵s against opponents’ strategies. In the exercise of fitting

the model to the data, we introduce the possibility of noisy best response, using a conventional

logistic choice function. For practical purpose, we discretize the action space to be the set of

integer numbers, ranging from 0 to 100.

Formally, we first describe a model of strategic uncertainty without decision error. Consider

intermediary i on a path q with a competing path q0 in Ring n network. This intermediary

faces uncertainty about the behavior of other intermediaries in the ring network, which is

represented by his probabilistic beliefs about others’ behavior: let bFj denote intermediary i’s

belief about j’s price choice for i, j 2 q, and bFk denote i’s belief about k’s price choice for

k 2 q0. Given his beliefs about others’ pricing behavior, the individual can compute expected

payo↵s for any price choice, pi:

e⇧i (pi| (q, q0)) = pi ⇥
Z

· · ·
Z

j2q,j 6=i
k2q0

8
<

:
Pr

⇣
pi +

P
j2q,j 6=i pj <

P
k2q0 pk

⌘
pi

+Pr
⇣
pi +

P
j2q,j 6=i pj =

P
k2q0 pk

⌘
/2

9
=

; d bFj · · · d bFk

Individual i chooses his price pi to maximize associated expected payo↵s, given his beliefs:

max
pi2{0,1,2,...,100}

e⇧i (pi| (q, q0))

Second, in order to fit the model to the data, we extend the model of strategic uncertainty

with probabilistic choice. We assume a conventional logistic function to model stochastic

21We have also tried to develop a stochastic equilibrium model such as Quantal response equilibrium (QRE)
model, proposed by McKelvey and Palfrey (1995). We were unable to derive the QRE strategy due to the
continuous action space and the asymmetry of multiple players in di↵erent network positions. Moreover, the
numerical approach of solving equilibrium conditions is very demanding. This practical challenge leads us to
adopt a non-equilibrium model of strategic uncertainty.
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choice:

Pr {pi = s| (q, q0)} =
exp

⇣
�e⇧i (s| (q, q0))

⌘

P100
t=0 exp

⇣
�e⇧i (t| (q, q0))

⌘ ,

where � is a payo↵-sensitivity parameter in choice function. If � goes to zero, the pricing

choice becomes purely random. If � goes to the infinity, the individual chooses an optimal

price with probability 1. In order to proceed further with the experimental data, we assume

that each individual intermediary has rational beliefs about other players’ behavior, consistent

with empirical distributions of their price choices. For practical purposes, we assume that

intermediaries on a given path employ a symmetric strategy.

We use the maximum likelihood estimation (MLE) method to estimate the payo↵-sensitivity

parameter in the model of strategic uncertainty with stochastic choice. Let the data consist

of {pj}nj=1 for all j 2 q and {pk}mk=1 for all k 2 q0. Using this data, we first construct empirical

distributions of players on paths q and q0, bFj and bFk, respectively, for j 2 q and k 2 q0, and

then compute expected payo↵s e⇧i (pi| (q, q0)) for intermediary i 2 q. We can then choose � to

maximize the following log-likelihood function:

L
⇣
�; {pj}nj=1 , {pk}

m
k=1

⌘
=

nX

i=1

(
100X

t=0

1 {pi = t}⇥ log (Pr {pi = t| (q, q0)})
)
.

Table 8 presents the estimation results of this model with the samples of last 40 rounds

and last 30 rounds, respectively, along with the best response level of price choice (without

decision error) and the sample average price from the data, for comparison.22

- Table 8 here -

First, in all cases, estimated �s are strictly positive and significantly away from zero.23

This confirms that the empirical distribution of price choice is consistent with the monotonic

relation between choice probability and payo↵s imposed by the model. In order to assess

the goodness of fit of the model, we draw the cumulative distributions of observed prices

22In the distance case of (2, 8) in Ring 10, we eliminated one sample of price 100. Due to the small sample
problem, the inclusion of this outlier price distorts the working of the model for both traders on two paths in
this case.

23The value of � depends on the scaling of payo↵s. If payo↵s are scaled down by a factor k, the value of
� is scaled up by the same factor. In this sense, the magnitude of � value has little relevance in interpreting
the results. Rather, the significance of � from zero is more important in confirming the monotonic relation
between price choices and payo↵s.
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and fitted prices in each case and compare how close these distributions are to each other

(these figures are reported in Online Appendix II24, in the interest of space). In most of the

cases, the cumulative distributions of observed and fitted prices appear quite close to each

other. Second, we calculate best-response prices (without decision error) against opponents’

strategies. The best-response prices are quite close to average prices observed in the data.

Furthermore, the model confirms that it is optimal to choose a low but positive price in

each case of ring networks, given others’ behavior. Therefore, we conclude that the model of

strategic uncertainty with noisy response provides a fairly good account of the pricing behavior

in ring networks.

24http://www.homepages.ucl.ac.uk/˜uctpsc0/Research/CGG I OnlineAppendices.pdf
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$OO������� � � � �
1.00 1.00 -- -- --
(480) (480)
1.00 1.00 1.00 -- --
(420) (289) (131)
1.00 1.00 1.00 1.00 --
(360) (128) (143) (89)
1.00 1.00 1.00 1.00 1.00
(240) (49) (87) (69) (35)
0.95 1.00 0.94 0.90 0.90
(420) (126) (155) (109) (30)
0.94 1.00 0.88 -- --
(360) (171) (189)

Table 1. Frequency of Trading

Ring 6

minimum distance of buyer-sell pair

Ring 4

Note: The number of group observations is reported in parentheses.

Clique with
hubs

Ring with hubs

Ring 8

Ring 10

Network



1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60
19.76 12.77 7.80 6.04 4.81 5.36
(80) (80) (80) (80) (80) (80)
41.77 24.62 18.44 14.08 11.96 12.01
(52) (49) (50) (44) (44) (50)
39.05 22.92 17.54 14.99 12.92 13.00
(18) (21) (20) (26) (26) (20)
45.05 33.50 28.37 28.89 26.80 21.87
(19) (23) (24) (17) (21) (24)
46.92 35.27 31.68 27.05 20.11 18.28
(30) (21) (25) (29) (21) (17)
47.44 39.75 28.08 24.52 26.82 29.80
(11) (16) (11) (14) (18) (19)
40.40 30.51 22.36 20.35 17.60 20.71
(5) (11) (11) (8) (5) (9)
41.85 29.66 26.44 22.20 20.11 22.09
(17) (14) (15) (13) (14) (14)
41.41 29.31 23.53 22.01 20.07 17.54
(11) (11) (10) (12) (15) (10)
43.32 30.73 24.44 20.76 24.54 18.20
(7) (4) (4) (7) (6) (7)

(2, 8)

(3, 7)

(5, 5)

(4, 6)

Note: The number in a cell is the sample average. The number of observations is reported in parentheses. d(q)
denotes the distance of path q between b and s.

Ring 10

Table 2. Intermediation Costs in Ring Networks

(d(q),d(q'))
Rounds

Ring 4

Ring 6

(2, 2)

Network

Ring 8

(2, 6)

(3, 5)

(4, 4)

(2, 4)

(3, 3)



1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60 All
7.08 2.40 3.05 2.79 3.43 4.69 3.93
-- -- -- -- -- -- --

10.00 8.00 3.50 4.51 3.76 4.93 6.00
(0.58) (0.63) (0.64) (0.68) (0.57) (0.72) (0.64)
12.50 8.98 4.00 3.00 4.01 4.51 4.81
-- -- -- -- -- -- --
7.99 8.13 6.58 4.02 5.12 3.62 6.71
(0.53) (0.48) (0.67) (0.53) (0.67) (0.71) (0.60)
8.99 4.00 3.75 5.05 4.05 2.26 5.00
(0.57) (0.67) (0.64) (0.55) (0.57) (0.65) (0.60)
8.09 3.90 6.30 3.13 3.53 8.00 6.00
-- -- -- -- -- -- --
6.00 7.00 7.55 4.16 13.29 17.36 7.00
(0.80) (0.82) (0.73) (0.75) (0.40) (0.78) (0.73)
9.00 5.17 3.66 4.01 4.88 9.50 5.00
(0.59) (0.79) (0.53) (0.54) (0.71) (0.64) (0.63)
10.50 7.81 7.72 2.76 6.61 8.94 7.69
(0.27) (0.64) (0.40) (0.42) (0.60) (0.80) (0.52)
15.72 12.74 8.15 4.99 3.01 8.02 7.21
-- -- -- -- -- -- --

Note: The number in a cell is the sample median of differences of intermediation costs of two paths. The number in parentheses is
the frequency of trading on a shorter path of intermediation. d(q) denotes the distance of path q between b and s.

(4, 6)

(5, 5)

(4, 4)

Ring 10

(2, 8)

(3, 7)

(2, 4)

(3, 3)

Ring 8

(2, 6)

(3, 5)

Ring 6

Table 3. Competition between Two Paths in Ring Networks

(d(q), d(q'))
Rounds

Ring 4 (2, 2)

(absolute difference of costs & frequency of trading on a shorter route)

Network



1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60
89.19 98.09 98.06 99.20 99.67 99.31
(15) (22) (17) (15) (15) (16)
87.35 85.00 92.85 97.59 95.00 96.88
(14) (5) (18) (13) (12) (8)
66.09 73.44 74.59 74.28 73.50 66.31
(11) (9) (11) (15) (12) (13)
76.35 71.41 66.43 59.33 58.00 65.17
(7) (9) (7) (6) (4) (6)
86.06 87.51 86.90 85.53 84.94 81.82
(7) (9) (7) (12) (11) (13)
90.19 84.12 76.83 81.00 71.57 82.25
(5) (3) (3) (5) (7) (4)
40.60 47.00 46.50 31.33 32.33 25.56
(5) (5) (4) (3) (6) (8)
78.07 81.59 89.21 80.78 86.92 89.30
(28) (29) (27) (27) (33) (27)
84.08 91.52 90.04 93.88 94.73 97.93
(25) (25) (30) (32) (26) (29)

Table 4. Intermediation Costs in Ring with Hubs and Clique with Hubs

(#Cr,#Paths, d(q),d(q'))
Rounds

Clique
with hubs

(1, 1, 2, --)

(2, 1, 3, --)

Network

(conditional on trading)

Note: The number in a cell is the sample average. The number in parentheses is the number of observations. #Cr denotes the number of
critical intermediaries, #Paths denotes the number of paths connecting buyer and seller, d(q) denotes the length of path q beween buyer
and seller.

Ring with
hubs

(1, 1, 2, --)

(2, 1, 3, --)

(1, 2, 3, 5)

(2, 2, 4, 6)

(2, 2, 5, 5)

(0, 2, 2, 4) or (0, 2, 3, 3)

(1, 2, 4, 4)



1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60
23.91 14.98 10.61 8.36 8.84 10.41
(160) (160) (160) (160) (160) (160)
46.41 28.04 20.19 15.79 16.26 14.77
(52) (49) (50) (44) (44) (50)
16.23 9.88 7.49 6.29 5.69 6.53
(156) (147) (150) (132) (132) (150)
22.58 14.04 10.01 8.45 7.84 7.79
(72) (84) (80) (104) (104) (80)
50.16 37.61 30.25 30.05 28.50 22.37
(19) (23) (24) (17) (21) (24)
10.55 8.99 7.15 7.19 7.56 7.33
(95) (115) (120) (85) (105) (120)
25.00 18.01 16.85 14.62 10.64 9.86
(60) (42) (50) (58) (42) (34)
14.11 9.81 9.09 9.13 7.32 6.43
(120) (84) (100) (116) (84) (68)
17.70 14.37 11.06 9.54 10.65 11.40
(66) (96) (66) (84) (108) (114)
41.40 30.81 24.69 20.93 21.80 30.85
(5) (11) (11) (8) (5) (9)
6.69 6.59 4.45 6.13 3.55 6.74
(35) (77) (77) (56) (35) (63)
24.15 15.89 14.17 12.29 10.60 12.49
(34) (28) (30) (26) (28) (28)
7.73 5.69 5.56 4.60 4.23 5.73
(102) (84) (90) (78) (84) (84)
17.16 10.23 9.00 8.42 7.16 6.56
(33) (33) (30) (36) (45) (30)
9.78 7.61 5.47 4.73 5.19 4.92
(55) (55) (50) (60) (75) (50)
12.65 9.25 7.12 6.08 6.66 5.77
(56) (32) (32) (56) (48) (56)

Note: The number in a cell is the sample average. The number of observations is reported in parentheses. d(q)
is the distance of path q between b and s.

2

Ring 10

2

3

4

5

Ring 8

2

3

4

8

6
(2, 6)

5
(3, 5)

Table 5. Pricing Behavior in Ring Networks

Distance of
own path

Rounds

Ring 4

Ring 6

2

3

(d(q),d(q'))

(2, 2)

(2, 4)
4

(3, 3)

Network

(4, 4)

(5, 5)

(2, 8)

7
(3, 7)

6
(4, 6)



1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60
38.83 44.97 50.18 50.62 53.85 47.85
(12) (11) (11) (15) (13) (13)
36.67 40.36 33.59 32.09 26.31 24.62
(12) (11) (11) (15) (13) (13)
16.26 14.85 9.39 8.97 10.97 8.41
(36) (33) (33) (45) (39) (39)
38.29 36.18 34.86 35.83 35.00 46.17
(8) (9) (7) (6) (4) (6)
28.10 20.28 17.88 14.33 15.31 13.04
(32) (36) (28) (24) (16) (24)
33.14 35.02 34.86 32.47 36.94 33.18
(20) (22) (20) (24) (26) (26)
29.98 27.78 23.07 24.58 20.46 17.46
(10) (11) (10) (12) (13) (13)
12.69 9.59 10.57 8.11 7.82 7.91
(30) (33) (30) (36) (39) (39)
29.50 33.50 23.17 30.67 26.36 30.50
(10) (10) (6) (12) (14) (8)
21.17 16.97 15.71 14.08 12.07 13.00
(20) (20) (12) (24) (28) (16)
45.60 46.79 46.43 48.80 47.50 50.00
(30) (14) (36) (26) (24) (20)
46.08 48.92 46.46 47.11 47.76 50.82
(64) (62) (66) (66) (54) (66)

Note: The number in a cell is the sample average. The number in parentheses is the number of observations. #Cr denotes the number of critical
intermediaries, #Paths denotes the number of competing paths connecting buyer and seller, d(q) denotes the length of path q beween buyer and seller.

(1, 2, 3, 5)

Critical

Non Critical in
shortest path

Critical

Non Critical

Critical

Non Critical in
shortest path
Non Critical in
longest path

Critical(2, 1, 3, --)Clique
with hubs

(2, 1, 3, --) Critical

Table 6. Pricing Behavior of Critical and Non-critical Intermediaries in Ring and Clique with Hubs

Rounds
(#Cr,#Paths, d(q),d(q'))

(2, 2, 5, 5)

Type of
IntermediaryNetwork

Non Critical in
longest path

(1, 2, 4, 4)
Critical

Non Critical

(2, 2, 4, 6)

Ring with
hubs



1 ~ 20 21 ~ 41 41 ~ 60
0.56 0.68 0.72
(20) (26) (25)
0.48 0.56 0.67
(16) (13) (10)
0.73 0.77 0.80
(16) (19) (24)
0.65 0.67 0.74
(8) (8) (11)

Note: The number in a cell is the average fraction of costs charged by critical traders. The number of observations is reported
in parentheses. #Cr denotes the number of critical intermediaries, #Paths denotes the number of paths connecting buyer and
seller, d(q) denotes the length of path q beween buyer and seller.

Table 7. Fraction of Intermediation Costs by Critial Intermediaries in Ring with Hubs
(conditional on trading)

Network (#Cr,#Paths, d(q),d(q'))
Rounds

Ring with
hubs

(1, 2, 3, 5)

(1, 2, 4, 4)

(2, 2, 4, 6)

(2, 2, 5, 5)



%5 Ȝ��VWG��HUU�� %5 Ȝ��VWG��HUU��
Sample mean
(# of obs) Likelihood value Sample mean

(# of obs) Likelihood value

6 1.25 (0.09) 6 1.668 (0.245)
9.58 (640) -2198.57 9.65 (480) -1225.6

13 0.441 (0.03) 11 0.539 (0.027)
16.81 (188) -624.06 15.59 (138) -427.17

7 3.166 (0.075) 5 5.932 (0.137)
6.55 (564) -1633.8 6.21 (414) -1117.7

7 1.42 (0.005) 7 1.504 (0.002)
8.49 (368) -951.1 8.07 (288) -731.29

24 0.146 (0.001) 24 0.154 (0.027)
27.58 (86) -358.31 26.55 (62) -259.61

12 1.024 (0.01) 12 1.012 (0.028)
7.35 (430) -1652.7 7.41 (310) -1214.2

15 0.599 (0.085) 15 0.620 (0.008)
13.48 (184) -671.41 12.21 (134) -510.06

10 1.256 (0.005) 10 1.333 (0.057)
8.23 (368) -1297.8 7.9 (268) -964.56

14 0.784 (0.002) 14 0.749 (0.072)
10.73 (372) -1362.6 10.64 (306) -1142.4

20 0.352 (0.045) 18 0.443 (0.061)
22.72 (32) -121.1 21.67 (21) -87.67

7 2.678 (0.006) 6 3.016 (0.211)
5.38 (231) -816.6 5.83 (154) -540.44

12 1.072 (0.071) 12 1.101 (0.243)
12.44 (112) -307.5 11.79 (82) -224.29

6 2.769 (0.078) 6 2.982 (0.038)
5.09 (336) -958.94 4.91 (246) -728.63

9 1.165 (0.095) 9 1.132 (0.030)
7.79 (141) -379.57 7.45 (111) -301.76

6 3.990 (0.237) 5 4.635 (0.049)
5.13 (235) -560.6 5.02 (185) -423.16

8 1.646 (0.037) 8 1.654 (0.100)
6.35 (192) -555.88 6.18 (160) -464.29

Data: 21 ~ 60 rounds

Ring 4 (2, 2) 2

Network (d(q),d(q')) Distance ofown path

(4, 4) 4

Ring 6
(2, 4)

2

4

(3, 3) 3

(2, 6)
2

6

(3, 5)
3

5

Data: 31 ~ 60 rounds

Note: BR respresents an optimal price in the model of strategic uncertainty with no decision error. The second column in
HDFK�GDWD�UHSRUWV�DQ�HVWLPDWHG�YDOXH�RI�Ȝ��LWV�VWDQGDUG�HUURU��DQG�WKH�ORJ�OLNHOLKRRG�YDOXH�DW�WKH�RSWLPXP��

Table 8. Model of Strategic Uncertainty: Optimality and Estimation

(5, 5) 5

Ring 10

(2, 8)
2

8

(3, 7)
3

7

(4, 6)
4

6

Ring 8
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Online Appendix I: Sample Instructions
Ring 6 network

This is an experiment in the economics of decision-making. A research foundation has
provided funds for conducting this research. Your earnings will depend on your decisions, on the
decisions of the other participants in the experiments, and partly on chance. If you follow the
instructions and make careful decisions, you may earn a considerable amount of money.

At this point, check the name of the computer you are using as it appears on the top left of
the monitor. At the end of the experiment, we will call your computer name to pay your earnings.
At this time, you will receive £5 as a participation fee (simply for showing up on time). Details of
how you will make decisions will be provided below.

During the experiment we will speak in terms of experimental tokens instead of pounds.
Your earnings will be calculated in terms of tokens and then exchanged at the end of the
experiment into pounds at the following rate:

60 Tokens = 1 Pound
In this experiment, you will participate in 60 independent and identical (of the same form)

rounds. In each round you will be assigned to a position in a six-person trading network for a
commodity. You will be asked to choose an intermediation price that you will earn in case a
seller and a buyer trade a commodity through you.

A round

We now describe in detail the process that will be repeated in all 60 rounds.
At the start of each round, you will be assigned with equal probability to one of the six

network positions labeled A, B, C, D, E, or F. An equal number of the participants in the room
will be designated in each of the six network positions. Your type (A, B, C, D, E or F) in each
round depends solely upon chance and is independent of the types assigned to you in any of the
other rounds.

The network and your type will be displayed at the left hand side of the screen (see
Attachment 1). A line segment between any two types indicates that the two types are connected
and that the commodity can be delivered between the two types.

Note that in the network used in this experiment,

x type-A participants can deliver the commodity either to type-B or type-F,
x type-B participants can deliver the commodity either to type-A or type-C,
x type-C participants can deliver the commodity either to type-B or type-D,
x type-D participants can deliver the commodity either to type-C or type-E,
x type-E participants can deliver the commodity either to type-D or type-F,
x and type-F participants can deliver the commodity either to type-E or type-A.
Next, the computer randomly forms six-person groups by selecting one participant of type-A,

one of type-B, one of type-C, one of type-D, one of type-E, and one of type-F per group. The
groups formed in each round depend solely upon chance and are independent of the groups
formed in any of the other rounds.



After everyone is assigned to one type in one group, the computer will randomly select a pair
of two non-adjacent types (no direct line segment between them) as a buyer-seller pair to trade
the commodity. This is called a trading pair. Any pair of two non-adjacent types will be equally
likely to be selected. Between two non-adjacent types in any trading pair, there will be at least
one intermediary through which the commodity has to be delivered. Two participants in the
selected trading pair will be highlighted in green color (see Attachment 1).

Once all participants in each group has been informed of the selection of a trading pair, each
participant playing an intermediary role is asked to submit an intermediation price that will be
charged if the trade occurs through the participant. Each participant can choose any real number
(up to two decimal places) between 0 and 100. You will simply need to type the number you
wish to choose in the number box at the bottom left of the screen and click the OK button. Note
that if you are selected in a trading pair, you will not need to choose an intermediation price.
Thus, you will not have a choice (see Attachment 2).

A surplus for each trading pair is 100 if trading occurs and zero otherwise. Trading will take
place if there is at least one delivery route in which the sum of intermediation prices does not
exceed the trading surplus of 100. If there is more than one such route, trading will occur through
the route with the lowest sum of intermediation prices. If more than one route charges the same
lowest sum of prices, one of such routes will be selected with equal probability for trading.

Note that in the network used in this experiment, there are always two possible delivery
routes for any trading pair. For instance, if (A, E) is selected as a trading pair, the commodity can
be delivered through F (route 1), or through B, C, and D (route 2). Likewise, if (C, F) is selected
as a trading pair, the commodity can be delivered through A and B (route 1), or through D and E
(route 2).

Once everyone has made a decision, the computer will inform everyone about the choices of
intermediation prices made by all the participants in your group, the trading route if trading
occurred (highlighted in yellow color), and the earnings for a selected trading pair and
intermediaries through which trading occurs (see Attachment 3).

After you observe the results of the first round, press the OK button at the bottom left of the
screen to move on to the next round. The second round will start the computer randomly
assigning types to all participants and forming new groups of six participants. Note that you can
review the outcomes in previous rounds at the top right of the screen (see Attachment 1). This
process will be repeated until all the 60 independent and identical rounds are completed. At the
end of the last round, you will be informed the experiment has ended.

Earnings

Your earnings in each round depend on whether you are selected as one participant in the
trading pair or as an intermediary. If you are selected in the trading pair, your earnings can be
summarized in the following formula.

Earnings = 0.5×{(trading surplus) – (trading cost)}

Note that the trading surplus is 100 if trading occurs and zero otherwise. The trading cost is
the sum of intermediation prices that the trading pair must pay in order to make trading occur. If



trading does not occur, the cost is zero. Two participants in the trading pair share equally the net
surplus. Thus, each participant in the pair earns half of the net surplus, as given in the formula.

If you are selected as an intermediary, your earnings are determined by intermediation
revenue.

Earnings = (intermediation revenue)

Your intermediation revenue is equal to your choice of intermediation price if trading occurs
through you. If trading does not happen or does not occur through you, you will receive nothing.

To illustrate the determination of earnings further, let us take the following example.
Suppose that (A, E) was selected as a trading pair. Suppose that B chose 10, C chose 40, D chose
25, and F chose 80 as their intermediation prices. Then, trading occurs through B, C, and D
because the sum of intermediation prices on this route (10 + 40 + 25 = 75) is lower than the price
charged by F (80), and does not exceed the trading surplus. Therefore, earnings six participants
received are as follow:

(A’s earnings) = 0.5×(100 – 75) = 12.5,
(B’s earnings) =10, (C’s earnings) = 40, (D’s earnings) = 25

(E’s earnings) = 0.5×(100 – 75) = 12.5,
(F’s earnings) = 0.

Let us take another example. Suppose that (B, E) was selected as a trading pair. Suppose that
A chose 30, C chose 40, D chose 65, and F chose 80 as their intermediation prices. In this case,
because each route of intermediaries charges the sum of prices exceeding the trading surplus –
the sum of prices by A and F is 110 and the sum of prices by C and D is 105, trading cannot
occur. Therefore, each participant’s earnings are simply zero.

Your final earnings in the experiment will be the sum of your earnings over the 60 rounds.
At the end of the experiment, the tokens will be converted into money. You will receive your
payment as you leave the experiment.

Rules

Please do not talk with anyone during the experiment. We ask everyone to remain silent until
the end of the last round.

Your participation in the experiment and any information about your earnings will be kept
strictly confidential. Your payments receipt is the only place in which your name is recorded.

If there are no further questions, you are ready to start. An instructor will activate your
program.
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Online Appendix II
Goodness of Fit of the Model of Strategic Uncertainty with Stochastic Choice

1. Sample data: 21 ~ 60 rounds
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Ring 6 network
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Ring 8 network
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Ring 10 network
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2. Sample data: 31 ~ 60 rounds
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Ring 6 network
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