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Abstract

We show that a firm may benefit from strategically creating scarcity for its product,

in order to trigger herding behavior from consumers in situations where such behavior is

otherwise unlikely. We consider a setting with social learning, where consumers observe

sales from previous cohorts and update beliefs about product quality before making their

purchase. Imposing a capacity constraint directly limits sales but also makes information

coarser for consumers, who react favorably to a sell-out because they only infer that demand

must exceed capacity. Neither large cohorts nor unbounded private signals guarantee

efficient learning, because the firm acts strategically to influence the consumers’ learning

environment. Our results show that capacity constraints can serve as a practical tool for

information design: if private signals are not too precise and capacity can be changed over

time, then in large markets the firm’s optimal choice of capacity delivers the same expected

sales as the Bayesian persuasion solution.
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1 Introduction

This paper shows that firms may want to strategically create product scarcity, to influence

consumer learning in such a way that can effectively persuade consumers to buy. As is standard

in the literature on social learning (see foundational papers by Banerjee (1992) and Bikhchandani

et al. (1992)), each consumer receives a noisy private signal about product quality, but also infers

some information from observing earlier sales. To illustrate the mechanism at work, consider a

cohort of ten consumers who visit a firm, where each buys if and only if her signal was good.

A consumer who then arrives and observes initial sales of three may refuse to buy, even if her

own signal was good, because she infers that only three out of the ten others had a good signal.

But if the firm, without knowing product quality, had initially limited capacity to three sales

per period, then the consumer would observe a sell-out, and only infer that there were at least

three good signals. That may well convince the consumer to buy even if her own signal was

bad, and trigger a positive purchase cascade.

Now suppose that in our example, one out of ten consumers per period is perfectly informed

about quality, and that the firm is unconstrained. If quality is low, but say seven consumers

in period 1 receive good signals, then everyone will buy in period 2 except for the informed

consumer. The informed consumer’s choice not to buy will perfectly reveal low quality and lead

to zero sales in later periods. However, this same choice would not reveal any information if the

firm had restricted capacity, because the informed consumer would be effectively pooled with

those who were rationed.1

Thus, neither large cohort size (as in the ‘guinea pigs’ considered by Sgroi (2002)) nor un-

bounded signals (as in Smith and Sørensen (2000)) guarantees efficient social learning. The

reason is that here, the consumers’ learning environment is endogenous, and the firm can ma-

nipulate this environment by restricting capacity. The result is that consumers may fail to learn,

in particular in situations where learning would hurt the firm.

The attractiveness of restricting capacity as a tool to manipulate learning can be understood

1In the spirit of Smith and Sørensen (2000), we use the word ‘cascade’ to refer to a situation where all
consumers with boundedly informative signals take the same action regardless of their private information.
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more broadly in terms of information design. A firm’s choice of capacity affects the structure

of consumers’ public information, analogous to the way a sender determines the structure of a

receiver’s private signal in models of Bayesian persuasion. We show that in large markets, a firm’s

optimal capacity choice can deliver exactly the Bayesian persuasion outcome, and therefore result

in optimal information provision. Bayesian persuasion mechanisms generally raise two practical

concerns: how the signal space is determined and how a sender can commit to a particular signal

structure. Neither concern is an issue in our setting, as both the signal space and commitment

power follow naturally from the firm’s choice of capacity.

In this sense, our paper brings out a close connection between Bayesian persuasion and

social learning despite apparent differences between the two approaches. In the former, a sender

directly influence agent learning by designing statistical experiments. In the latter, agents

learn by observing each others’ actions which may reveal their private information. And yet,

in practice, a seller’s simple choice to restrict capacity can end up persuading consumers, by

marshalling the forces of social learning: consumers learn just as they would have, had the

sender designed an optimal experiment.

Our focus on sell-outs and scarcity fits in with evidence that demand for some products

seems to persistently far outstrip supply and that suggests a plausible cause is seller strategic

behavior. Shortages for ‘Beanie Babies’ were accompanied by extremely high demand from 1996

to 1999. Debo et al. (2012) argue that scarcity for these toys was largely induced by the firm

itself. Chicago magazine writes that scarcity was a marketing strategy chosen by Ty Warner,

the toys’ creator:

The toys easily supplanted other fads such as Ninja Turtles and Cabbage Patch dolls

partly because of Warner’s strategy of deliberate scarcity. He rolled out each one —

Spot the Dog, Squealer the Pig — in a limited quantity and then retired it.2

For high-end restaurants, tables at ‘Noma’ in Copenhagen remain notoriously difficult to

come by, and reported waiting times for ‘Damon Baehrel’ or ‘Club 33’ in the United States

2See: https://www.chicagomag.com/Chicago-Magazine/May-2014/Ty-Warner/, accessed on February 7,
2019. See also: https://nypost.com/2015/02/22/how-the-beanie-baby-craze-was-concocted-then-crashed/, ac-
cessed on February 7, 2019.
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range from ten to fourteen years. Music festivals, such as those in Roskilde and Reading, also

often sell out well in advance, year after year, with tickets for Glastonbury 2016 selling out in

just 30 minutes.3 Sell-outs are also common in professional sports, where the Boston Red Sox

enjoyed a sell-out streak that stretched from 2003 to 2013. In terms of performances, Courty

and Pagliero (2012) argue that concert promoters believe that empty seats would reveal negative

information to consumers, and therefore select venues and prices to make sellouts more likely.

In a similar spirit, ‘papering the house’ is a common practice where some consumers quietly

receive free tickets so as to fill empty seats. Our formal model does not capture all the richness

of these particular situations, but echoes the same broad idea: consumers may react favourably

to sellouts, and sellers may take into account when making their strategic choices.

Formally, we consider a model of social learning where cohorts of consumers arrive sequen-

tially at a seller and observe sales from previous periods. Informed consumers perfectly know

whether product quality is high or low, whereas uninformed consumers receive a private noisy

signal. Consumers in each cohort simultaneously choose whether to buy or take their outside op-

tion and then leave the game. Initially, without knowing its quality, the seller can set a capacity

constraint, where per period sales cannot exceed capacity. This constraint effectively coarsens

the information of consumers since they cannot observe the extent of any excess demand.

We show that the seller may find it profitable to restrict capacity even though the constraint

directly limits sales, because sell-outs drive up uninformed consumers’ willingness to pay. The

result can be a positive purchase cascade, where all consumers buy regardless of their signal,

which in particular generates excess demand in later periods. This excess demand can actually

benefit the seller, if quality is in fact low, by masking the actions of informed consumers who

choose not to buy, thereby allowing the cascade to be maintained. Restricting capacity tends

to help in situations that a priori seem grim, where the product likely has low quality.

Thus, while our formal analysis does not consider dynamic pricing, our framework provides

a rationale as to why firms may not increase prices despite regular sellouts and likely excess

demand. To maximize expected profits, in the presence of demand uncertainty, it would often

3See http://www.glastonburyfestivals.co.uk/glastonbury-2016-tickets-sell-out-in-30-minutes/, accessed on
February 7, 2019.
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seem reasonable to charge a price that is high enough to prevent sellouts from always occurring.

Our analysis points out a downside to such a strategy, namely that a failure to sell out can

reduce future profits by stopping a positive purchase cascade.

We then explore how restricting capacity performs relative to Bayesian persuasion, i.e. ex

ante commitment to a rule that maps product quality to a binary purchase recommendation,

where each consumer decides whether to buy based on the recommendation and on her private

signal. We show that if private signals are relatively imprecise, then the optimal mechanism

gives consumers a recommendation to buy whenever quality is high, and sometimes when quality

is low. All consumers follow these recommendations regardless of their private signal.

Using the optimal mechanism as a benchmark, we consider the optimal choice of capacity

for a seller interested only in its informational impact. Here we abstract away from the cost

of restricting capacity, by allowing the seller to remove its constraint following a sellout and

assuming it is patient enough to only care about long-run expected sales. It turns out that if the

market is large, then the optimal capacity constraint yields long-run sales that are asymptotically

equivalent to those under the above-mentioned persuasion mechanism.

Our paper contributes to the literature on social learning with imperfect observability of past

actions. Different work has assumed that agents can observe a random sample of actions that

is anonymous (Banerjee and Fudenberg (2004), Smith and Sorensen (2013), Monzón and Rapp

(2014), Monzón (2017)) or non-anonymous (Acemoglu et al. (2011), Lobel and Sadler (2015)),

the aggregate total of all past actions (Callander and Hörner, 2009), the aggregate total of one

particular action (Guarino et al. (2011), Herrera and Hörner (2013)), or only the choice of an

agent’s immediate predecessor (Çelen and Kariv, 2004). Unlike these papers, the information

structure in our setting is endogenous, so consumers may fail to learn about low quality despite

two features that the literature suggests should promote learning: multiple consumers who do

not have access to social information (see Banerjee (1992), Sgroi (2002), Acemoglu et al. (2011),

Smith and Sorensen (2013), Golub and Sadler (2017)); and unbounded private signals (see, e.g.,

Smith and Sørensen (2000), Banerjee and Fudenberg (2004)).

Our paper also relates to the recent literature on Bayesian persuasion pioneered by Kamenica
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and Gentzkow (2011). As our seller can only influence consumers’ information through its choice

of capacity, the paper complements work looking at a sender’s choice from a restricted set of

signal structures: Tsakas and Tsakas (2017) consider noise that distorts signal realizations,

Perez-Richet and Skreta (2018) study sender manipulation of test results, and Ichihashi (2018)

focuses on which signal-structure restrictions are optimal for the receiver. In terms of costly

persuasion, Gentzkow and Kamenica (2016, 2017) and Mensch (2018) assume a direct cost

associated with each experiment, whereas our cost of restricting capacity (i.e. foregone sales)

is implicit and depends on consumer behavior. Other papers share our focus on dynamics (see

Au (2015), Ely (2017), Renault et al. (2017), Best and Quigley (2017), Bizzotto et al. (2018),

Orlov et al. (2018)), but none consider scarcity or social learning.4

A few recent papers consider information design as a way to influence social learning. Kremer

et al. (2014) and Che and Hörner (2017) both look at settings where agents arrive sequentially,

and show that a designer looking to maximize total surplus may prefer an information structure

that is coarse, to encourage experimentation and promote learning. In contrast, we consider a

firm looking to maximize profits, and show that it may choose a coarse information structure

in order to limit learning.

Our results present a novel rationale for firms to strategically restrict capacity. Other work on

such scarcity strategies has mainly focused on discouraging consumer strategic delay (DeGraba

(1995), Nocke and Peitz (2007), Möller and Watanabe (2010)). In terms of scarcity and learning,

Debo et al. (2012) show that a firm may reduce service speed so that consumers observe longer

queues and infer higher quality. Stock and Balachander (2005) show consumers who observe

that inventory is low may infer that earlier demand (and hence quality) was likely high, which

can induce a firm to set low inventory. In contrast to our work, both papers assume the firm

is privately informed about quality, and scarcity does not hide information from consumers in

these settings, but instead may help reveal it.5 The broader literature on how firms can influence

4The signal structure associated with a capacity constraint in our setting involves upper-tail censoring: re-
vealing precise information about the state if news is sufficiently bad (i.e. demand below a threshold value), and
coarse information otherwise. Dworczak and Martini (2017), Kolotilin et al. (2017), and Kolotilin and Zapechel-
nyuk (2018) all show that upper-tail censoring can at times be optimal in persuasion problems where the state
is drawn from a continuous distribution.

5Vikander (2018) considers an informed firm that may limit capacity to influence consumer beliefs, but
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consumer learning has mainly focused on pricing (Welch (1992), Bose et al. (2006), Bose et al.

(2008), Sayedi (2018)), rather than scarcity.6

We describe our model in Section 2. Section 3 present preliminary results regarding consumer

learning under restricted capacity, along with our key technical lemma, and Section 4 is devoted

to the baseline model where all consumers are uninformed. Section 5 asymptotically compares

the informational impact of capacity constraints to Bayesian persuasion. We extend the baseline

model in Section 6 to consider informed consumers, and Section 7 then concludes. All the proofs

are presented in Appendix A. Appendix B contains more general analysis of our deterministic

and stochastic models. Appendix C presents our results on pricing in the presence of capacity

constraints.

2 Model

Suppose there is a product or service of unknown quality and two possible states of the world,

Ω = {G,B}. In state G, quality is good and each consumer who buys obtains uG = 1. In state

B, quality is bad and each consumer who buys obtains uB = 0. A consumer who does not buy

gets reservation utility r ∈ (0, 1).

The actual state is not initially known, neither to the seller nor to consumers. A priori beliefs

of all players are that P (G) ≡ β and P (B) = 1−β. In each period there are 2n potential buyers,

who are either informed or uninformed. Before making her purchase decision, each informed

consumer receives a signal that reveals the state for sure. Each uninformed consumer receives

a noisy private signal, s ∈ {g, b}, where P (g|G) = P (b|B) ≡ α ∈ (1/2, 1). By α < 1, our

signals are boundedly informative. We also assume that a consumer without further information

would follow her signal, i.e. P (G|s = g) > r > P (G|s = b). We model the number of informed

consumers in two ways. In the deterministic setting, we will assume there is a fixed number

m of informed consumers in every period, where 1 ≤ m ≤ n. In the stochastic setting, we

assumes bounded rationality and social image concerns.
6See also Gill and Sgroi (2008) on product testing, Gill and Sgroi (2012) on choice of reviewers, and Aoyagi

(2010), Liu and Schiraldi (2012), and Bhalla (2013) on simultaneous versus sequential product launch.
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will assume that each of the 2n consumers is informed with probability ε > 0.7 We will also

consider a baseline where all consumers are uninformed, which would correspond to imposing

m = 0 or ε = 0 in the deterministic or stochastic settings.

At the start of the game, t = −1, the seller can set a capacity constraint K ≤ 2n. This

capacity choice is irreversible and limits potential sales in each period (i.e. how many consumers

can buy), which cannot exceed capacity. The state of the world is realized at t = 0, so the

constraint itself does not reveal any information.8

In each period t ∈ [1,∞), 2n consumers arrive and observe both capacity and total sales

from the consumers in previous cohorts. That is, consumers do not directly observe quantity

demanded in each period, but only quantity sold. Notice that a sell-out in period t′ < t, where

sales equal capacity, need not imply that demand precisely equaled capacity.

Each of the 2n consumers who arrive in period t choose whether they want to buy based

on (i) prior beliefs about quality, β, (ii) a private signal, s, and (iii) observed sales from the

previous cohorts.9 The decision of informed consumers is solely determined by their signal. If

more than K consumers want to buy in period t, a random selection of them are served, and

the remaining consumers use their outside option. All period-t consumers then leave the market

forever, and a new cohort of 2n consumers arrives in period t+ 1.

The seller receives a fixed profit per consumer who buys, normalized to 1. He discounts

profits in future periods with a factor of δ, and sets K so as to maximize expected discounted

future profits.

7Our approach of modeling unboundedly informative signals, through the presence of fully informed con-
sumers, differs from the more common approach of assuming continuous signals, and dramatically helps with
tractability.

8Parsa et al. (2005) document that about 60% of new restaurants fail within three years, which suggests that
their owners had imprecise information about quality when opening and setting capacity. Ultimately, we require
that the seller and consumers holds the same prior, as is common in the literature on social learning, see, e.g.,
Bose et al. (2006), Bose et al. (2008) and Bhalla (2013).

9In our setting it does not matter how long a history is observed, provided that consumers observe at least
sales from the two previous periods.
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3 Preliminary Results

3.1 Consumer Behaviour

Define Qi
ω(j) as the probability of j good signals from 2n consumers in period 1, conditional

on the state being ω ∈ {G,B} , in either the deterministic (denote i = det), stochastic (denote

i = sto), or baseline (denote i = base) setting. In the deterministic setting, m consumers receive

a correct signal for sure, and the remaining 2n−m consumers each receive a correct signal with

probability α, which implies

Qdet
G (j) =

(
2n−m
j −m

)
αj−m(1− α)2n−j, (1)

if j ≥ m, and Qdet
G (j) = 0 if j < m, along with

Qdet
B (j) =

(
2n−m

j

)
α2n−m−j(1− α)j, (2)

if j ≤ 2n−m and Qdet
B (j) = 0 if j > 2n−m.

In the stochastic setting, each consumer receives a correct signal with probability ε+(1−ε)α,

where ε is the probability of being informed. This implies:

Qsto
G (j) =

(
2n

j

)
[1− (α + ε− αε)]2n−j (α + ε− αε)j, (3)

Qsto
B (j) =

(
2n

j

)
[1− (α + ε− αε)]j (α + ε− αε)2n−j. (4)

The baseline probabilities Qbase
ω (j) can be obtained by setting m = ε = 0 in the above expres-

sions. We also introduce an unconditional probability of having j good signals

Qi(j) = βQi
G(j) + (1− β)Qi

B(j), j ∈ {base, det, sto}

We start by showing that Qi
ω(j) exhibits the following four properties.

Lemma 1. In the baseline, deterministic, and stochastic settings, probabilities Qi
ω(j), ω ∈
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{G,B}, i ∈ {base, det, sto}, satisfy the following conditions:

(i)
QiB(j)

QiG(j)
is non-increasing in j.

(ii)
QiB(n)

QiG(n)
= 1,

QiB(n−1)

QiG(n−1)
≥
(

α
1−α

)2
and

QiB(n+1)

QiG(n+1)
≤
(

1−α
α

)2
.

(iii) Qi
B(j) = Qi

G(2n− j) for all j ≤ 2n.

(iv) Qi
G(j) > Qi

G(2n− j) if j ≥ n+ 1.

That is, (i) more good signals means the good state is more likely, (ii) having an equal

number of good and bad signals is just as likely in either state, and the smallest difference from

an equal number is sufficiently informative, (iii) j good signals in the bad state is as likely as j

bad signals in the good state, and (iv) in the good state, j ≥ n + 1 good signals is more likely

than j bad ones.

In what follows we assume that consumers follow their private signals in the absence of other

information, i.e. P (G|s = g) > r > P (G|s = b), or

βα

βα + (1− β)(1− α)
> r >

β(1− α)

β(1− α) + (1− β)α
. (5)

Now we formulate the optimal behaviour for a consumer in period t facing an unconstrained

seller, following a sequence of sales (S1, . . . , St−1).

Lemma 2. Suppose the seller is unconstrained and consider an uninformed consumer A acting

in period t ≥ 2. Then in the baseline, deterministic, and stochastic settings:

1. If t = 2 or t > 2 and Sτ = n for all τ ≤ t− 1:

(a) if St−1 > n then A buys regardless of her own signal;

(b) if St−1 = n then A follows her own signal;

(c) if St−1 < n then A does not buy regardless of her own signal.

2. If t > 2 and maxτ≤t−2 Sτ > n:
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(a) if St−1 = 2n, then A buys regardless of her own signal;

(b) if St−1 < 2n then A does not buy regardless of her own signal.

3. If t > 2 and maxτ≤t−2 Sτ < n:

(a) if St−1 > 0, then A buys regardless of her own signal;

(b) if St−1 = 0 then A does not buy regardless of her own signal.

Following the literature on social learning, Lemma 2 describes optimal behavior on the

equilibrium path; we do not specify consumers’ beliefs and best responses for histories which

cannot arise from equilibrium behaviour. As each consumer’s payoff does not depend on the

actions of those who follow, this approach is not restrictive. The idea of Lemma 2 is that initial

sales of at least n + 1 out of 2n is sufficiently good news to trigger a positive purchase cascade

where all uninformed consumers buy. This cascade continues unless (or until) there is a period

with fewer than 2n sales, which would reveal that an informed consumer chose not to buy, and

that the state was actually bad. This would in turn trigger a negative cascade. The story is

similar for sales of at most n−1 in period 1, which triggers a negative cascade where uninformed

consumers do not buy, unless (or until) there is a period with strictly positive sales.

Now we look into consumer behaviour when the seller restricts capacity. It follows from

Lemma 2 that a capacity K ≥ n + 1 limits sales compared to being unconstrained, but does

not increase the probability of starting a positive cascade. As such, we will focus on levels of

capacity K ≤ n in our analysis. Moreover, setting capacity very low means that multiple sell-

outs may be necessary to trigger a cascade: say, selling out a restaurant of one seat given one

hundred potential customers has very little impact on consumers’ beliefs. However, as Lemma

3 will establish, consumers become increasingly optimistic after each sell-out.

Consider a consumer in cohort l + 1 who receives a bad signal, realizes there were sell-outs

in all l previous periods, and believes that all earlier consumers followed their private signals.

Let γ(l,K) denote this consumer’s belief that the state is good. Then:
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γ(l,K) =
P (G ∩ b, l sell-outs)

P (G ∩ b, l sell-outs) + P (B ∩ b, l sell-outs)
=

β(1− α)
[∑2n

j=K Q
i
G(j)

]l
β(1− α)

[∑2n
j=K Q

i
G(j)

]l
+ (1− β)α

[∑2n
j=K Q

i
B(j)

]l =

1

1 + 1−β
β

α
1−α

[∑2n
j=K QiB(j)∑2n
j=K QiG(j)

]l (6)

where i ∈ {base, det, sto}.

Lemma 3. In the baseline, deterministic, and stochastic settings, for all 1 ≤ K ≤ n, consumer

beliefs γ(l,K) are increasing in l, with liml→∞ γ(l,K) = 1.

As beliefs γ(l,K) are increasing in l, a sufficiently long sequence of sell-outs will eventually

lead to a positive purchase cascade. We use the results of Lemma 3 for our derivation of general

profit functions and analysis of social learning in the long run. There we illustrate that a seller

might sometimes prefer to set a low capacity that delays the start of a positive cascade. That

being said, we now show that for all parameter values satisfying our assumptions, there is always

a value of the outside option r such that a cascade is triggered by a single sell-out.

Lemma 4. In the baseline, deterministic, and stochastic settings, for all K ≤ n there exists

r ∈ (0, 1) such that γ(1, K) > r > γ(0, K) = P (G|s = b).

We will apply Lemma 4 for establishing our main existence result, i.e. that for some param-

eter values the seller prefers to restrict capacity.

3.2 Key Lemma

Our aim is to show that there is a range of parameters in all settings such that the seller wants to

restrict its capacity. Moreover, we show that each value of K ≤ n can sometimes lead to higher

profits than remaining unconstrained. We start with the following preliminary result, which is
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essential for proving our main theorems in Sections 4 and 6. Let Q = {Q(j), 0 ≤ j ≤ 2n} be

a discrete probability measure: Q(j) ∈ [0, 1] and
∑2n

j=0Q(j) = 1. This measure can correspond

to that in any one of our settings described in Section 3.1, as well as in some alternative ones,

but at this point we are agnostic about the actual probabilistic model, so we do not use model

superscripts. Define

πQu =
1

1− δQ(n)

(
2n∑
j=0

jQ(j) +
2nδ

1− δ

2n∑
j=n+1

Q(j)

)
, (7)

and

πQc (K) =
2n∑
j=0

min{j,K}Q(j) +
Kδ

1− δ

2n∑
j=K

Q(j), (8)

with δ ∈ (0, 1).

Expressions (7) and (8) give seller profits assuming that cascades start upon a single sell-out

and, once started, continue forever. This is true in our baseline, but not in the deterministic or

stochastic setting. The following Lemma shows that if probabilities Q satisfy certain properties,

the seller prefers to be constrained, provided that cascades continue forever. Later, in the proofs

of the corresponding theorems, we will show that (i) parameters of the model can be chosen

such that Qi(j), i ∈ {base, det, sto} satisfy the properties required by Lemma 5, and (ii) the

assumption that cascades continue forever understates the seller’s incentive to restrict capacity

for i ∈ {det, sto}.

Lemma 5. Consider a sequence of probability measures {Qs}∞s=0 such that lims→∞
Qs(n)∑2n

j=n+1Q
s(j)

=

∞. Then, there exist δ and T0, such that for all s > T0, n > 1, K ≤ n

πQ
s

u < πQ
s

c (K)

Suppose furthermore that lims→∞Q
s(n) = 0. Then, for any δ ∈

(√
2n−K

2n
, 1
)

, there exists T1

such that for all s > T1 we have πQ
s

u < πQ
s

c (K).
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4 Baseline Setting

4.1 Main Results

We start our analysis with the baseline and look into the seller’s incentives to restrict capacity.

We define a correct cascade as a situation where all consumers buy regardless of their signal and

the state is good, or where they all refuse to buy regardless of their signal and the state is bad.

We define an incorrect cascade as a situation where all consumers refuse to buy and the state is

good, or where they all buy and the state is bad.

Profits for an unconstrained seller are

πbaseu =
2n∑
j=0

jQbase(j) + δQbase(n)πu + δ
2n∑

j=n+1

Qbase(j)
2n

1− δ
, (9)

with Qbase(j) being probabilities in the baseline case. Period-1 sales of strictly more (less) than

n immediately trigger a positive (negative) cascade, which continues in all later periods.

According to Lemma 4, there are values of r for which a single sell-out generates a cascade.

For such values of r, profits for a seller with capacity constraint K ≤ n are

πbasec (K) =
2n∑
j=0

min{j,K}Qbase(j) + δ
2n∑
j=K

Qbase(j)
K

1− δ
. (10)

Notice that (9) and (10) correspond to (7) and (8), if we set Q(j) = Qbase(j) in the latter two

expressions.

Theorem 1. For any n > 1, K ≤ n and δ >
√

2n−K
2n

, there are (α, β) ∈ (1/2, 1)× (0, 1/2) and

r > 0 for which the seller can increase its profits above the unconstrained level by restricting

capacity to K.

The seller faces a tradeoff, as restricting capacity limits sales in each period, but also increases

the probability of a positive cascade. A key difference between (9) and (10) is that below

average period-1 demand, between K and n, can only trigger a positive cascade if the seller is

constrained. This effect can make it profitable to restrict capacity, in particular when a positive
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cascade occurs after a single sell-out. Intuitively, having set a capacity constraint will tend to

help the seller when the state turns out to be bad, because the constraint can hide information

from consumers. The seller effectively engages in obfuscation, which increases the probability

of an incorrect positive cascade (where all consumers buy despite the state being bad) and

decreases the probability of an incorrect negative cascade (where no consumer buys despite the

state being good).

Having shown that the seller may sometimes find it profitable to restrict capacity, we now

say something about the conditions under which this can occur. Consistent with the above

intuition, the seller will only restrict capacity if it is sufficiently likely that the state is bad.

Proposition 1. Suppose that β ≥ 1/2. Then for all parameter values, such that consumers in

the first period follow their signals, the seller prefers not to restrict capacity: πbaseu > πbasec (K)

for all K ≤ 2n.

When the state is good, initial sales are likely to be sufficiently high to trigger a positive

cascade regardless of whether the seller restricts capacity, and an unconstrained seller then

enjoys higher sales. The proof shows that for β ≥ 1
2
, the good state is sufficiently likely that

expected sales for an unconstrained seller exceed n per period. This is more than the seller

could possibly earn per period by restricting capacity to K ≤ n, which are the only capacity

levels that can increase the probability of a positive cascade. The result of Proposition 1 does

not rely on the outside option satisfying Lemma 4, i.e. it holds regardless of whether a single

sellout is sufficient to trigger a cascade, or if multiple sellouts are necessary (see Section 4.2).10

The sufficient condition provided in Proposition 1 is simple and intuitive, but the necessary

condition is much harder to obtain, so we investigate this question numerically. Figure 1(a)

shows that the region where restricting capacity can be optimal is larger when there are many

consumers. Intuitively, an increase in the number of consumers makes period-1 demand more

informative, so that an unconstrained seller is more likely to suffer a negative cascade in the

bad state. Restricting capacity then becomes more attractive, as a way to hide unfavourable

10A result similar to Proposition 1 can be obtained in the deterministic and stochastic models. The proof is
available upon request.
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Figure 1: Areas where capacity restriction can be optimal.

(a) Baseline: area where restricting capacity is
optimal for some r, δ

(b) Baseline: optimal K

information from consumers.

Figure 1(a) also shows an interesting interaction between signal precision and the prior.

When the signal is very imprecise (α ≈ 1/2), at least half of the consumers will likely buy,

regardless of the state, so the seller will remain unconstrained and bet on generating a positive

cascade. As signal precision increases, an unconstrained seller becomes increasingly likely to

experience a negative cascade when the state is bad, so the seller will restrict capacity for

sufficiently small β. A further increase in signal precision makes restricting capacity increasingly

helpful in the bad state, but increasingly harmful in the good state, as a correct positive cascade

is then likely without a constraint. The first effect dominates for intermediate α, but the second

effect dominates when α is sufficiently large, because an incorrect positive cascade is only likely

given a very low constraint, which would dramatically reduce profits in the good state. Figure

1(b) depicts the optimal level of capacity for these different parameter values.

In our analysis, we assumed that the seller cannot adjust capacity over time, but this as-

sumption is not crucial. A seller that could adjust its capacity would effectively remove the

constraint if an initial sellout triggered a positive cascade. This insight only reinforces our re-
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sult that restricting capacity can be optimal, as future gains following a cascade would no longer

be bounded by the size of the initial constraint. If the seller found it optimal to restrict capacity

in our setting, then it would also do so if capacity could be adjusted over time. Moreover, the

effective cost of setting a low constraint would be limited to a single period, so the seller would

be more aggressive in period 1 in order to make a sellout more likely, and then capture the

resulting gains. The following Proposition formally describes this result.

Proposition 2. Suppose that K1 is the optimal period-1 capacity constraint when the seller can

adjust capacity over time, and that K0 is the optimal constraint when the seller cannot do so.

Suppose furthermore that selling out once at either K0 or K1 triggers a positive cascade, i.e.

min{γ(1, K0), γ(1, K1)} ≥ r. Then K0 ≥ K1.

4.2 General Profit Functions

The profit function (10) for a constrained seller applies to situations where a single sell-out

triggers a positive cascade. For given prior beliefs, signal accuracy, and capacity, we can always

find a value of the consumers’ outside option such that one sell-out is indeed sufficient. But more

generally, multiple sell-outs may be necessary to trigger a cascade, in particular when capacity

is relatively low. Might the seller have an incentive to set such a capacity, which delays the start

of a positive cascade, but also increases the probability of selling out?

To address this issue, we write down general profit functions for a seller with capacity K,

in the baseline setting. Recall from (6) that γ(l,K) denotes the belief of a consumer in cohort

l + 1 that the state is good, after sell-outs in all l previous periods, and after receiving a bad

signal. Let L = {l : γ(l,K) > r}, which is non-empty by Lemma 3, and denote the smallest

element of L by L: the number of consecutive sell-outs required as of period 1, given capacity

K, in order to generate a positive cascade. The value of L is decreasing in K, since selling out

at higher capacity presents stronger evidence that the state is good.

Let ηω =
∑2n

j=K Q
base
ω (j) denote the probability of a sell-out, given state ω ∈ {G,B}. Let

Sω =
∑K−1

j=0 jQbase
ω (j) denote expected sales in a given period conditional on not selling out,

when the state is ω.
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Figure 2: Seller profits and L.
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Expected profits given capacity K and L ≥ 1 are

πbasec (K) = β

[
1− (δηG)L

1− δηG
(SG + ηGK) + (δηG)L

K

1− δ

]
+

(1− β)

[
1− (δηB)L

1− δηB
(SB + ηBK) + (δηB)L

K

1− δ

]
. (11)

When the state is bad, the seller experiences L consecutive sell-outs each with probability

ηB, which triggers a positive cascade and yields revenue of K in all periods. Otherwise, the seller

earns SB in the first period where it fails to sell out, and then zero in all later periods. The

situation is similar when the state is good, except the probability of a sell-out in each period

is ηG rather than ηB, and a seller that fails to sell out earns SG in that period. As expected,

expression (11) reduce to (10) if L = 1, so if one sell-out is sufficient to trigger a cascade.

Holding capacity constant at K, profits are strictly decreasing in L, because a large L means

that more sell-outs are required to trigger a positive cascade. However, L depends on K, and

the seller may in fact want to set a sufficiently low capacity that results in L > 1. Such a low

capacity makes a sell-out in each period more likely, and thus reduces the probability in each

period that a negative cascade begins. Indeed, Figure 2 shows parameter values for which the

seller prefers to set K = 1, so that L = 34 sell-outs are necessary to trigger a cascade.

Figure 2 also shows that profits might not be quasi-concave in K and sudden jumps can
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occur. An increase in K gives a lower chance of a sell-out in any given period, higher sales

conditional on selling out or on being in a positive cascade, and may also mean that fewer

sell-outs are necessary for the cascade to begin. The balance between these three forces may

sometimes swing sharply. In the figure, an increase in K from 5 to 6 reduces the number of

sell-outs necessary to start a cascade from L = 2 to L = 1, which pushes up profits.

5 Optimal Information Design

We now explore how the informational impact of restricting capacity, in terms of influencing

consumer behavior, compares to that of optimal information design. Our seller (sender) chooses

capacity without knowing the state, and each consumer (receiver) then receives information

that depends on the realized state and on capacity. In this sense, capacity constraints serve

as a natural example of a Bayesian persuasion mechanism that can be easily implemented in

practice. As capacity is chosen ex ante, and market participants do not observe excess demand,

any commitment problem in implementing the desired information structure is avoided. The

seller simply cannot serve demand that exceeds capacity. Consumers then directly observe the

resulting sell-out; if they did not, the seller could easily disclose that a sell-out occurred.

In what follows, we derive the optimal ‘persuasion mechanism’ in our setting, and then

examine how capacity constraints perform relative to this benchmark. The seller commits to a

rule which maps the binary state into a purchase recommendation. The state is realized, and

each consumer receives a recommendation according to the chosen rule. Each consumer then

makes a purchase decision based on the recommendation and her own private signal, and the

seller serves all consumers who want to buy. Thus, the seller’s persuasion mechanism substitutes

for the social learning process studied in the previous sections.

We consider information design without elicitation, where the same rule applies to all con-

sumers, regardless of their private signal. As Kolotilin et al. (2017) and Bergemann and Morris

(2017) show, given binary state and action spaces, this forms of information design is equivalent

to design with elicitation, in the sense of being able to implement the same consumer behavior.
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As such, the rule we derive will constitute the optimal mechanism.11

The seller designs the persuasion mechanism to maximize expected sales, which are the

same in every period. When later making the comparison with capacity constraints, we will

assume that the seller is infinitely patient, and can adjust capacity over time. These assump-

tions effectively remove the direct cost of restricting capacity, i.e. limiting sales. The seller

will therefore set capacity to maximize long-run expected per-period sales, and have the same

objective function as in the persuasion setting.

The optimal persuasion mechanism is characterised by a binary message space corresponding

to the binary decision set of consumers (see Kamenica and Gentzkow (2011)). However, as

buyers are informed, the seller essentially chooses between three options. The first is where all

consumers follow the seller’s recommendation, which is the ‘textbook’ form of persuasion. The

second is where consumers with bad private signals always follow the seller’s recommendation,

but consumers with good signals ignore the recommendation and instead always buy. The third

is where all consumers ignore the recommendation, and follow their private signals.

We first consider a mechanism where all consumers follow the seller’s recommendation. Sup-

pose the seller sends a buy recommendation with probability pG in a good state and with

probability pB in bad state, and otherwise sends a no-buy recommendation. The belief of a

consumer with a bad signal upon receiving a buy recommendation is

γ(s = b, buy) =
β(1− α)pG

β(1− α)pG + (1− β)αpB
≥ r,

which implies

β(1− α)(1− r)pG ≥ (1− β)αrpB. (12)

Clearly, if (12) is satisfied, then consumers with s = g prefer to buy. As both pG and pB enter

opposite sides of (12) with positive signs, setting

11We do not allow the seller to directly target different rules at consumers with different private signals. In
this sense, the seller is not omniscient (see Bergemann and Morris (2017)).
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pG = 1, pB =
β(1− α)(1− r)

(1− β)αr
, (13)

maximizes expected sales. Our assumption that a consumer would not buy, given only a bad

private signal, P (G|s = b) < r, implies pB < 1, since

pB < 1⇔ β(1− α)(1− r) < (1− β)αr ⇔ β(1− α)

β(1− α) + (1− β)α
< r.

The seller always sends a buy recommendation in the good state, and only sometimes sends a no-

buy recommendation in the bad state, where the latter recommendation is perfectly revealing.

Echoing the discussion in Section 4 on restricting capacity, the seller effectively obfuscates when

the state is bad, by sometimes sending the same recommendation as when the state is good.

This recommendation convinces consumers to buy, even those with bad private signals. The

profits from this persuasion mechanism, per consumer and per period, are

π∗ = β + (1− β)pB = β +
(1− α)(1− r)β

αr
. (14)

Now consider a mechanism where only consumers with bad signals follow the seller’s recom-

mendation, and let (p̃G, p̃B) denote the probabilities of buy recommendations. The incentive

compatibility constraint for a consumer with a good signal who receives a no-buy recommenda-

tion is

γ(s = g, not buy) =
βα(1− p̃G)

βα(1− p̃G) + (1− β)(1− α)(1− p̃B)
≥ r,

or

βα(1− r)(1− p̃G) ≥ (1− β)(1− α)r(1− p̃B). (15)

Both (15) and (12) must bind at the optimum, which implies

p̃G =
α(αβ − r(α(2β − 1)− β + 1))

(2α− 1)β(1− r)
, p̃B =

(1− α)(αβ − r(α(2β − 1)− β + 1))

(2α− 1)(1− β)r
. (16)
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The probability p̃B is well-defined as long as p̃G ∈ [0, 1]. This is the case if

α ≥ α(r, β) ≡ max{(1− r)β, r(1− β)}
r + β − 2rβ

, (17)

which is equivalent to condition (5), that consumers follow their private signals in the absence

of other information. The profits from this persuasion mechanism are

π̃ = β[α + (1− α)p̃G] + (1− β)[αp̃B + (1− α)]. (18)

As long as p̃G, p̃B > 0, these profits exceed βα + (1− β)(1− α), which is what the seller would

earn if all consumers followed their private signals. Thus, the optimal mechanism either leads

all consumers to follow the seller’s recommendation, or only those with bad signals to do so.

Define

α(r) ≡ 1

2

(
2r − 1 +

√
4r2 − 8r + 5

)
, β(r) ≡ r

2r − α(r)

3r − 1
, β(r) ≡ r

1− r
[α(r) + 1− 2r],

and note that 0 < β(r) < r < β(r) for all r ∈ (0, 1). The following Proposition establishes when

each of the two mechanisms yield higher profits, while taking into account constraint (17).

Proposition 3. For any r ∈ [0, 1], if β ∈ [β(r), β(r)] and α ∈ [α(r, β), α(r)] then the optimal

persuasion mechanism is given by (13). Otherwise, the optimal persuasion mechanism is given

by (16) as long as α > α(r, β).

Proposition 3 says that as long as signal precision is not too high, i.e. α ≤ α(r), the

optimal mechanism leads all consumers to follow the seller’s recommendation. The restriction

α ≥ α(r, β) corresponds to our initial condition that consumers follow their own signals in the

absence of any other information. Finally, the restriction β ∈ [β(r), β(r)] guarantees that the

interval [α(r, β), α(r)] is non-empty.12

12Proposition 3 is similar to the result obtained in Kolotilin (2018), the only difference being that he also
allows for the case α(r) < α < α(r, β). This case is ruled out in our setting by the assumption that consumers
follow their private signals in the absence of any other information.
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Intuitively, for consumers with good private signals to ignore a no-buy recommendation,

the seller must sometimes send this recommendation in the good state, so the recommendation

is not perfectly revealing. The effective cost to the seller is that doing so reduces expected

sales in the good state, compared to a mechanism where consumers always follow the seller’s

recommendation. The size of this cost is decreasing in signal precision, because a consumer with

a very precise good signal may be willing to ignore a no-buy recommendation that suggests the

bad state is quite likely. In general, the scope for persuasion decreases as signals become more

precise: if α→ 1, then the expected profit of both mechanisms approaches β.

We now look into the optimal choice of capacity as a tool for information design. We again

assume that consumers observe sales from previous cohorts, and in particular whether a sellout

occurred. To ensure comparability with the optimal persuasion mechanism, we assume that

the seller is infinitely patient, and can costlessly adjust its capacity over time. The seller sets

its initial capacity to maximize expected per-period sales in the long run, which is equivalent

to maximizing the probability of a positive cascade.13 The question is how this probability

compares to that under the optimal persuasion mechanism, either (13) or (16).

First we focus on values of capacity K such that a single sellout triggers a positive cascade.

Recall that ηω(K, 2n) =
∑2n

j=K Q
base
ω (j) denotes the probability of sales greater than or equal to

K. A consumer with a bad private signal will buy after a single sellout if

β(1− α)ηG(K, 2n)

β(1− α)ηG(K, 2n) + (1− β)αηB(K, 2n)
≥ r,

or equivalently

β(1− α)(1− r)ηG(K, 2n) ≥ (1− β)αrηB(K, 2n). (19)

Constraint (19) resembles (12) but with one important difference: in the persuasion problem,

the seller can choose pG and pB independently, but now the choice of capacity jointly determines

both probabilities. The firm is interested in maximizing the probability of sell-out, so it will

choose the lowest K such that (19) is satisfied. Denote this value of K by K∗(n).14

13If a positive cascade is triggered, the seller will immediately increase capacity and serve full demand.
14Note that for any n, we have ηG(0, 2n) = ηB(0, 2n) = 1. Moreover, limn→∞ ηG(n, 2n) = 1 and
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Now we consider large cohorts. Note that limn→∞ ηG(n, 2n) = 1 and limn→∞ ηB(n, 2n) = 0.

Thus, for sufficiently large n, it must be the case thatK∗(n) < n , so that limn→∞ ηG(K∗(n), 2n) =

1; limn→∞ ηB(K∗(n), 2n) = β(1−α)(1−r)
(1−β)αr

< 1, which is the same as the recommendation probabil-

ities in persuasion mechanism (13).

It follows that the limit result of restricting capacity is equivalent to the persuasion mecha-

nism where a buy recommendation is always sent in the good state and where consumers always

follow all recommendations. Here, a sellout always occurs in the good state and sometimes

occurs in the bad state, and it provides just enough good news to convince consumers to buy

regardless of their signal (i.e. a positive cascade). A failure to sell out perfectly reveals that the

state is bad, so that no consumer buys (i.e. a negative cascade).

We conclude that in large markets, the informational impact of the optimal capacity con-

straint serves as a good approximation to the above-mentioned persuasion mechanism. As this

mechanism is optimal when private signals are relatively imprecise, a seller can achieve optimal

information design in large markets with weak private information by restricting capacity to an

appropriate level.

One interpretation of the seller’s problem, as considered in this section, is in terms of trial

sales: the seller can first conduct a trial by making a limited number of units available of its

product, and then broadly release the product to all consumers if the trial goes well. Our results

suggest that in situations where private information is weak, the seller can do no better than

carrying out a single trial, then releasing the product broadly in the case of a sell-out, and

otherwise withdrawing the product from the market.

For completeness, we note that the optimal capacity constraint can never induce consumers

with good private signals to buy when the seller fails to sell out. Recall, that K∗(n) is the small-

est capacity constraint to satisfy (19). Moreover, for K ∈ [K∗(n), n], we have that ηG(K, 2n)

approaches 1 and ηB(K, 2n) remains bounded away from 1 in a large market.15 Incentive com-

limn→∞ ηB(n, 2n) = 0, so K∗(n) exists for sufficiently large n. Finally, due to Lemma 1 part (i), K∗(n) is
uniquely defined.

15Setting K > n is clearly suboptimal as sell-outs then only occur in the good state.
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patibility for a consumer with a good private signal and a no-buy recommendation is

βα(1− r)[1− ηG(K, 2n)] ≥ (1− β)(1− α)r[1− ηB(K, 2n)],

which clearly cannot be satisfied as n approaches infinity, since the left-hand-side approaches

zero while the right-hand-side does not. Thus, in situations where (16) constitutes the optimal

persuasion mechanism, restricting capacity will result in inferior information design.16

We now use the above framework to say more about when the seller will restrict capacity

and the size of the optimal constraint. Clearly, a patient seller that can adjust its capacity

would never want to remain unconstrained in a large market. Period-1 sales would perfectly

reveal the true state, so an unconstrained seller would experience a correct positive cascade with

probability β,17 and an incorrect positive cascade with probability 0. In contrast, a seller that

restricts capacity will experience a correct positive cascade with probability β, and an incorrect

positive cascade with probability (1− β)ηB(K∗(n), 2n)) > 0.

For the size of the optimal constraint, recall that limn→∞ ηB(K∗(n), 2n) = β(1−α)(1−r)
(1−β)αr

. The

left-hand side is directly decreasing in K∗, since a higher capacity reduces the probability of

selling out. Looking at the right-hand side, it follows that the size of the initial constraint set

by a patient seller that can adjust its capacity over time, in a large market, is decreasing in the

prior, β, and increasing in both signal precision, α, and the value of the outside option, r.

The idea is that a sellout at capacity K∗(n) hides just enough information about the bad

state to make a consumer with a bad private signal willing to buy. For such a consumer, a drop

say in signal precision makes buying more attractive. As a result the seller can hide on average

more unfavourable information by setting a lower capacity. Doing so makes it more likely to sell

out, and a single sellout will still generate a positive cascade.

The fact that the optimal capacity is increasing in signal precision stands in contrast with

16The key issue is that designing a persuasion mechanism involves two “degrees of freedom”, while setting a
capacity constraint involves only one. As a mechanism with pG = 1 is essentially a corner solution, any capacity
sufficiently far below mean demand yields a sellout for sure in the good state, and the seller can set its exact
capacity so as to best approximate pB . However, as p̃G < 1, this adds an extra binding constraint to the problem,
which makes an approximation of (p̃G, p̃B) impossible.

17This can be seen formally when we present (24), by letting n approach infinity in this expression.
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Figure 1(b). What is the reason for this difference? In the current section, the outside option r

is fixed, and K∗(n) is the minimal capacity sufficient for triggering a cascade given the outside

option. Since the seller is patient, and can adjust capacity over time, its initial capacity choice

is essentially costless: it will set K = K∗(n) to maximize the probability of a positive cascade.

When plotting Figure 1(b), we allowed the outside option r to vary, so that the minimal capacity

to trigger a cascade was always K = 1. We also assumed the seller could not adjust capacity

over time, which made setting K = 1 costly in terms of limiting future sales. As a result, the

seller often found it optimal to restrict capacity to a higher level, which was decreasing in signal

precision α.

If the seller sets low capacity K < K∗(n), then condition (19) will be violated, but Lemma

3 ensures a cascade will occur after a sufficiently long sequence of sellouts. For (α, β, r, n), and

any K, there exists l such that

β(1− α)(1− r)[ηG(K, 2n)]l ≥ (1− β)αr[ηB(K, 2n)]l.

Following our earlier notation, let L denote the smallest integer l satisfying this inequality, so

that L sellouts are needed to trigger a positive cascade.

We now derive the long-run probability of a positive cascade in a large market, given low

capacity. Define Γ(l,K) as the public belief that the state is good, conditional on sell-outs at

capacity K in the first l ≤ L periods. That is

Γ(l,K) =
1

1 + 1−β
β

[ηB(K)]l

[ηG(K)]l

, (20)

where r < γ(L,K) < Γ(L,K) follows from (6) and the definition of L. Moreover, we can write

[
β(ηG)L + (1− β)(ηB)L

]
Γ(L,K) +

(
1−

[
β(ηG)L + (1− β)(ηB)L

])
µ = β. (21)

The public belief conditional on an eventual positive cascade triggered by L sellouts, multiplied

by the probability of such a cascade; plus the average public belief conditional on an eventual
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negative cascade triggered by a failure to sell out in some l ≤ L period (denoted by µ), multiplied

by the probability of such a cascade; must equal the prior β.

By Lemma 1, high sales provide good news about the state, so for any fixed K we have

µ <
Γ(L− 1, K)Qbase

G (K − 1)

Γ(L− 1, K)Qbase
G (K − 1) + [1− Γ(L− 1, K)]Qbase

B (K − 1)
=

1

1 +
[1−Γ(L−1,K)]QbaseB (K−1)

Γ(L−1,K)QbaseG (K−1)

. (22)

The average public belief, conditional on failing to sell out in one of the first L periods, cannot

exceed the public belief after selling out in exactly L−1 periods, and then having period-L sales

of K − 1, only 1 below capacity. By the definition of L, a consumer who observes L− 1 sellouts

will not buy if she receives a bad private signal. This implies that

Γ(L− 1, K)(1− α)

Γ(L− 1, K)(1− α) + (1− Γ(L− 1, K))α
< r ⇒ Γ(L− 1, K) <

αr

αr + (1− α)(1− r)
< 1,

so Γ(L− 1, K) is bounded away from 1 for all n and K. Moreover, we have

Qbase
B (K − 1)

Qbase
G (K − 1)

=

(
2n
K−1

)
α2n−K+1(1− α)K−1(

2n
K−1

)
αK−1(1− α)2n−K+1

=

(
α

1− α

)2(n−K+1)

.

Now hold K fixed and let cohort size grow large. Then α > 1/2 implies limn→∞
QbaseB (K−1)

QbaseG (K−1)
=∞,

which combined with limn→∞ Γ(L− 1, K) < 1 and (22) yields limn→∞ µ = 0: in a large market,

any failure to sell out perfectly reveals the bad state. The good state must therefore eventually

result in a positive cascade: limn→∞(ηG)L = 1.

Substituting into (21) shows that the probability of a positive cascade in the bad state

[ηB(K, 2n)]L satisfies (
β + (1− β)[ηB(K, 2n)]L

)
Γ(L,K) = β (23)

in a large market. By definition, L is the lowest value of l for which γ(l,K) ≥ r, or equiv-

alently Γ(l,K) ≥ αr
αr+(1−α)(1−r) . Thus, limn→∞ Γ(L,K) = αr

αr+(1−α)(1−r) , which by (23) implies
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limn→∞(ηB(K, 2n))L = β(1−α)(1−r)
(1−β)αr

= limn→∞ ηB(K∗(n), 2n).

Thus, the long-run probability of a positive cascade given low capacity, in a large market, is

asymptotically equivalent to that under capacity K∗(n), and also under persuasion mechanism

(13). This means that an infinitely patient seller, that can adjust its capacity over time, will not

go wrong by ‘undershooting’ capacity K∗(n). Setting K < K∗(n) will increase the probability

of a sellout in any period, and mean that more sellouts are needed to trigger a positive cascade.

But the probability of an eventual cascade, and long-run expected sales, are left unchanged.

We conclude this section by again assuming that the seller’s initial choice of capacity is irre-

versible, and that the market is not necessarily large, to say more about the optimal constraint

for a patient seller. From (21), we know that (β[ηG(K, 2n)]L+(1−β)[ηB(K, 2n)]L)Γ(L,K) ≤ β.

Combined with Γ(L,K) > r, this yields

β[ηG(K, 2n)]L + (1− β)[ηB(K, 2n)]L <
β

r
,

so the probability of a positive cascade is bounded above by β/r.

The long-run per period expected profits of a constrained seller is bounded by the probability

of a positive cascade times its capacity,

πbasec (K) =
(
β[ηG(K, 2n)]L + (1− β)[ηB(K, 2n)]L

)
K <

β

r
K.

Now consider the long-run per period expected profits of an unconstrained seller. Such a seller

serves 2n consumers in the long run with probability

∑2n
j=n+1Q

base(j)

1−Qbase(n)
= β + (1− 2β)

∑n−1
j=0 Q

base
G (j)

1−Qbase(n)
, (24)

which exceeds β for all β < 1/2. Thus, πbaseu > 2nβ holds for all β < 1/2, which by Proposition

1 are the only values of the prior for which restricting capacity can be optimal. This allows us

to formulate the following result regarding the optimal choice of capacity.

Proposition 4. For δ sufficiently close to 1, only capacity constraints K > 2nr can be profitable
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relative to being unconstrained: πbaseu > πbasec (K) for all K ≤ 2nr.

This result rules out capacity constraints that are too low, so for which any possible benefit

is outweighed by the cost of foregone sales. Whereas ‘undershooting’ by setting low capacity

does little harm to a patient seller that can adjust capacity over time, it is highly undesirable

for a seller that cannot. This observation corroborates Proposition 2, which suggested a seller

that cannot adjust capacity will set a higher constraint. An implication of Proposition 4 is that

a patient seller facing consumers with outside option r > 1/2, will never restrict capacity.

6 Informed Consumers

6.1 Main Results

Now we extend the analysis of Section 4 to take into account the presence of informed consumers.

We start with the deterministic model. Profits for an unconstrained seller are

πdetu =
2n∑
j=0

jQdet(j) + δQdet(n)πdetu

+ βδ

[
2n∑

j=n+1

Qdet
G (j)

2n

1− δ
+

n−1∑
j=0

Qdet
G (j)

(
m+

2nδ

1− δ

)]

+ (1− β)δ

[
2n∑

j=n+1

Qdet
B (j)

2n

1− δ
−

2n∑
j=n+1

Qdet
B (j)

(
m+

2nδ

1− δ

)]
. (25)

For an unconstrained seller, period-1 sales of strictly more (less) than n immediately trigger a

positive (negative) cascade. This cascade continues for all further periods if it is correct, but

not if it is incorrect. An incorrect cascade will be reversed in period 2 as informed consumers’

purchase decisions reveal the true state. The result is a correct cascade in all future periods.

According to Lemma 4, there are values of r for which a single sell-out generates a cascade.
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For such values of r, profits for a seller with capacity constraint K ≤ n are

πdetc (K) =
2n∑
j=0

min{j,K}Qdet(j)

+ βδ

[
2n∑
j=K

Qdet
G (j)

K

1− δ
+

K−1∑
j=0

Qdet
G (j)

(
min{m,K}+

Kδ

1− δ

)]

+ (1− β)δ

[
2n∑
j=K

Qdet
B (j)

K

1− δ

]
. (26)

Comparing (26) with (25) shows that period-1 demand of at least K now triggers a positive cas-

cade. Moreover, an incorrect positive cascade now will never be reversed, even though informed

consumers refuse to buy in every period. Their decisions are effectively hidden by the capacity

constraint, as they are pooled with uninformed consumers who are rationed.

Theorem 2. For any n > 1, 1 ≤ m < n, K ≤ n and δ >
√

2n−K
2n

, there are (α, β) ∈

(1/2, 1)× (0, 1/2) and r > 0 for which the seller can increase its profits above the unconstrained

level by restricting capacity to K.

This result is proved in two steps. First, if the seller is unconstrained, then informed con-

sumers’ choices will immediately reverse any incorrect cascade, but an incorrect positive cascade

is more likely than an incorrect negative one, because the bad state is more likely. This implies

πdet
u < πQ

det

u . If the seller is constrained, then informed consumers’ choices will immediately

reverse an incorrect negative cascade, but will never reverse an incorrect positive one, which

implies πdet
c (K) > πQ

det

c (K). The second step is to show that α and β can be chosen in such a

way that Lemma 5 applies.

Intuitively, restricting capacity can help the seller through two channels: by increasing the

probability of a positive cascade, and by helping such a cascade (once triggered) to be main-

tained. For the first channel, restricting capacity makes it more likely that all uninformed

consumers want to buy immediately after observing period-1 sales, just as in our baseline set-

ting. For the second channel, the presence of informed consumers will immediately reverse any

incorrect cascade if the seller is unconstrained, but will not reverse an incorrect positive cas-
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cade if the seller is constrained. The decision of uninformed consumers not to buy is effectively

unobservable, as sell-outs continue in all periods, and the seller continues to experiences excess

demand.

Looking at consumer behavior as of period 3, only a constrained seller can ever experience

an incorrect cascade, more specifically an incorrect positive cascade. This stands in contrast to

the baseline, where both types of incorrect cascade could occur, regardless of whether the seller

restricted capacity. Yet behavior in the deterministic setting nonetheless resembles that in the

baseline with large market size. In the baseline, as the market grew large, the probability of an

incorrect negative cascade approached zero, but the probability of an incorrect positive cascade

did not if the seller was constrained. The intuition is that large market size, and the presence

of informed consumers, both tend to make demand more informative. This will often result in

consumers learning, unless the state is bad and the seller restricts capacity.

A similar result to Theorem 2 applies in the stochastic setting. Profits for an unconstrained

seller are

πstou =
2n∑
j=0

jQsto(j) + δQsto(n)πstou

+ βδ

[
2n∑

j=n+1

Qsto
G (j)

2n

1− δ
+

n−1∑
j=0

Qsto
G (j)

(∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(i+ 2nδ

1−δ )

1− (1− ε)2nδ

)]

+ (1− β)δ

[
2n∑

j=n+1

Qsto
B (j)

2n

1− δ
−

2n∑
j=n+1

Qsto
B (j)

(∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(i+ 2nδ

1−δ )

1− (1− ε)2nδ

)]
. (27)
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Profits for a seller with capacity constraint K ≤ n are

πstoc (K) =
2n∑
j=0

min{j,K}Qsto(j)

+ βδ

[
2n∑
j=K

Qsto
G (j)

K

1− δ
+

K−1∑
j=0

Qsto
G (j)

[∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(min{i,K}+ Kδ

1−δ )

1− (1− ε)2nδ

]]

+(1−β)δ

[
2n∑
j=K

Qsto
B (j)

K

1− δ
−

2n∑
j=K

Qsto
B (j)

[∑2n
i=2n−K+1

(
2n
i

)
εi(1− ε)2n−i(i− 2n+K + Kδ

1−δ )

1−
∑2n−K

i=0

(
2n
i

)
εi(1− ε)2n−iδ

]]
.

(28)

These profit functions resemble those in the deterministic setting, except incorrect cascades

are now eventually corrected, regardless of whether the seller is unconstrained. Thus, unlike in

our deterministic setting, the logic of Smith and Sørensen (2000) holds here, in the sense that

unboundedly informative signals generate efficient learning in the long run. Incorrect negative

cascades are always corrected as soon as a single informed consumer arrives, and the same

applies for incorrect positive cascades if the seller is unconstrained. For a constrained seller

experiencing an incorrect positive cascade, at least 2n−K + 1 informed consumers must arrive

in the same period and prevent a sell-out, in order for the state to be revealed.

Theorem 3. For any n > 1, K ≤ n and δ >
√

2n−K
2n

, there are (α, β, ε) ∈ (1/2, 1)× (0, 1/2)×

(0, 1) and r > 0 for which the seller can increase its profits above the unconstrained level by

restricting capacity to K.

Notice that Theorem 3 holds for some ε, while Theorem 2 holds for all m ≤ n. In the

deterministic setting, an appropriate capacity constraint could stop all further learning after

a sell-out. In the stochastic setting, an incorrect positive cascade really only pays off if the

probability of having many informed consumers is sufficiently low. That being said, the quali-

tative message is similar across the two settings: incorrect positive cascades are more difficult

to reverse if the number of informed consumers is small relative to capacity.

Although incorrect positive cascades are eventually corrected in the stochastic setting, this

takes substantially longer if the seller is constrained. Formally, given an incorrect positive
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cascade, the expected number of periods until the bad state is revealed is 1/P , where P =

1 −
∑2n−K

i=0

(
2n
i

)
εi(1 − ε)2n−i if the seller sets capacity constraint K, and P = 1 − (1 − ε)2n if

the seller is unconstrained. For example, if 2n = 6 and ε = 0.1, and if initial sales trigger an

incorrect positive cascade, then it requires an average of two periods to reveal the true state if

the seller is unconstrained, but 787 periods if K = 3 and about one million periods if K = 1.

Figures 4(a) and 4(b) show how the presence of informed consumers affects the seller’s

incentive to restrict capacity. It does so indirectly, via the way that m > 0 or ε > 0 change the

probabilities Qi
ω. It also does so directly, via the way that m > 0 or ε > 0 explicitly enter the

profit functions, because informed consumers can potentially reverse incorrect cascades. It is

this latter direct effect that constitutes one of our two channels by which a capacity constraint

can increase profits: by masking the choice of informed consumers not to buy, which can prevent

an incorrect positive cascade from being reversed.

The medium-gray bell-shaped area in figures 4(a) and 4(b) shows when restricting capacity is

optimal in the baseline. The indirect effect of having informed consumers shifts the bell shape to

the left (lighter-grey area). More purchase decisions in early cohorts are then likely to reflect the

true state; this has an ambiguous effect on the incentive to restrict capacity, as it is analogous

to an increase in signal precision. In contrast, the direct effect of having informed consumers

unambiguously makes restricting capacity more attractive. The relevant region now consists

of both the lighter-grey area and the dark area above, reflecting how informed consumers can

quickly reverse profitable positive cascades, but only if the seller is unconstrained.18

7 Conclusions

In this paper, we show that a firm may benefit from restricting capacity, so as to create scarcity

for its product and increase future sales. Limiting capacity results in coarser information, as

consumers who observe a sell-out attach positive probability to all levels of demand that exceed

18In the light-grey area, the impact of informed consumers on probabilities is sufficient to justify some capacity
constraint. That is, πQ

i

u < πQ
i

c (K) holds for some K. In the dark area, this inequality does not hold, but the
seller still prefers to be constrained due to the fact that non-rationed informed consumers might stop incorrect
cascades, so that πi

u < πi
c(K) holds for some K, for i ∈ {det, sto}.
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Figure 3: Areas where capacity restriction can be optimal.

(a) Impact of m > 0. (b) Impact of ε > 0.

capacity. The results show that two main mechanisms the literature suggests may help avoid

pathological social learning outcomes, ‘guinea pigs’ and unbounded private signals, can fail to

do so, if the firm is able to manipulate the learning environment by a simple instrument such

as limiting capacity. We also show that this simple instrument can serve a practical tool for

persuading consumers, in the sense of implementing optimal information design in large markets.

Our results rely on the idea that consumers can observe sales and capacity. This is reasonable

in many markets, e.g. restaurants, sports and concert tickets, and limited edition products,

where sales and capacity are often widely known, but the extent of any excess demand is not.

Product scarcity should also affect learning in other settings, but in a way that depends precisely

on what consumers can observe. For example, it will matter if concert promoters can ‘paper the

house’ by quietly filling seats for free, or if sales figures for certain consumer products become

widely reported precisely because shortages occurred. Our mechanism will also continue to apply

in situations where capacity is exogenous, in particular if capacity happens to be close to the

optimal level. In such situations, our main results will have a slightly different interpretation;
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namely, that a firm that must limit production, or use a small venue, may do just as well (or

better) than a firm that is not similarly constrained.

Restricting capacity would still help to trigger positive cascades if consumers were partially

sophisticated, and believed that others always followed their own private signals (see, e.g., Eyster

and Rabin (2010), Gagnon-Bartsch and Rabin (2017), and Dasaratha et al. (2018)). Just as in

our analysis, an initial sell-out would result in a cascade if it revealed high enough demand from

consumers in the first cohort. A difference is that consumers in later cohorts would become

increasingly confident that the state was good after observing more and more sell-outs, and

become increasingly willing to buy.

In line with most work on social learning and Bayesian persuasion, our seller is not privately

informed, but an alterative would be to assume that the seller receives its own private binary

signal about quality. The full analysis of such a model is beyond the scope of this paper.

However, it is clear that if the seller’s signal precision is low, then there can exist an equilibrium

where the seller restricts capacity. Our model can be viewed as a limit case of such a pooling

equilibrium where the seller’s signal is completely uninformative. A separating equilibrium

would require that period-1 consumers always follow their own signal, along with a standard

incentive compatibility condition where the seller only wants to restrict capacity after a bad

signal. In a similar spirit to our analysis: it is precisely a seller that expects relatively low sales

that would profit from restricting capacity.

Our analysis of Bayesian persuasion compares the optimal design of a statistical experiment

in the absence of social learning, on the one hand, to the optimal choice of capacity in the pres-

ence of social learning, on the other. A related issue is how such experiments might themselves

influence the social learning process. For example, suppose that consumers observe each others’

purchase decisions and that the seller directly chooses the accuracy of consumers’ private signals.

Perfectly revealing bad signals, which are optimal in the absence of social learning, would have

a clear downside in such a setting: a single consumer’s decision not to buy would immediately

trigger a negative purchase cascade.
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Appendix A: Proofs

Proof of Lemma 1. Deterministic model. Consider Qdet
G (j) given by (1) and Qdet

B (j) given by

(2). Clearly,
QdetB (j)

QdetG (j)
= 0 if 2n− j ≤ m− 1. For 2n− j ≥ m we have

Qdet
B (j)

Qdet
G (j)

=

[
(j −m)!

(2n−m− j)!

] [
(2n− j)!

j!

]
α2(n−j)(1− α)2(j−n)

which is decreasing in j and equals to 1 when j = n. Moreover, for j = n− 1 we get

Qdet
B (n− 1)

Qdet
G (n− 1)

=
n(n+ 1)

(n−m− 1)(n−m)

α2

(1− α)2
>

α2

(1− α)2

and for j = n+ 1 we get

Qdet
B (n+ 1)

Qdet
G (n+ 1)

=
(n−m− 1)(n−m)

n(n+ 1)

(1− α)2

α2
<

(1− α)2

α2

Now,

Qdet
G (2n− j) =

(
2n−m

2n− j −m

)
α2n−j−m(1− α)j =

(
2n−m

j

)
α2n−j−m(1− α)j = Qdet

B (j).

Finally,
Qdet
G (j)

Qdet
G (2n− j)

=
Qdet
G (j)

Qdet
B (j)

> 1

for all j > n+ 1 as the ratio Qdet
G (j)/Qdet

B (j) is increasing for j > m and
QdetG (n)

QdetB (n)
= 1.

Stochastic model. Consider Qsto
G (j) given by (3) and Qsto

B (j) given by (4).

Let ξ ≡ α+ ε−αε, and note that ξ ∈ (1/2, 1). Therefore, expressions for Qsto
ω (j) are exactly

as in the deterministic model with m = 0 and α replaced with ξ. Moreover, since ξ > α we get

ξ
1−ξ >

α
1−α . Thus, the stochastic model satisfies all four properties.

Baseline model. Follows from the deterministic case with m = 0.
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Proof of Lemma 2. We denote the belief that the state is ω, conditional on past sales (S1, . . . St)

and a private signal s, as P (ω|S1, . . . St, s). Consider t = 2. Note that

P (G|n+ 1, b) =
1

1 + 1−β
β

α
1−α

QiB(n+1)

QiG(n+1)

≥ 1

1 + 1−β
β

1−α
α

= P (G|g) > r

where the first inequality follows from
QiB(n+1)

QiG(n+1)
≤
(

1−α
α

)2
, i ∈ {base, det, sto}. Thus, the belief

of a consumer that quality is good after observing S1 ≥ n+ 1 and s = b is better than P (G|g),

so the consumer should buy regardless of her private information. In a similar way we get

P (G|n− 1, g) =
1

1 + 1−β
β

1−α
α

QiB(n−1)

QiG(n−1)

≤ 1

1 + 1−β
β

α
1−α

= P (G|b) < r

due to
QiB(n−1)

QiG(n−1)
≥
(

α
1−α

)2
. Finally, P (G|n, b) = P (G|b) and P (G|n, g) = P (G|g) due to

QiB(n)

QiG(n)
= 1,

so if S2 = n then a consumer should follow her own signal. Now, consider t > 2. Suppose that

for all t′ < t − 1, St′ = n holds. Due to
QiB(n)

QiG(n)
= 1, this implies that in all cohorts consumers

have followed their own signal. Thus, if St−1 = n consumers in cohort t also must follow their

signals. Suppose that St−1 > n. In this case

P (G|S1, . . . , St−1; b) =
β(1− α)Qi

G(St−1)[Qi
G(n)]t−2

β(1− α)Qi
G(St−1)[Qi

G(n)]t−2 + (1− β)αQi
B(St−1)[Qi

B(n)]t−2
=

1

1 + 1−β
β

α
1−α

QiB(St−1)

QiG(St−1)

> r

so consumers should buy. Similarly, if St−1 < n we get P (G|S1, . . . , St−1; g) < r and consumers

should not buy.

Now, suppose there exists a first t′ < t − 1 such that St′ 6= n. If St′ < n consumers in the

next cohort should not buy and a negative cascade starts. If for all τ ∈ [t′+1, t−1] Sτ = 0, then

consumers in cohort t do not gain any additional information, and should also refuse to buy. If

for some τ ∈ [t′+ 1, t− 1] Sτ > 0 (which cannot happen in the baseline case) the purchase must

come from an informed consumer and consumers in later cohorts should buy. In a similar vein
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if St′ > n then the positive cascade starts, it persists if for all τ ∈ [t′ + 1, t − 1] Sτ = 2n. It is

otherwise reversed, as the decision not to buy comes from an informed consumer, so consumers

in later cohorts should not buy.

Proof of Lemma 3. From (6) it is sufficient to show that
∑2n

j=K Q
i
B(j) <

∑2n
j=K Q

i
G(j), i ∈

{base, det, sto}. For all j ≥ n + 1, we have Qi
G(j) > Qi

G(2n− j), which implies
∑K−1

j=0 Qi
G(j) <∑2n

j=2n−K+1 Q
i
G(j). By adding

∑2n−K
j=K Qi

G(j), we obtain that
∑2n−K

j=0 Qi
G(j) <

∑2n
j=K Q

i
G(j).

Changing the summation order on the left-hand-side gives
∑2n

j=K Q
i
G(2n − j) <

∑2n
j=K Q

i
G(j).

Finally, due to Qi
B(j) = Qi

G(2n− j), we obtain
∑2n

j=K Q
i
B(j) <

∑2n
j=K Q

i
G(j).

Proof of Lemma 4. As shown in the proof of Lemma 3,
∑2n

j=K Q
i
B(j) <

∑2n
j=K Q

i
G(j), i ∈

{base, det, sto}. Thus,

γ(1, K) =
1

1 + 1−β
β

α
1−α

∑2n
j=K QiB(j)∑2n
j=K QiG(j)

>
1

1 + 1−β
β

α
1−α

= P (G|b),

all of which are independent of r. We can therefore satisfy γ(1, K) > r by choosing r > P (G|b)

sufficiently close to P (G|b).

Proof of Lemma 5. For simpler notation we are going to omit the s superscript in our prelimi-

nary steps and work with generic Q. Rewrite (7) as

[1− δQ(n)]πQu = S1 +
δ

1− δ
2nS2, (29)

where S1 =
∑2n

j=1 jQ(j) and S2 =
∑2n

j=n+1Q(j). Note that as long as Q(n) < 1, the term
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[1− δQ(n)] is bounded away from 0 for δ < 1. In a similar way,

πQc (K) = S1 −
2n∑
j=K

(j −K)Q(j) +
δ

1− δ
K[

n−1∑
j=K

Q(j) +Q(n) + S2] >

S1 − (2n−K)[
n−1∑
j=K

Q(j) +Q(n) + S2] +
δ

1− δ
K[

n−1∑
j=K

Q(j) +Q(n) + S2],

where the inequality follows from replacing all terms (j − K) with the larger term 2n − K.

Moreover, for δ > 2n−K
2n

the penultimate term is smaller than the last one, and thus

πQc (K) > S1 +
δK − (2n−K)(1− δ)

1− δ
[Q(n) + S2]

This implies that πQc (K) > πQu if

{
S1 +

δK − (2n−K)(1− δ)
1− δ

[Q(n) + S2]

}
[1− δQ(n)] ≥ S1 +

δ

1− δ
2nS2,

which can be rewritten as

− δQ(n)S1 +
δK − (2n−K)(1− δ)

1− δ
Q(n)[1− δQ(n)] ≥

S2

1− δ
{2nδ − [δK − (2n−K)(1− δ)][1− δQ(n)]} .

As S1 ≤ 2n, the above inequality holds as long as

Q(n)

1− δ
{[δK − (2n−K)(1− δ)][1− δQ(n)]− 2nδ(1− δ)} ≥

S2

1− δ
{2nδ − [δK − (2n−K)(1− δ)][1− δQ(n)]}

Now note that for all δ ∈ (0, 1), the expression

fR ≡ 2nδ − [δK − (2n−K)(1− δ)][1− δQ(n)] = 2δ2nQ(n) + (2n−K)[1− δQ(n)]
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is strictly positive. Moreover, the expression

fL ≡ [δK − (2n−K)(1− δ)][1− δQ(n)]− 2nδ(1− δ)

is also strictly positive if δ >

√
[(2n−K)Q(n)]2+8n(2n−K)[1−Q(n)]−(2n−K)Q(n)

4n−4nQ(n)
≡ δ∗(Q(n);n,K), where

the critical value δ∗(Q(n);n,K) is increasing in Q(n), equals
√

2n−K
2n

at Q(n) = 0, and ap-

proaches 1 as Q(n) → 1. Note that
√

2n−K
2n

> 2n−K
2n

, and therefore the condition we used for

the approximation of πQc (K) is automatically satisfied as long as δ >
√

2n−K
2n

. Thus, for any

Q(n) < 1, there exists δ ∈
(√

(2n−K)/2n, 1
)

such that the right-hand-side of

Q(n)

S2

=
Q(n)∑2n

j=n+1Q(j)
≥ fR
fL

(30)

is positive and finite. Thus, if lims→∞
Qs(n)∑2n

j=n+1Q
s(j)

= ∞, there exists T0 such that for all s >

T0 the left-hand-side of (30) is larger than the right-hand-side and therefore πQ
s

u < πQ
s

c (K).

Moreover, δ can be chosen arbitrarily close to
√

2n−K
2n

, as long as Q(n) is sufficiently close to

zero, which proves the second statement of the lemma.

Proof of Theorem 1. Note that the profit expressions (9) and (10) coincide with equations (7)

and (8) for Q(j) = Qbase(j). Thus, due to Lemma 5, we can get πbasec (K) ≥ πbaseu for any K if

there exists a sequence {αs, βs}∞s=0 such that {Qbase,s(j)}∞s=0 satisfies lims→∞
Qbase,s(n)∑2n

j=n+1Q
base,s(j)

=∞

and lims→∞Q
base,s(n) = 0. To establish the first part we need to show that there exists T0 such

that for all M , we get Qbase,s(n)/
[∑2n

j=n+1 Q
base,s(j)

]
> M for all s > T0. Equivalently for all

M there are (αs, βs) such that
Aαs − CαsM
M(Bαs − Cαs)

> βs

where

Aαs =

(
2n

n

)
αns (1− αs)n, Bαs =

2n∑
i=n+1

(
2n

i

)
αis(1− αs)2n−i, Cαs =

2n∑
i=n+1

(
2n

i

)
α2n−i
s (1− αs)i.

45



Now take some sequence αs → 1. Then, lims→
Aαs
Cαs

= ∞ and therefore there exists T0 such

that for all s > T0 we get Aαs > MCαs . Choose βs = 1
2
Aαs−CαsM
M(Bαs−Cαs )

(note that Bαs > Cαs

as αs > 1/2). Then the sequence {αs, βs}∞s=0 yields lims→∞
Qbase,s(n)∑2n

j=n+1Q
base,s(j)

= ∞. Moreover,

lims→∞Q
base,s(n) = 0, which completes the proof.

Proof of Proposition 1. We first show that β ≥ 1
2

implies
∑2n

j=1 jQ
base(j) ≥ n and∑2n

j=n+1 2nQbase(j) ≥ n(1−Qbase(n)). By Qbase(j) = βQbase
G (j) + (1− β)Qbase

B (j) and Lemma 1

(iii), write

Qbase(j)−Qbase(2n− j) =

βQbase
G (j) + (1− β)Qbase

B (j)− βQbase
G (2n− j)− (1− β)Qbase

B (2n− j)

= βQbase
G (j) + (1− β)Qbase

G (2n− j)− βQbase
G (2n− j)− (1− β)Qbase

G (j)

= (2β − 1)[Qbase
G (j)−Qbase

G (2n− j)], (31)

which is positive for all j ≥ n+ 1, by β ≥ 1/2 and Lemma 1 (iv). Thus,

2n∑
j=1

jQbase(j) =
n−1∑
j=0

[jQbase(j) + (2n− j)Qbase(2n− j)] + nQbase(n)

≥
n−1∑
j=0

[
(j + (2n− j))

2
(Qbase(j) +Qbase(2n− j))

]
+ nQbase(n) = n, (32)

and
2n∑

j=n+1

2nQbase(j) ≥ n

[
n−1∑
j=0

Qbase(j) +
2n∑

j=n+1

Qbase(j)

]
= n[1−Qbase(n)].

We now combine with (7) to obtain

πbaseu =
1

1− δQbase(n)

(
2n∑
j=0

jQbase(j) +
2nδ

1− δ

2n∑
j=n+1

Qbase(j)

)
≥

1

1− δQbase(n)

(
n+

δ

1− δ
n[1−Qbase(n)]

)
,
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which simplifies to πbaseu ≥ n
1−δ and therefore πbaseu > n

1−δ .

Now note that as K ≤ n, we have πbasec (K) ≤ K
1−δ ≤

n
1−δ < πbaseu , which completes the

proof.

Proof of Proposition 2. The optimality of K0 and K1 implies that

2n∑
j=K0+1

(K0 − j)Qbase(j) +
δ

1− δ
K0

2n∑
j=K0

Qbase(j)

≥
2n∑

j=K1+1

(K1 − j)Qbase(j) +
δ

1− δ
K1

2n∑
i=K1

Qbase(j)

and

2n∑
j=K1+1

(K1 − j)Qbase(j) +
δ

1− δ
2n

2n∑
j=K1

Qbase(j)

≥
2n∑

j=K0+1

(K0 − i)Qbase(j) +
δ

1− δ
2n

2n∑
j=K0

Qbase(j)

Summing it up yields

δ

1− δ
K0

2n∑
j=K0

Qbase(j) +
δ

1− δ
2n

2n∑
j=K1

Qbase(j)

≥ δ

1− δ
K1

2n∑
j=K1

Qbase(j) +
δ

1− δ
2n

2n∑
j=K0

Qbase(j)

or
2n∑

i=K1

(2n−K1)Qbase(j) ≥
2n∑

j=K0

(2n−K0)Qbase(j)

which implies that K1 ≤ K0 as
∑2n

j=K(2n−K)Qbase(j) is a decreasing function of K.
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Proof of Proposition 3. We need to compare π̃ and π∗. Define

∆ ≡ π∗ − π̃ =
(1− α) (α2 + α− 2αr + r − 1) (β − αβ − r(α(1− 2β) + β))

α(2α− 1)(1− r)r

Equation ∆ = 0 has four roots:

α1 =
(1− r)β

r + β − 2βr
, α2,3 =

1

2

(
2r − 1±

√
4r2 − 8r + 5

)
, α4 = 1.

Note that α2 = 1
2

(
2r − 1−

√
4r2 − 8r + 5

)
< 0, α3 = α(r) ≤ 1 = α4 and ∆ < 0 in a left

neighbourhood of α = 1. Moreover, α3 ≥ 1/2 for all r.

Suppose that β ≥ r. Then we have α(β, r) = α1 ≥ 1/2. It is straightforward to verify that

α1 > α(r) if and only if β > r
1−r [α(r) + 1− 2r] ≡ β(r), where β(r) > r. Since in the absence of

any recommendation consumers follow their private signals, we require that α ≥ α1. Thus, we

have ∆ > 0 if r ≤ β < β(r) and α1 < α < α(r); we have ∆ < 0 if r ≤ β < β(r) and α > α(r),

or if β > β(r) and α > α1.

Now suppose that β < r. Then we have α(β, r) = r(1−β)
r+β−2rβ

> 1
2
> α1. Moreover, α(β, r) <

α(r) if and only if β > r
[

2r−α(r)
3r−1

]
≡ β(r), where β(r) < r. Thus, we have ∆ > 0 if β(r) < β < r

and α(β, r) ≤ α < α(r); we have ∆ < 0 if β(r) < β < r and α > α(r), or if β < β(r) and

α ≥ α(β, r).

As for β ≥ r, we have α1 = α(β, r), so combining cases β ≥ r and β < r gives the result in

the proposition.

Proof of Theorem 2. The expression for the unconstrained profits (25) can be rewritten as

πdetu =
2n∑
j=0

jQdet(j) + δQdet(n)πdetu + δ

2n∑
j=n+1

Qdet(j)
2n

1− δ
+

(2β − 1)δ
n−1∑
j=0

Qdet
G (j)

(
m+

2nδ

1− δ

)
(33)
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and therefore for β < 1/2 we have

πdetu ≤ πQ
det

u

with πQ
det

u defined by (7) and probabilities Qdet defined by (1) and (2). Moreover, equation (26)

can be rewritten as

πdetc =
2n∑
j=0

min{j,K}Qdet(j) + δ

2n∑
j=K

Qdet(j)
K

1− δ
+

βδ

[
K−1∑
j=0

Qdet
G (j)

(
min{m,K}+

Kδ

1− δ

)]
(34)

and therefore

πdetc (K) ≥ πQ
det

c (K)

where πQ
det

c (K) is defined by (8). Therefore, πdetc (K) ≥ πdetu if for all m there is a sequence

{αs, βs} such that {Qdet,s
ω (j)}∞s=0 satisfies the requirements of Lemma 5. That is, we have to

show that there is a sequence such that, for any number M , there is T0 such that

Qdet,s(n)

/(
2n∑

j=n+1

Qdet,s(j)

)
= Qdet,s(n)

/(
βs

2n∑
j=n+1

Qdet,s
G (j) + (1− βs)

2n∑
j=n+1

Qdet,s
B (j)

)
> M

or

βs <
Qdet,s(n)−M

∑2n
j=n+1Q

det,s
B (j)

M
(∑2n

j=n+1Q
det,s
G (j)−

∑2n
j=n+1 Q

det,s
B (j)

)
Because of the properties of Qdet

ω (j) established in Lemma 1, we have that for all (αs, βs),∑2n
j=n+1Q

det,s
G (j)−

∑2n
j=n+1Q

det,s
B (j) > 0 holds. Now, take a sequence αs → 1. Then,

lim
s→∞

Qdet,s(n)∑2n
j=n+1Q

det,s
B (j)

= lim
s→∞

(
2n−m
n

)∑2n
j=n+1

(
2n−m

2

)
αn−js (1− αs)j−n

=∞

Then choose βs = 1
2

Qdet,s(n)−M
∑2n
j=n+1Q

det,s
B (j)

M(
∑2n
j=n+1Q

det,s
G (j)−

∑2n
j=n+1Q

det,s
B (j))

, which is positive for s large enough. There-

fore, for such a sequence (αs, βs), we have lims→∞
Qdet,s(n)∑2n

j=n+1Q
det,s(j)

=∞. Moreover, lims→∞Q
det,s(n) =
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0. Thus, all conditions of Lemma 5 are satisfied, which completes the proof.

Proof of Theorem 3. The profit function of the unconstrained seller (27) can be rewritten as:

πstou =
2n∑
j=0

jQsto(j) + δQsto(n)πstou + δ
2n∑

j=n+1

Qsto(j)
2n

1− δ

+ (2β − 1)δ
n−1∑
j=0

Qsto
G (j)

(∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(i+ 2nδ

1−δ )

1− (1− ε)2nδ

)
(35)

Thus, for β < 1/2 we have

πstou < πQ
sto

u

Now our aim is to show that for all α, β,K, n, there is a (small enough) value of ε such that the

constrained seller’s profits (28) are smaller than the profits defined by (8). If the seller sets a

capacity constraint K, its profits (28) can be rewritten as

πstoc (K) =
2n∑
j=0

min{j,K}Qsto(j) +
2n∑
j=K

Qsto(j)
K

1− δ

+ βδ
K−1∑
j=0

Qsto
G (j)

[∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(min{i,K}+ Kδ

1−δ )

1− (1− ε)2nδ

]

− (1− β)δ
2n∑
j=K

Qsto
B (j)

[∑2n
i=2n−K+1

(
2n
i

)
εi(1− ε)2n−i(i− 2n+K + Kδ

1−δ )

1−
∑2n−K

i=0

(
2n
i

)
εi(1− ε)2n−iδ

]
(36)

Thus, πstoc (K) < πQ
sto

c (K) if and only if

(
β

1− β

)(∑K−1
j=0 Qsto

G (j)∑2n
j=K Q

sto
B (j)

)
>

[∑2n
j=2n−K+1 (2n

j )εj(1−ε)2n−j(j−2n+K+ Kδ
1−δ )

1−
∑2n−K
j=0 (2n

j )εj(1−ε)2n−jδ

]
[∑2n

j=1 (2n
j )εj(1−ε)2n−j(min{j,K}+ Kδ

1−δ )

1−(1−ε)2nδ

] (37)

Notice that min{j,K} ≥ 0 and j − 2n + K ≤ K. Thus, to establish (37), it will be enough
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to show that

(
δβ

1− β

)(∑K−1
j=0 Qsto

G (j)∑2n
j=K Q

sto
B (j)

)
>[ ∑2n
j=2n−K+1

(
2n
j

)
εj(1− ε)2n−j

1−
∑2n−K

j=0

(
2n
j

)
εj(1− ε)2n−jδ

]
/

[∑2n
j=1

(
2n
j

)
εj(1− ε)2n−j)

1− (1− ε)2nδ

]
(38)

Note that
∑K−1

j=0 Qsto
G (j) > Qsto

G (0) = (1 − ξ)2n > (1 − α)2n where ξ ≡ α + ε − αε. Also,∑2n
j=K Q

sto
B (j) < 1. This implies that

(
δβ

1− β

)(∑K−1
j=0 Qsto

G (j)∑2n
j=K Q

sto
B (j)

)
>

δβ

1− β
(1− α)2n

For all α < 1, β ∈ (0, 1), the right-hand-side is strictly positive and independent from ε.

For δ < 1, both 1−
∑2n−K

j=0

(
2n
j

)
εj(1− ε)2n−jδ and 1− (1− ε)2nδ are strictly positive for all

ε ∈ [0, 1]. Moreover,

lim
ε→0

∑2n
j=2n−K+1

(
2n
j

)
εj(1− ε)2n−j∑2n

j=1

(
2n
j

)
εj(1− ε)2n−j

=

lim
ε→0

ε2n−K

∑2n
j=2n−K+1

(
2n
j

)
εj−2n+K(1− ε)2n−j∑2n

j=1

(
2n
j

)
εj(1− ε)2n−j

=

lim
ε→0

ε2n−K

(
2n

2n−K+1

)
2n

= 0

Thus, for all α and β there exists ε0(α, β)19 small enough, such that the inequality (38) is

satisfied for all ε < ε0(α, β).

Similarly to the proof of Theorem 2, take a sequence αs → 1 and corresponding sequence βs

such that πQ
sto,s

u < πQ
sto,s

c starting from some s. Choose εs = 1
2
ε0(αs, βs). For such εs, starting

from some s, we have πstoc (K) > πstou .

19We omit other arguments for simpler notation
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Appendix B: General Profit Functions with Informed Con-

sumers

Here we derive general profit functions for a seller with capacity K, in both the deterministic

and stochastic setting. As in Section 4.2, let L = {l : γ(l,K) > r}, and denote the smallest

element of L by L: the number of consecutive sell-outs required as of period 1, given capacity

K, in order to generate a positive cascade.

Let ηiω =
∑2n

j=K Q
i
ω(j), i ∈ {det, sto}, denote the probability of a sell-out, given state ω ∈

{G,B}. Let SiB =
∑K−1

j=0 jQi
B(j) denote expected sales in a given period conditional on not

selling out, when the state is bad, and let similarly, let S̃detG denote expected sales as of a period

where a sell-out does not occur, and the state is good. For the deterministic setting, write

S̃detG ≡
K−1∑
j=0

Qdet
G (j)

(
j + δm+

δ2K

1− δ

)
,

where unlike in the baseline, the presence of informed consumers will immediately reverse an

incorrect negative cascade.

Expected profits given capacity K and L ≥ 1, in the deterministic setting, are

πdetc (K) = β

[
1− (δηdetG )L

1− δηdetG

(S̃detG + ηdetG K) + (δηdetG )L
K

1− δ

]
+

(1− β)

[
1− (δηdetB )L

1− δηdetB

(SdetB + ηdetB K) + (δηdetB )L
K

1− δ

]
, (39)

which reduces to (26) if L = 1.

In the stochastic setting, expected sales as of a period where a sell-out does not occur, and

the state is good, are

S̃stoG ≡
K−1∑
j=0

Qsto
G (j)

(
j + δ

∑2n
i=1

(
2n
i

)
εi(1− ε)2n−i(min{i,K}+ Kδ

1−δ )

1− (1− ε)2nδ

)
,

as the incorrect negative cascade is reversed in the first subsequent period that an informed
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consumer arrives. Moreover, let

Rsto
B =

K

1− δ
−
∑2n

i=2n−K+1

(
2n
i

)
εi(1− ε)2n−i(i− 2n+K + Kδ

1−δ )

1−
∑2n−K

i=0

(
2n
i

)
εi(1− ε)2n−iδ

,

where the second term reflects the fact that incorrect positive cascades will eventually be re-

versed, but only when at least 2n − K + 1 informed consumers arrive in the same period.

Expected profits given capacity K and L ≥ 1, in the stochastic setting, are

πstoc (K) = β

[
1− (δηstoG )L

1− δηstoG
(S̃stoG + ηstoG K) + (δηstoG )L

K

1− δ

]
+

(1− β)

[
1− (δηstoB )L

1− δηstoB
(SstoB + ηstoB K) + (δηstoB )LRsto

B

]
, (40)

which reduces to (28) if L = 1.

Figure 4 illustrates how profits depend on how many consumers are informed. Profit func-

tions (39) and (40) are directly decreasing in m and ε respectively, given β < 1/2, since informed

consumers are more likely to know that the state is bad rather than good. If we held fixed the

number of sellouts necessary to trigger a positive cascade, say at L = 1, then this would suggest

that the presence of informed consumers would unambiguously reduce profits. Nonetheless, Fig-

ure 4 shows that constrained profits are saw shaped, because more informed consumers can also

reduce the number of sell-outs at a given capacity that are required to trigger a positive cascade.

For example, an increase in m can lead the seller to choose lower K, because one sell-out will

now trigger a cascade at this lower capacity, and result in higher profits.
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Figure 4: Seller profits as function of m and ε.
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(b) Stochastic Model

Appendix C: Pricing

In this appendix we briefly discuss how pricing can affect our results. The seller’s optimization

problem, seen only as a function of capacity, is complicated by the fact that profits are not

necessarily quasi-concave in K. Considering both capacity and price complicates matters further

still, since the seller’s optimal price is directly linked to its capacity choice. To illustrate the main

features of the optimal pricing problem, and maintain tractability, we proceed as follows. First,

we assume the seller sets a price at t = −1 that is fixed for all periods. Second, we normalize

the consumer’s outside option to zero and now interpret r as the price, so the consumer problem

is exactly as before, and the seller’s problem involves the optimal choice of r. Third, we focus

on the baseline case, without informed consumers, which makes our framework more similar to

Bose et al. (2008), and we compute the optimal price for a constrained seller numerically.20

In line with Bose et al. (2008), an unconstrained seller can choose a pooling price such that

both consumers with good and bad signals want to buy:

rp =
β(1− α)

β(1− α) + α(1− β)
,

20That being said, the fact that Bose et al. (2008) consider dynamic rather than static pricing, and do not
consider restricted capacity, limits the comparability of our results.

54



which yields profits

Πp =
2n

1− δ
rp.

Any lower pooling price r < rp would not increase demand and would result in lower profits.21

Alternatively, an unconstrained seller can charge a separating price such that only consumers

with good signals want to buy:

rs =
αβ

αβ + (1− α)(1− β)
.

Doing so yields profits

Πs = πbaseu rs,

with πbaseu given by (9). Any higher price r > rs would lead to zero sales, whereas any lower

separating price rp < r ≤ rs would not increase demand. The optimal pricing problem is solved

by a direct comparison of Πp and Πs.

For a constrained seller, we only consider separating prices, rp < r ≤ rs, since a seller that

charged a pooling price would prefer to be unconstrained. Given capacity K and separating

price r, profits are

Π = πbasec (K)r, (41)

with πbasec (K) given by (11). The higher the separating price r, the more sell-outs L are required

to trigger a positive cascade, so πbasec (K) depends on r.

To say more about the optimal price given capacityK, define Lmax as the largest value of L for

which γ(L−1, K) < rs. That is, consumers with good signals in the first cohort will want to buy

at price r = γ(L,K) if and only if L ≤ Lmax−1.22 Demand is independent of price whenever r ∈

(γ(L,K), γ(L+ 1, K)), so the optimal price is an element of {γ(1, K), . . . , γ(Lmax− 1, K), rs}.23

The seller faces the following trade-off: charge a higher price and wait for more sell-outs to

21If m ≥ 1, then in the good state all consumers would still buy at price rp in all periods, but in the bad state
sales would be limited to (2n−m) in the first period and zero thereafter.

22Such a value Lmax exists by Lemma 3.
23Notice that Lmax sell-outs are required to trigger a cascade at price r = rs, which is the highest possible

separating price.
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trigger a cascade, or charge a lower price and hope to trigger a cascade more quickly. Figure 5

illustrates how this trade-off is usually resolved in favour of a higher price and longer waiting

for a positive cascade, unless K is very close to n and both α and δ are low.

Panels 5(a) and 5(c) show that the optimal price is often equal to the unconstrained sepa-

rating price rs, regardless of which capacity K ≤ n the seller finds to be optimal. Differences

between these prices, when they do exist, are very small in magnitude. Thus, the seller’s problem

will often boil down to whether restricting capacity increases expected demand, holding price

fixed at r = rs. This suggests that the conclusions from our main analysis, where the seller only

optimized over capacity, will tend to carry through to a model with pricing.

Given the relatively high optimal price, multiple sell-outs L ≈ Lmax are often required to

start a cascade, where panel 5(d) shows a saw-like pattern. As signal precision increases, the

seller requires fewer sell-outs to trigger a cascade for a given capacity, which pushes L down.

But as precision increases, panel 5(b) shows that the seller will sometimes reduce its capacity,

so that more sell-outs are required to trigger a cascade, which pushes L sharply up. Panel 5(e)

suggests that the overall comparison of profits is qualitatively similar to what we had before: the

seller finds it optimal to restrict capacity when the signal accuracy α is neither too high nor too

low, similar to Figure 1. The only difference is that for low signal accuracy, an unconstrained

seller now prefers the pooling price.
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Figure 5: Pricing
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