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1Department of Economics, Norwegian School of Economics
2Department of Economics, Aalto University School of Business

August 10, 2018

Abstract

We analyze all-pay auctions with affiliated values and binary signals. We analyze the
unique symmetric equilibrium with any number of bidders and show that the bidders earn
positive rents only if the equilibrium is monotone. We also characterize the symmetric equilib-
rium of the closely related two-player war of attrition.

We compare expected revenues across these formats. All-pay auctions result in lower ex-
pected rents to the bidders than standard auctions, but they also induce inefficient allocations
in some models with affiliated private values. With two bidders, the effect on rent extraction
dominates, and the all-pay auctions outperforms standard auctions in terms of expected rev-
enue. With many bidders, standard auctions may result in higher expected revenue. The war
of attrition outperforms the standard auctions in terms of revenue, but its ranking relative to
(first-price) all-pay auction is ambiguous.

JEL CLASSIFICATION: D44, D82
KEYWORDS: All-pay auctions, war of attrition, common values, affiliated signals

1. Introduction

Competition for a scarce resource often takes the form of a contest. In nature, males of animal
species expend energy and risk injury when competing for females and trees grow in height to
compete for solar energy. Closer to economics, lobbyists spend money and effort in order to
secure a decision that is favorable to their cause. Architectural competitions and online contests
invite participants to work on a design problem or an algorithm, and the best result is awarded a
prize. The key distinguishing feature of these examples is that the contestants have to decide how
much effort to sink into the contest and the outcome is determined as a function of these efforts.
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Contest models are closely related to auctions. The simplest contest model is called an all-pay
auction, where the prize is awarded to the contestant with the highest effort. The effort choice
corresponds to the choice of a bid in an auction and the sunk cost nature of effort choice is em-
phasized by the requirement that all the bidders pay their bids. In terms of this analogy, a first
price auction would be a contest with a promised effort level when winning. Just as for ordinary
auctions, it is natural to consider contest models where the subjective estimates of the value of
the prize are private information to the contestants. And just like in the case of auctions, it makes
sense to ask how contests with correlated values differ from contests with independent values.
Such informational linkages have been analyzed extensively in the auction literature, but have
received much less attention in the contest literature.

In a two-bidder model, Rentschler and Turocy (2016) show that correlation makes it harder
to assess a priori what kinds of signals on the quality of the prize are advantageous to any given
bidder. We put more structure on our model, and we assume throughout that signals are affiliated,
i.e. they co-move positively. This means that a contestant (or bidder) with a high signal expects
more opponents with high signals than a bidder with a low signal. When winning, the prize is
on average more valuable for a high signal bidder. But affiliation also implies that if the other
contestants with high signals expend more effort, then the competition that a high signal bidder
expects is also tougher. These effects are present for standard first price and second price auctions
too, but a crucial difference between the formats is that in contrast to the standard formats, bids
in the all-pay auction are sunk. This makes the increased competition much more harmful.

From an analytical point of view, the key implication of this enhanced competition effect rela-
tive to standard formats is that best-response bids or effort choices need no longer be monotonic
in the signal. As is well understood, this may preclude the existence of an equilibrium in mono-
tonic strategies, which may explain why the literature on affiliated all-pay auctions and contests
is so scarce.1 When monotonicity is lost, equilibrium characterization becomes very difficult. To
circumvent the issue of intractability, the previous literature simply assumes monotonicity of equi-
libria by a parameter restriction (e.g, Krishna and Morgan (1997) and Siegel (2014)) or provides
algorithmic or partial characterizations of equilibrium in case of two bidders (e.g, Rentschler and
Turocy (2016) and Lu and Parreiras (2017)).2 As we show in this paper, the conditions for mono-
tonicity are quite restrictive and the existing characterizations do not allow for easy results on the
qualitative features of the equilibria when monotonicity fails.

Our goal here is to provide a complete characterization of both monotone and non-monotone
symmetric equilibria of the all-pay auction with an arbitrary number of players. For this purpose,
we must use a simpler informational model. Rentschler and Turocy (2016) adopt a discrete signal
space and they provide an algorithm for computing symmetric equilibria of a two-player all-

1The idea that affiliated signals coupled with costly bidding lead to a non-monotonic equilibrium dates back to
Milgrom and Weber (1982), where they construct an example showing that a monotone equilibrium does not exist in
case of costly participation. Krishna and Morgan (1997) demonstrate that all-pay auctions may not have a monotone
equilibrium when affiliation is strong. See also Landsberger (2007).

2Appendix B of Lu and Parreiras (2017) provides one example that shows how to construct a non-monotone equi-
libria under a parametric (quadratic) restriction on bidders’ valuation.
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pay auction for both the monotone and non-monotone case. We further simplify their model by
assuming binary signals that are affiliated. Since we cover the case of an arbitrary number N of
bidders, we find it convenient to assume that the signals are also affiliated with another random
variable that we call the state of the world. In the mineral rights model, this common variable can
be taken to be the true value of the prize whereas in the case with affiliated private values, it is
best thought of as a parameter determining the true distribution of bidder types in the population.
Within this formulation, we can analyze the comparative statics of the model in the number of
bidders while fixing the signal structure of an individual bidder.

The binary information structure is also ideal for isolating key economic forces that the corre-
lated information brings to contest models. The key insight is the possibility of inefficient alloca-
tions (for private values models). We analyze in detail how this is influenced by the correlation
structure and the number of contestants. We know from Rentschler and Turocy (2016) that such in-
efficiencies prevail in a general model. However, their model with a general signal space turns out
to be very difficult to extend beyond two bidders, and is even hard to characterize in a systematic
way when there are only two bidders.

We provide a full characterization of the symmetric equilibria for our game with any num-
ber of bidders. We start by showing the existence and uniqueness of symmetric equilibrium, and
prove that the unique symmetric equilibrium takes one of two possible forms: either it is mono-
tone in the sense that higher value bidders win with probability one against lower value bidders.
Alternatively it is non-monotone: a bidder with a lower value wins with a positive probability
against a higher value competitor. In the latter case, we show that no bidder receives a positive
expected payoff in the game, i.e. all rents are fully dissipated. In monotone equilibria, players
with high valuations do receive an information rent.

As long as our equilibria are monotone, the results just confirm what Krishna and Morgan
(1997) find in their model. The main contribution of our paper lies in the analysis of the non-
monotone equilibrium. We show that the unique symmetric equilibrium is in non-monotone
strategies for a large set of parameter values. In the mineral rights model, the symmetric equi-
librium is always non-monotone if the number of contestants or bidders is large enough. In the
affiliated private values model, the equilibrium tends to be non-monotone if the differences in the
private values are not too large and as long as the affiliation is not too small. Not surprisingly,
with independent private values, the equilibrium is always in monotone strategies since then the
strength of competition is independent of a contestant’s own type.

The all-pay auction can be thought of as a static contest model in the sense that the bidders
expend irreversible efforts or outlays before knowing who wins. In order to check the robustness
of our insights, we also analyze a closely related dynamic contest model, the war of attrition. In
that model, the contestants observe each other expending effort gradually up to the point where
the last contestant remaining is declared the winner. Since such a model does not have a symmetric
equilibrium for more than two players, we restrict to the two-player war of attrition, which is
equivalent to a second-price all-pay auction.3 We show that the unique symmetric equilibrium of

3See Klemperer and Bulow (1999) for the analysis of an N-player war of attrition with an appropriate modification
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this game can also be in non-monotone strategies. The structure of equilibrium is slightly different
in comparison to the (first price) all-pay auction. In the war of attrition, it is possible to have a non-
monotone equilibrium where the bidders with high valuations earn a strictly positive information
rent.

Besides equilibrium characterization, we examine which game induces the highest aggregate
effort. In the auction terminology, this is just the revenue comparison across the auction formats.
We determine a revenue ranking between the all-pay auction, war of attrition, and the standard
auction formats. Their ranking relies on the differences between the auction formats in how much
of the bidders’ rents they extract, and in how much of the surplus loss results from inefficient
allocations.

In models with monotone equilibria, only the rent extraction matters, and then the ranking
from Krishna and Morgan (1997) is maintained: war of attrition dominates the all-pay auction
which in turn dominates the standard formats. This result holds also for the mineral rights case of
the model where there is no allocative inefficiency. The revenue ranking is based on an unambigu-
ous ranking of bidder rents across the formats: standard auctions leave a higher rent to bidders
than all-pay auctions which leave a higher rent than the war of attrition.

When considering non-monotone equilibria in the affiliated private values model, the results
change. Since non-monotone equilibria inevitably result in an efficiency loss, the relevant compar-
ison is now between the induced inefficiencies and the changes in bidder rents. We show that with
two bidders, the ranking between all-pay auctions and standard auctions is as before. However,
the ranking between all-pay auctions and the war of attrition is ambiguous. For large numbers
of contestants, the efficiency losses in the non-monotone equilibrium of the all-pay auction out-
weigh the gain in reduced rents. After all, with large numbers of bidders, standard auctions are
competitive in the sense that the bidder rent vanishes in them as well whereas we show that the
inefficiencies in the all-pay auction remain.

Related Literature

The early literature of all-pay auctions and contests has focused on environments where bidders
have complete information about each bidder’s value of the object and cost of bidding. Examples
of such papers include Hillman and Riley (1989), Baye, Kovenock and de Vries (1993) and Che and
Gale (1998). Siegel (2009) provides a definitive treatment of this model by allowing heterogeneity
on the bidder’s characteristics. The recent survey paper by Kaplan and Zamir (2015) gives a
comprehensive picture of recent developments in the all-pay auction and contest theory.

Previous work on all-pay auctions with incomplete information about the valuations has
mostly concentrated on models with monotone equilibria. The symmetric model with private
values possesses a symmetric monotone equilibrium that can be derived using the revenue

that restores existence of equilibrium. Krishna and Morgan (1997) analyze a ”silent” (static) war of attrition model,
where the players do not observe each others’ actions during the game.
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equivalence theorem.4 An early contribution to the affiliated values model by Krishna and
Morgan (1997) derives sufficient conditions for the existence of a symmetric monotone equi-
librium in pure strategies. Unfortunately, the conditions are very strong and furthermore not
easily verified in terms of the primitives of the model. More recently Siegel (2014) analyzes an
asymmetric two-bidder game with a finite set of possible signals on the value of the prize, and
derives conditions for the existence of a monotone equilibrium in mixed strategies. His paper
also demonstrates rent-dissipation under perfect correlation, an effect that plays a key role in our
analysis also with less than perfect correlation. Lu and Parreiras (2017) analyzes the asymmetric
two-bidder game with a continuum signal structure, derives conditions for the existence of a
monotone pure-strategy equilibrium, and provides an example of non-monotonic equilibrium.

The most closely related paper to ours is Rentschler and Turocy (2016). Their paper goes be-
yond monotonic equilibria in a symmetric version of Siegel (2014) and provides an algorithmic
characterization for non-monotone equilibria. In contrast to that paper, we provide a full char-
acterization of the symmetric equilibria for a subclass of models featuring the binary structure of
signals and allow for any number of bidders. We also analyze the war of attrition with two players
and conduct revenue comparisons with other auction procedures.

Our paper is also related to auctions with entry costs. A recent paper by Murto and Välimäki
(2017) compares the expected revenue in first- and second-price common value auctions when
prior to the auction stage, the bidders make a costly entry decision. The connection to the current
non-standard auction forms comes from the observation that the total payment by losing bidders
is positive even in these standard auction formats once we account for the entry cost.

2. The Model

We consider a symmetric affiliated-values model with binary signals. A single indivisible object is
auctioned to one of N ≥ 2 risk-neutral bidders. Prior to bidding, each bidder i privately observes
a binary signal (or type) ti ∈ {L, H}. We order the signals H > L with the idea that H (the high
type) is good news about the value of the object for sale compared to L (the low type).

The signals are affiliated with a common unknown factor θ ∈ Θ = {θ1, · · · , θM}, which we call
the state of the world and arrange in order of θm−1 < θm. Specifically, the signals are identically
and independently distributed given θ. Due to the binary structure, we can represent the condi-
tional distribution of ti by vector (α1, · · · , αM) , where αm := Pr (ti = H | θm). Since ti and θ are
affiliated, αm is increasing in the index of the state m. Let q (θ) ∈ ∆ (Θ) denote the common prior
on the state. With a slight abuse of notation, we denote by q(θ|t) and qti(θ) the posterior belief
about the state given a vector of signals t and an individual signal ti, respectively.5

The value of the object to bidder i is determined by the informational variables introduced
above and denoted by vi (θ, t). We assume that the bidders are ex ante symmetric, and that the

4 In the two-bidder asymmetric environment where the revenue equivalence theorem is not applicable, Amann and
Leininger (1996) provides a characterization of equilibrium and also studies a hybrid auction which postulates that the
lower pays his bid and the winner pays a convex combination of the two bids.

5Bold notation will be used throughout the paper to represent vectors of signals, bids, and strategies.
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bidder i′s valuation depends only on θ and ti in the same manner:

vi (θ, t) = v (θ, ti) .

Our environment is therefore a binary signal version of the general symmetric affiliated model
formulated in Milgrom and Weber (1982). The most important special cases of our model are the
mineral rights model where v (θ, ti) = v (θ) and the affiliated private values model where v (θ, ti) =

vti . In addition, we assume that v (θ, ti) is log-supermodular in (θ, ti), increasing in each argument,
and strictly positive for all possible realizations of (θ, ti).6

Since the bidders are ex ante symmetric, and since their preferences are independent of others’
signals conditional on θ, all payoff-relevant information to bidder i is abbreviated to (ti, Yi), where
Yi indicates the number of opponents j 6= i who receive the high signal. Conditional on this
relevant information, the expected value to bidder i can be then written in a succinct way:

Vk (n) := Eθ

[
v (θ, ti) |Yi = n, ti = k

]
.

Since v is increasing and the signals are affiliated, Vk(n) is increasing in k and n. Using the same
notation as the expected value, let pk(n) := Pr(Yi = n |ti = k ) denote bidder i’s updated beliefs
about Yi after observing ti. Affiliation implies that pk(n) is log-supermodular.7

Within this informational model, we analyze auctions in which the highest bid wins and a
bidder’s payment depends only on the profile of bids b = (b1, · · · , bN). Formally, in auction Γ,
bidder i’s payment is XΓ

i (b) if he wins and XΓ
i (b) if he loses. As the actual submitted bid depends

on the type of a bidder, we represent a strategy of bidder i by a pair of cumulative distribution
functions Fi =

(
FL

i , FH
i
)
, where Fk

i (b) = Pr(bi ≤ b |ti = k ).
In an all-pay auction (Γ = A), a highest bidder wins the auction and all bidders forfeit their

bids.8 A war of attrition (W) is a two-player auction where a highest bidder wins and pays the
bid of the losing bidder while the losing bidder pays his own bid. We compare these two all-
pay auction formats to the standard first-price (FP) and second-price auctions (SP) where only the
winner is required to pay. In each auction format Γ ∈ {A, W, FP, SP}, the (ex post) payoff function

6The assumption of log-supermodular v(θ, ti) is trivially satisfied in the mineral rights model and in the affiliated
private values model.

7As discussed in the introduction, the state variable θ has different interpretations depending on the model. In the
mineral rights model, θ represents the true value of the object. In the affiliated private values model, θ corresponds to
a parameter that determines the true distribution of the bidder types. Compared to the reduced-form where bidder i’s
interdependent valuation is given by Vti (n), this state formulation plays two roles in our analysis of the all-pay auction
in Section 3. First, it allows us to do comparative static analysis on equilibrium with respect to the number of bidders,
without any changes in the underlying type distributions. Second, the state formulation equips our environment with
the single-crossing property (See Lemma 2) that is essential for a full characterization of equilibrium in Proposition 2.
Even in the reduced-form model, the characterization result holds so long as we keep the single-crossing property. See
our discussion subsequent to Lemma 2 and also Footnote 12.

8If multiple bidders submit the highest bid, we assume that the good is allocated with the standard tie-breaking
rule.

6



to bidder i conditional on all the information (θ, t) can be written as

ũΓ
i (b; θ, t) =

v(θ, ti)− XΓ
i (b) if wins

XΓ
i (b) if loses.

At the moment of bidding, bidder i neither observes the value of θ nor t−i. Based on the infor-
mation ti = k available to bidder i, his expected payoff from bidding an amount of b when his
opponents play according to the strategy F−i is written as

uΓ
i (b, k|F−i) = E

[
ũΓ

i (b; θ, t)
∣∣∣ ti = k, bi = b, b−i ∼ F−i

]
.

We analyze Bayes Nash equilibria of the auctions. Formally, a strategy profile F = (F1, · · · , FN)

constitutes an equilibrium of auction Γ if for each bidder i and each type k,

bi ∈ int
(

supp[Fk
i ]
)

implies bi ∈ argmax
b

uΓ
i (b, k|F−i) ,

where supp[Fk
i ] indicates the support of the bid distribution function Fk

i . The minimum and max-
imum element of supp[Fk

i ] will be denoted by Bk and Bk, respectively.9

We say that an equilibrium F is symmetric if all bidders with identical signals employ the same
bidding strategy: Fi = F∗ = (FL

∗ , FH
∗ ) for all i. Throughout the paper, we restrict attention to

symmetric equilibria and use the asterisk subscript for a symmetric equilibrium or equilibrium
payoff. Also, we say that a symmetric equilibrium F∗ is in monotone strategies if for any b ∈
supp[FL

∗ ] and b′ ∈ supp[FH
∗ ], we have b ≤ b′. In a monotone equilibrium, therefore, a high-type

bidder wins against low-type ones with probability one.
In a symmetric equilibrium, all bidders of the same type obtain the same expected payoff. We

denote by UΓ
∗ (k) the symmetric equilibrium payoff of type k in auction Γ and refer to it as the

information rent. Since all bids in the interior of supp[Fk
∗ ] must yield the same payoff to type k, we

have
UΓ
∗ (k) := uΓ

i (b, k|F∗) for every b ∈ int
(

supp[Fk
∗ ]
)

.

Lastly, we denote by ΠΓ
∗ the expected revenue from auction Γ accruing to the auctioneer in

a symmetric equilibrium. A standard way to compute the expected revenue is to subtract the
bidders’ aggregate rents from the total surplus generated by the auction. However, as we will
show in what follows, the auctions may entail different equilibrium allocations and therefore
different total surpluses. In order to deal with this issue, we first define Π as the expected total
surplus under the efficient allocation:

Π := P(0)VL(0) +
N

∑
n=1

P(n)VH(n− 1),

9Recall that the support of a probability distribution is defined as the smallest closed set with full measure. Hence
the two boundary points, Bk and Bk, are elements of supp[Fk

i ].

7



where P(n) indicates the probability of n = 0, · · · , N high-type bidders present in the auction. We
then subtract away the inefficiency loss and the bidders’ rents to compute the revenue. For the
former, observe that a misallocation occurs in our model when a low-type bidder outbids high-
type ones and leads to a surplus loss of VH (n− 1)−VL (n) when n ≥ 1 high types are present in
the auction. Hence we can express the expected surplus loss as

LΓ
∗ :=

N

∑
n=1

P(n)Pr(L wins |Γ, n )
(

VH (n− 1)−VL (n)
)

,

where Pr(L wins|Γ, n) represents the probability of the misallocation conditional on the number
of high types n in auction Γ. The bidders’ aggregate expected payoff can be expressed as as

UΓ
∗ =

N

∑
n=0

P(n)
(
(N − n)UΓ

∗ (L) + nUΓ
∗ (H)

)
.

With these definitions in hand, we can compute the expected revenue from auction Γ as

ΠΓ
∗ = Π − LΓ

∗ −UΓ
∗ .

Note that the term Π does not depend on the auction format. Therefore, we can examine the
performance of auctions by comparing the efficiency loss LΓ

∗ and the rents accruing to bidders UΓ
∗

across auction formats.
For the all-pay auction and the war of attrition, it may be more natural to interpret payments as

effort expended when competing for a prize. Hence the comparison of expected revenues can be
seen as comparison between expected aggregate effort. In a similar vein, the revenues in standard
auction formats (first- and second-price auctions) can be interpreted as commitments to effort
levels conditional on winning the contest.

2.1. Benchmark: Standard Auctions

As a benchmark case, we report here the equilibrium properties of the first- and second-price
auctions in our environment. We prove in the Online Appendix that both auction formats have a
unique symmetric equilibrium in monotone strategies. Furthermore, the two auction formats are
payoff equivalent.

Proposition 1. Both standard auctions have a unique symmetric equilibrium, which is in monotone strate-
gies. Specifically,

(FP) in the equilibrium of the first-price auction, the low type bids VL(0) and the high type draws a bid
according to an atomless distribution on [VL(0), E[v(θ, ti)|ti = H]− pH(0)(VH(0)−VL(0))];

(SP) in the equilibrium of the second-price auction, the low type bids VL(0) and the high type draws a bid
according to an atomless distribution on [VH(0), E[v(θ, ti)|ti = H, Yi ≥ 1]].

8



In both auction formats, the low-type bidders earn no rent but the high-type bidders earn a positive rent of
pH (0) (VH(0)−VL (0)).

Proof. The proof of Proposition 1 can be found in the Online Appendix.

Since all bidders receive the same symmetric equilibrium payoff in both auctions, we shall
use the same superscript S for standard auctions when describing bidders’ rent and seller’s rev-
enue. Utilizing the payoff equivalence result, we can compute the aggregate information rents
appropriated by the bidders in the standard auctions as follows:

US
∗ =

N

∑
n=0

nP(n)US
∗ (H) = P(1)

(
VH(0)−VL(0)

)
.

The last expression can be derived from the fact that by the law of iterated expectation
pH(0)∑N

n=0 nP(n) = P(1) and that by bidding the lowest bid of his equilibrium sup-
port in the second-price auction, a high-type bidder can secure an expected payoff of
US
∗ (H) = pH(0) [VH(0)−VL(0)].

Another implication of Proposition 1 is that as both standard auctions have a unique symmet-
ric equilibrium in monotone strategies, there is no surplus loss from misallocation, i.e., LS

∗ = 0.
Hence we can compute the expected revenue from the standard auctions as follows:

Corollary 1. Both standard auctions are equivalent in terms of the expected revenue accruing to the auc-
tioneer:

ΠS
∗ = Π − P(1)

(
VH(0)−VL(0)

)
.

It is worth nothing that the revenue equivalence result is specific to the binary signal struc-
ture.10 When we allow a richer signal space, it follows from the linkage principle (Milgrom and
Weber (1982)) that the second-price auction results in a higher expected revenue than the first-
price auction.

3. All-pay Auction

In a first-price all pay auction, all bids are forfeited by the bidders regardless of the outcome:
XA

i (b) = XA
i (b) = bi for all i.

3.1. Equilibrium Characterization

We begin our analysis with two observations providing necessary conditions for any symmetric
equilibria F∗ in the all-pay auction. First, there cannot be atoms in the bid distribution. If Fk

∗ has
an atom at bid b, i.e., if the probability of winning jumps up at b, then a type-k bidder could raise
the expected payoff by bidding slightly more than b. Second, the union of the two bid supports,

10Within the two-bidder binary private-value model, Maskin and Riley (1985) have shown that revenue equivalence
holds between the first- and second-price (equivalently, the open ascending price) auctions.
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supp[FL
∗ ] ∪ supp[FH

∗ ], should be an interval starting at zero with no internal gaps. If no bidders
make a bid between b1 and b2 > b1, the bidder who submitted b2 could extenuate his payment by
deviating to b1 without any changes in the probability of winning.

Lemma 1. In every symmetric equilibrium F∗ = (FL
∗ , FH

∗ ) of the all-pay auction, the following properties
hold:

1. For each type k = L, H, Fk
∗ is continuous, i.e., neither distribution has mass points.

2. supp[FL
∗ ] ∪ supp[FH

∗ ] is a connected interval that includes zero.

Suppose that bidder i observes ti = k and makes a bid of b ≥ 0 against his opponents who
each employ a symmetric equilibrium strategy F∗. An implication of Lemma 1 is that bidder i’s
expected payoff is continuous at his bid b and thus is written as

uA (b, k|F∗) := −b +
N−1

∑
n=0

Vk(n)pk(n)
[

FH
∗ (b)

]n [
FL
∗ (b)

]N−n−1
. (1)

To interpret, Vk(n) represents the expected value of the object to the bidder conditional on win-
ning against Yi = n high-type opponents, and

[
FH
∗ (b)

]n [FL
∗ (b)

]N−n−1 indicates the corresponding
probability of winning the auction.

The bulk of the literature on all-pay auctions has concentrated on monotone equilibria in which
the high-type bidders always outbid the low-type ones. We provide a simple condition under
which this is the case in our binary model. We also characterize the non-monotone equilibrium
that arises when this monotonicity condition is violated. The simple information structure enables
us to give a full characterization of a symmetric equilibrium in either case and to establish its
existence and uniqueness.

For this purpose, we define a real-valued function ψ by ψ(n) := VH(n)pH(n)− VL(n)pL(n).
Given the number of high-type opponents being n, the defined function measures the increment in
the value of Vk(n)pk(n) in response to a change of bidder i’ type from k = L to H. We demonstrate
that under the assumptions we made in the previous section, ψ(n) changes its sign at most once
from negative to positive. This single-crossing property plays a central role in our equilibrium
analysis. In particular, the property ensures that each of the bidding supports in F∗ is a connected
interval, as is shown in the proof of Proposition 2.

To see how the sign of ψ changes over n, observe that VH(n) ≥ VL(n) for every n and pH(N −
1) > pL(N − 1) due to affiliation, implying that ψ(N − 1) > 0 at least. In case of two bidders,
therefore, the single-crossing property holds trivially.11 For the general case, affiliation implies
that pH(n)/pL(n) is increasing in n, and hence ψ is single-crossing unless the ratio VH(n)/VL(n)
decreases sharply over some range of n. In fact, our assumption of log-supermodular v(θ,ti)

11Accordingly, in the two-bidder case, we can abstract away several assumptions on the primitive model, such as
the conditional independence of types on θ and the log-supermodularity of v(θ, ti). For more than two bidders, our
analysis and subsequent results can be extended to the general symmetric interdependent valuations, as long as ψ is
single-crossing.
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precludes the possibility of decreasing VH(n)/VL(n). Since log-supermodularity is preserved by
integration (Karlin and Rinott (1980)), the assumption leads to log-supermodular Vk(n) and thus
the desired property of ψ follows.12

Lemma 2. If the bidder’s valuation v (θ, ti) is log-supermodular, then ψ(n) is single-crossing.

Proof. See Appendix A.1.

The next proposition establishes the uniqueness of a symmetric equilibrium F∗, provides a
necessary and sufficient condition for F∗ to be in monotone strategies, and characterizes both
monotone and non-monotone equilibria.

Proposition 2. The all-pay auction has a unique symmetric equilibrium F∗, which is monotonic if and
only if ψ(0) ≥ 0. Specifically,

(i) If ψ(0) ≥ 0, then F∗ has the two bidding supports connected and non-overlapping:

supp[FL
∗ ] = [0, VL(0)pL(0)] and supp[FH

∗ ] = [VL(0)pL(0), BH ] for some BH > VL(0)pL(0).

(ii) If ψ(0) < 0, then F∗ has the two bidding supports connected and fully overlapping:

supp[FL
∗ ] = [0, BL] and supp[FH

∗ ] = [0, BH ] for some 0 < BL < BH.

Consequently, the low-type bidders earn no rent UA
∗ (L) = 0 in both types of equilibria, whereas the high-

type bidders earn a rent of UA
∗ (H) = max {0, ψ (0)}.

Proof. See Appendix A.2.

Proposition 2 tells us that it hinges upon the sign of ψ(0) whether the unique equilibrium is
monotone or not. By Lemma 2, ψ(0) ≥ 0 implies ψ(n) ≥ 0 for all n which in turn ensures that for
a fixed bid, the high type obtains a higher expected gain of winning than the low type, regardless
of the number of high-type opponents. For this reason, the event ti = H becomes unambiguously
good news relative to ti = L in our model. To understand better why this results in a monotone
equilibrium, consider a monotone bidding strategy F∗ where the low type randomizes over [0, BL]

and the high type randomizes over [BH, BH ] with BH ≥ BL. For F∗ to be an equilibrium, the union
of the two bidding supports should form a connected interval by Lemma 1, and thus BH = BL.
Furthermore, the high type must make a non-negative payoff by bidding BL, for otherwise she
would deviate to making a bid of zero. By bidding zero, the low type never wins and hence
his expected payoff should be zero. On the other hand, by bidding BL, the low type wins with
probability pL(0) (that is, when all of his opponents are of low type) and receives a payoff of VL(0)

12To see one example where ψ does not satisfy the single-crossing property, consider Vk(n) = α1{k=H}+ (1− α)n+ ε,
where ε > 0 is a sufficiently small constant and α ≥ 1

2 and 1{k=H} is the indicator function of the event that ti = k. Then
the ratio VH(n)/VL(n) drops drastically, especially when n increases from 0 to 1. As a result, if pH(0)/pL(0) > ε/(α+ ε)
but pH(1)/pL(1) < (1− α + ε)/(1 + ε), then we have ψ(0) > 0 but ψ(1) < 0.
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1

BH
0 VL(0)pL(0)

FL
∗ (b)

FH
∗ (b)

(a) monotonic equilibrium when ψ(0) ≥ 0

1

BH
0 BL

FL
∗ (b)

FH
∗ (b)

(b) non-monotonic equilibrium when ψ(0) < 0

Figure 1: Symmetric equilibrium in case of two bidders

so that his expected gain is VL(0)pL(0). Equating this gain with his bid so as to guarantee the same
expected payoff from bidding zero, we have

BL = VL(0)pL(0).

Consider next the high-type bidder’s incentives. By making bid BL, the high type wins with
probability pH(0) and receives a payoff of VH(0). Therefore, BL yields a non-negative payoff to
the high type iff VH(0)pH(0) ≥ BL, or iff ψ(0) ≥ 0. This demonstrates that ψ(0) ≥ 0 is a necessary
condition for the monotone strategy F∗ to constitute an equilibrium. Conversely, the condition
is also sufficient for F∗ to be monotonic. Specifically, it can be shown that if ψ(0) ≥ 0, then the
bidder’s expected payoff function uA(b, k|F∗) in (1) exhibits strictly increasing differences in (b; k)
for all F∗ satisfying the two properties of Lemma 1. This notion of complementarity results in the
unique symmetric equilibrium being monotonic.

Figure 1 displays the different types of equilibria in two-bidder case. The left panel shows the
monotonic equilibrium that arises when ψ(0) ≥ 0, which is qualitatively similar to the equilibrium
in an all-pay auction with independent private values. In this equilibrium, each bidder competes
against bidders of her own type and a bid of zero is in the support of the low type only. As a result,
the low type makes no positive rents whereas the high type earns a positive rent. Since the net
profit of increasing a bid by ∆ must be constant within each support, and since the corresponding
benefit and cost are additively separate in the all-pay auction, the equilibrium bid distributions
must be uniform on the support of each type.

The right panel of Figure 1 displays a non-monotonic equilibrium. It is worthwhile to note
that in this type of equilibrium, the two bidding supports are fully overlapping and both include
the bid of zero. As an immediate consequence, the equilibrium involves full rent dissipation. This
is in sharp contrast with the standard result in allocation problems under asymmetric information
that due to informational advantages (and privacy), the arrival of good news leaves a positive rent
to agents. To grasp the underlying intuition, observe that the payoff function is linear in the choice
variable b. In order to satisfy the indifference condition within a support, the winning probability
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must change linearly in bids due to the uniform all-pay rule. Hence the bidder’s best response has
the bang-bang property: if the bid BL on the boundary between the bid supports does not yield a
non-negative payoff to a high-type bidder, then she would respond by bidding zero.

We conclude this section by analyzing which type of equilibrium we should expect as the
number of participants N increases. To this end, we rewrite the monotonicity condition ψ(0) ≥ 0
as

VH (0)
VL (0)

≥ pL (0)
pH (0)

. (2)

It is immediate from (2) that in case of independent types, the ratio pL(0)/pH(0) is equal to one
regardless of N, so the unique symmetric equilibrium is monotone even when a large number of
bidders compete in the auction. However, since pL(0) approaches zero in the limit as N → ∞, the
length of supp[FL

∗ ] = [0, VL(0)pL(0)] shrinks to zero and thus only the high types submit nonzero
bids.

To examine how correlated types affect the form of equilibrium, consider first the mineral
rights model where the bidder’s common valuation depends only on θ. In this model, the impact
of an individual’s signal on the value of the object naturally diminishes as N grows, and hence
the ratio VH(0)/VL(0) on the left-hand side of (2) converges to one. On the other hand, the ratio
pL(0)/pH(0) on the other side converges to qL(θ1)/qH(θ1), where qk(θ1) ≡ Pr(θ = θ1|ti = k),
i.e. the likelihood ratio of the lowest possible state across the two types. Intuitively, only the
lowest state θ1 matters for the ratio pL(0)/pH(0) as N → ∞, in the sense that the likelihood of
Yi = 0 reduces to zero at a higher rate in all other states. Let pH = ∑M

m=1 q(θm)αm denote the
unconditional prior probability of getting a high signal. By Bayes’ rule,

qL(θ1)

qH(θ1)
=

1− α1

α1
· pH

1− pH
> 1,

where the last inequality follows from pH > α1. As a result, the inequality in (2) is violated as
N → ∞, showing that the equilibrium tends to be non-monotone for large N.

With affiliated private values, the left-hand side of (2) is constant at vH/vL > 1. In the proof of
Proposition 3, we show that the right-hand side is increasing in N with limit qL(θ1)/qH(θ1) > 1.
Consequently, which type of equilibrium arises for large N hinges upon the comparison of vH/vL

and qL(θ1)/qH(θ1). The following proposition summarizes our discussion.

Proposition 3. Fix the information structure 〈q, (α1, · · · , αM)〉 and the bidder’s valuation v(θ, ti). The
unique symmetric equilibrium F∗ satisfies:

† In the mineral rights model, there exists a N < ∞ such that F∗ is non-monotonic for all N > N.

‡ In the affiliated private value model, if vHqH(θ1) > vLqL(θ1), then F∗ is monotonic for all N.
Otherwise, there exists a N̂ such that F∗ is non-monotonic for all N > N̂.

Proof. The proof of Proposition 3 can be found in the Online Appendix.
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3.2. Revenue Properties

We now turn to the revenue and efficiency properties of the equilibrium. We want to contrast the
allocation and expected total revenue in the unique equilibrium of the all-pay auction to those of
the standard auction formats.

Propositions 1 and 2 characterize the unique symmetric equilibrium in standard auctions and
all-pay auctions, respectively. In both auction procedures, the low-type bidders get no rent as
expected, whereas the high-type bidders obtain a positive rent. For a comparison, observe that

pH (0) (VH(0)−VL (0)) > pH (0)VH (0)− pL (0)VL (0) = ψ (0) ,

where the inequality follows from pL(0) > pH(0). This means that compared to the all-pay
auction, the standard auctions give away a higher rent to the high type: US

∗ (H) > UA
∗ (H). It

leads us to the following lemma:

Lemma 3. The expected rent accruing to bidders is strictly higher in the standard auction formats than in
the all-pay auction, US

∗ > UA
∗ .

We next turn to the comparison of allocations across the auction formats. Since the equilibrium
in the standard auctions is in monotone strategies, it induces the efficient allocation. In contrast, in
the all-pay auction the equilibrium may be non-monotonic in the sense that the bidding supports
of the two types overlap. In such a case, there is a positive probability that a low type wins even
when high-type bidders are present, thereby leading to an inefficient allocation.

Nevertheless, there are two situations where the all-pay auction achieves allocative efficiency.
First, when ψ(0) ≥ 0, the equilibrium is monotone by Proposition 2. As seen in (2), this is the case
when VH(0)

VL(0)
is large in comparison to pL(0)

pH(0)
, in other words, when the effect of own signal on the

estimated value is large in comparison to the affiliation effect. Second, if the informational type of
the winner does not matter for efficiency, then even a non-monotone equilibrium leads to efficient
allocation. This is the case in the mineral-rights model.

Whenever auctions yield an efficient allocation in equilibrium, the task of comparing revenues
from these auctions is equivalent to that of comparing the rents accruing to each type of bidders.
The next result is thus immediate from Lemma 3:

Proposition 4. If the equilibrium allocation is efficient in the all-pay auction, then the revenue to the seller
is higher in the all-pay auction than in the standard auctions. This is the case if either:

• v (θ, ti) = v (θ) (Mineral rights model) or

• ψ (0) ≥ 0 (Monotonic equilibrium).

Note that the second case in the proposition corresponds to the result obtained in Krishna and
Morgan (1997), which analyzes the symmetric interdependent values model under a continuum
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signal space but under a parameter restriction that rules out non-monotonic cases.13

The revenue comparison becomes more tricky when the all-pay auction features allocative
inefficiency. This is the case when v (θ, ti) also depends on ti and ψ (0) < 0. We know from Propo-
sition 2 that whenever ψ (0) < 0, the bidders’ rents are fully dissipated. In this case, therefore, the
revenue comparison boils down to comparing the revenue loss due to inefficient allocation in the
all-pay auction and the revenue loss due to bidders’ rents in the standard auctions.

To illustrate this comparison, consider first the two-bidder case in which the inefficient allo-
cation occurs only when one low and high type compete against each other. Denote by P(1) the
probability of the event that only one high type is present in the auction. The misallocation indeed
occurs when the low type outbids the high type, which takes place with probability Pr(bL > bH)

in the non-monotonic equilibrium, resulting in a reduction of the total surplus by VH(0)−VL(1).
The expected revenue loss due to the inefficiency in the all-pay auction can therefore be written as

P(1)
(
VH(0)−VL(1)

)
Pr(bL > bH).

On the other hand, the revenue loss in the standard auctions arising from information rents given
up to the high type amounts to

P(1)
(
VH(0)−VL(0)

)
.

This is clearly strictly larger than the loss in the all-pay auction because VL(1) ≥ VL(0) and
Pr(bL > bH) < 1. Accordingly, in the two-bidder case, the all-pay auction outperforms the stan-
dard auctions even when monotonicity fails. We summarize the above discussion in the following
proposition.

Proposition 5. With two bidders, the all pay auction generates a higher expected revenue than the standard
auction formats.

When there are more than two bidders and valuations have a private component, the com-
parison is less straightforward. We compare the expected revenues next in the case where the
number of bidders grows large. As is intuitively clear, the bidders’ information rents vanish
due to increased competition as N → ∞, irrespective of the auction format. However, as we
showed in Proposition 3, whenever vHqH (θ1) < vLqL (θ1), the equilibrium of the all-pay auction
remains non-monotonic even for large N. It turns out that whenever this is the case, there is a non-
negligible probability that a low type wins the auction even for arbitrarily large N. This implies
an efficiency loss and reverses the revenue ranking result of Proposition 5 for large N.

Proposition 6. In the case of affiliated private values (i.e. v (θ, ti) = vti ), two cases arise:

• If vHqH (θ1) ≥ vLqL (θ1), then the revenue is higher in the all-pay auction than in the standard
auctions for all N ≥ 2.

13More precisely, Krishna and Morgan (1997) compares the first-price auction with the all-pay auction in terms of the
expected revenue in the (unique) monotone symmetric equilibrium, and shows that the all-pay auction outperforms.
The revenue ranking between the all-pay auction and the second-price auction is ambiguous.
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• If vHqH (θ1) < vLqL (θ1), then the revenue is higher in the standard auctions than in the all-pay
auction for N sufficiently large.

Proof. The proof of Proposition 6 can be found in the Online Appendix.

4. War of Attrition with Two Players

In this section we study a two-player dynamic contest, the so-called war of attrition where two
bidders decide at each point of the game whether to stay in the game for an incremental unit of
length dt at a cost of dt or to drop out. The game ends when one of the two players drops out, and
the other player wins the contest. As is well-known, this contest can be modeled as a second-price
all pay auction with payment rules, Xi (b) = bj and Xi (b) = bi. With more than two players,
the standard (dynamic) war of attrition where the players observe each others’ actions during the
game has no symmetric equilibrium. Thus, we restrict our attention in this section to a two-player
game. The informational structure is exactly the same as before.

4.1. Equilibrium Characterization

To begin, we make a small change in the notation suited for a two-player game. For a realization
of binary types (ti, tj) = (k, m), denote by Vk(m) the expected value of the object to bidder i and
by pk(m) ≡ Pr(tj = m|ti = k) the bidder i’s posterior belief about tj given his signal. Also, define
the product of Vk(m) and pk(m) by ϕk(m) := Vk(m)pk(m). That is, we use bidder i’s opponent’s
type as the main argument instead of the number of high-type opponents for analysis of the war
of attrition. To avoid confusion, observe that tj = L corresponds to Yi = 0 and tj = H corresponds
to Yi = 1.

Let G∗ = (GL
∗ , GH

∗ ) be a symmetric strategy profile in the war of attrition, where for each type
k, Gk

∗(b) = Pr (bi ≤ b |ti = k ) represents the cumulative distribution function for bids. Analogous
to the all-pay auction, any symmetric equilibrium G∗ must satisfy the two properties stated in
Lemma 1. As a result, we can disregard the event of a tie and write bidder 1’s expected payoff
function as follows:

uW(b, k|G∗) = E
[
(Vt1(t2)− b2) 1{b2≤b} − b 1{b2>b}

∣∣∣ t1 = k, b2 ∼ G∗
]
. (3)

The following argument presents equilibrium conditions characterizing G∗. Consider a bid
increment for bidder i with ti = k from b to b + ∆ within the interior of supp[Gk

∗]. This increment
affects bidder i’s payoff only when bj ≥ b, and bidder i must be indifferent between those two
bids. Conditional on ti = k and bj ∼ G∗, the probability of the event that bidder j with tj = m
places a bid bj ∈ [b, b + ∆] is

pk (m) gm
∗ (b)∆

1− pk (L) GL
∗ (b)− pk (H) GH

∗ (b)
,
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Figure 2: Phase plane diagram of the symmetric equilibrium in the three different cases.

and the value from winning the contest to bidder i is Vk(m). Hence, if b is in the support of type k
but not in the support of type m 6= k (so that gm

∗ (b) = 0), the following condition that equates the
marginal cost and benefit from the bid increment must hold:14

ϕk(k)gk
∗ (b)

1− pk (L) GL
∗ (b)− pk (H) GH

∗ (b)
= 1. (DE-1)

Therefore, when b is not in the support of type m 6= k, the equilibrium condition (DE-1) is given
by a linear first-order differential equation for Gk

∗ (b).
On the other hand, when the bid b is in the support of both types, the corresponding indiffer-

ence conditions must hold respectively for the two types:

ϕL (L) gL
∗ (b) + ϕL (H) gH

∗ (b)
1− pL (L) GL

∗ (b)− pL (H) GH
∗ (b)

= 1,

ϕH (L) gL
∗ (b) + ϕH(H)gH

∗ (b)
1− pH (L) GL

∗ (b)− pH (H) GH
∗ (b)

= 1.

(DE-2)

Consequently, when the two bid supports are overlapped, the equilibrium is characterized by a
system of linear differential equations.

With these conditions in hand, we can construct the symmetric equilibrium of the game in the
following manner. We start from b = 0 with the initial condition GL

∗ (0) = GH
∗ (0) = 0, and then

derive the bid distributions from either (DE-1) or (DE-2), depending on whether or not (DE-2)

14Notice that whenever bj ∈ [b, b + ∆], the true cost bj is within ∆ from b + ∆ and hence the added cost is approxi-
mated by ∆ .
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Figure 3: Equilibrium bid distributions with private values: VH = 2 and VL = 1. The correlation
in signals is given by pH(H) = pL(L) = γ and pH(L) = pL(H) = 1− γ, where γ = 0.55, 0.65, and
0.75 in the left, center, and right panels, respectively.

yields a valid solution satisfying
(

gL
∗ (b) , gH

∗ (b)
)
� 0. Figure 2 illustrates the equilibrium con-

struction in the phase plane diagram. It turns out that depending on the primitives of the model,
the unique symmetric equilibrium takes one of three different forms as is displayed in Figure 2.
This corresponds to three possible equilibrium configurations for the bid supports summarized
in Proposition 7 below. The details of the construction and the closed-form solutions for the bid
distributions are given in the proof, which is relegated to Appendix A.3. To characterize the equi-
librium, we define λ := pH(H)/pL(H) > 1.

Proposition 7. The war of attrition has a unique symmetric equilibrium G∗ with the following properties.

(i) If ϕH(L) ≥ λϕL(L), then the equilibrium is in monotone strategies: supp[GL
∗ ] = [0, BL] and

supp[GH
∗ ] = [BH, ∞) with BL = BH.

(ii) If ϕH(L) ∈ [ϕL(L), λϕL(L)), then supp[GL
∗ ] = [0, BL] and supp[GH

∗ ] = [BH, ∞) with BL >

BH > 0. That is, the two supports are partially overlapping.

(iii) If ϕH(L) < ϕL(L), then supp[GL
∗ ] = [0, BL] and supp[GH

∗ ] = [0, ∞).

Proof. See Appendix A.3.

Figure 3 displays the equilibrium bid distributions in the three different cases. These figures
are drawn in the case of affiliated private values with different degrees of correlation between the
signals. For fixed valuations, the form of the unique equilibrium changes from the case (i) to (ii)
and (iii) as the signals become more strongly affiliated.

It is instructive to compare the symmetric equilibrium of the war of attrition and the all-pay
auction. In the all-pay auction with two bidders, the monotonicity condition ψ(0) ≥ 0 can be
expressed as ϕH(L) ≥ ϕL(L) in our current notation. Hence the monotonicity condition identified
in Proposition 7 guarantees the existence of a monotone equilibrium in the all-pay auction, which
is consistent with Krishna and Morgan (1997).

18



In addition to the monotonicity condition, the two auction formats exhibit qualitative differ-
ences. In the all-pay auction, there are only two different support configurations: either the equi-
librium is monotonic (the case corresponding to (i) in Proposition 7) or the supports are fully
nested (the case corresponding to (iii)). In Figure 2, the dotted line corresponds to the non-
monotone equilibrium of the all-pay auction. The case (ii), where the two supports are partially
overlapping, is hence a distinguishing feature of the war of attrition.

In contrast to the all-pay auction, the indifference condition of the war of attrition results in
a constant hazard rate for bids rather than a constant density within each type’s bid support,
and this gives rise to a more restrictive monotonicity condition. For an illustration, consider a
monotone bidding strategy. Substituting k = L and b = BL (i.e., GH

∗ (BL) = 0) into the equilibrium
condition (DE-1) yields

gL
∗ (BL) =

1− pL(L)
ϕL(L)

. (4)

To rule out local deviations below BL by the high type, we must have:

gL
∗ (BL) ≥

1− pH(L)
ϕH(L)

,

which, along with (4), gives the condition of case (i) in Proposition 7: ϕH(L) ≥ λϕL(L).

4.2. Revenue Properties

We now compare the expected revenue from the war of attrition to that from the all-pay auction
and standard auctions. As in the all-pay auction, the symmetric equilibrium of the war of attrition
is not always in monotone strategies. Hence for a revenue comparison, we analyze how the
bidders’ rents and allocative inefficiencies differ across the auction formats.

We first consider the bidders’ expected rent in the war of attrition. Since a bid of zero belongs
to supp[GL

∗ ] in all of the cases in Proposition 7, low types earn no rents in any equilibrium. On the
contrary, the rents given up to the high type vary with the form of G∗. To handle the three cases in
one go, consider the lowest bid of supp[GH

∗ ], denoted BH. Since the union of the two bid supports
has no gaps, the low type must be indifferent between bidding zero and BH. This indifference
condition provides an alternative expression of BH. Setting up uW(BH, L|G∗) = 0 from (3) and
then solving for BH gives us

BH = pL(L)
[

VL(L)GL
∗ (BH) +

∫ BH

0
GL
∗ (x)dx

]
. (5)

We then derive the formula for the information rent of the high type by computing the expected
payoff uw(BH, H|G∗) from (3):

UW
∗ (H) = −BH + pH(L)

[
VH(L)GL

∗ (BH) +
∫ BH

0
GL
∗ (x)dx

]
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= GL
∗ (BH)

[
ϕH(L)− ϕL(L)

]
− (pL(L)− pH(L))

∫ BH

0
GL
∗ (x)dx, (6)

where we used (5) to obtain the second expression. This expression holds for all three cases of
Proposition 7, where the low type’s equilibrium bid distribution at BH must satisfy

GL
∗ (BH)


= 0 if ϕH(L) < ϕL(L)

∈ (0, 1) if ϕH(L) ∈ [ϕL(L), λϕL(L))

= 1 if ϕH(L) ≥ λϕL(L).

The bidder’s rent in the all-pay auction is given in Proposition 2. Translated to our current
two-bidder notation, the rent of the high type can be written

UA
∗ (H) = max {0, ϕH (L)− ϕL (L)} . (7)

Comparing (6) and (7), we obtain the following result:

Lemma 4. The war of attrition leaves a lower rent to the bidders than the all-pay auction. This holds
strictly whenever the rent in the all-pay auction is non-zero.

Combining Lemmas 3 and 4, we have:

Corollary 2. The war of attrition leaves a strictly lower rent to the bidders than the standard auctions.

We next compare the probability of misallocation between the two all-pay auctions. For this
purpose, we investigate the equilibrium path in the (GL

∗ (b), GH
∗ (b)) phase plane as a function of

b ∈ [0, ∞). The curve marked as WOA in Figure 4 shows the equilibrium path of the war of
attrition in the case (iii) of Proposition 7 (the parameters are the same as those used in Figures 2
and 3), that is, when the two bid supports are fully overlapped.

By subtracting the two equations of (DE-2), it can be shown that the low-type bidders drop out
from the game with a higher hazard rate in equilibrium. This in turn implies that the ratio of the
winning probabilities against the two bidder types, GH

∗ (b) /GL
∗ (b), is increasing in b. As a result,

the equilibrium path (GL
∗ (b), GH

∗ (b)) bends upwards until the parametric bid b reaches BL, where
GL
∗
(

BL
)
= 1. Figure 4 also displays the corresponding path (FL

∗ (b), FH
∗ (b)), marked as APA, in

the all-pay auction with the same parameter values. This curve has the same slope at the origin,
but as argued in the previous section, it is actually linear.

Consider next the probability of misallocation. Conditional on one bidder having a low signal
and one having a high signal, we are interested in the probability of the low type winning the
auction. Using the change of variables, the probability can be written as:

∫ BL

0
GH
∗ (b)

dGL
∗ (b)
db

db =
∫ 1

0
GH
∗ (β) dβ,

which is just the area under the equilibrium path illustrated by shaded regions in Figure 4. The
probability of misallocation in the case of the all-pay auction is given by the light shaded area
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Figure 4: Probability of misallocation: war of attrition vs. all-pay auction

while in the war of attrition it is given by the sum of the two shaded areas. We can hence conclude
that the probability of misallocation is higher in the case of the war of attrition and we have an
unambiguous ranking of the auction formats in terms of their efficiency:

Lemma 5. The probability of an inefficient allocation is higher in the war of attrition than in the all-pay
auction. Consequently, we have

LW
∗ ≥ LA

∗ .

The inequality is strict whenever the probability of misallocation is non-zero in the war of attrition.

Proof. See Appendix A.4.

With the series of lemmas above in hand, we can compare the expected revenue from the war of
attrition to that from the other auction formats. Recall that the revenue from auction Γ ∈ {A, W, S}
can be decomposed as

ΠΓ
∗ = Π− LΓ

∗ −UΓ
∗ ,

where the superscript Γ refers to the all-pay auction (A), war of attrition (W), or standard first- or
second-price auctions (S), respectively. We start by comparing the war of attrition to the standard
auctions. Note that the standard auctions are always efficient, so that LS

∗ = 0. Therefore, the
revenue comparison boils down to the comparison between the rent in the standard auction, US

∗ ,
and the sum of bidder rent and inefficiency loss in the war of attrition, UW

∗ + LW
∗ . We show in

the appendix that the former always outweighs the latter, and thus the war of attrition is revenue-
superior to the standard auctions.

Proposition 8. The war of attrition raises a higher expected revenue than the standard auctions.
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Proof. See Appendix A.5.

We now move to the comparison between the war of attrition and the all-pay auction. Let
us first consider the special case of common values, where VH (L) = VL (H) so that the ex post
value of the object is the same to every bidder. Then the allocation is always efficient and the rent
comparison boils down to comparing the efficiency loss between the auction formats. Lemma 5
above gives LW

∗ ≥ LA
∗ , so we have immediately:

Proposition 9. In the mineral-rights model (i.e. when VH (L) = VL (H)), the symmetric equilibrium
of the war of attrition generates a higher expected revenue than the symmetric equilibrium of the all-pay
auction.

When VH(L) > VL(H), we have to take into account the surplus loss from allocative inef-
ficiency as well as information rents. Note that by Lemma 4 the information rent aspect fa-
vors the war of attrition, while by Lemma 5 the efficiency aspect favors the all-pay auction. If
ϕH(L) − ϕL(L) ≤ 0, then both auction formats dissipate all the bidder rents, so that the more
severe inefficiency of the war of attrition implies higher revenues for the all-pay auction. If
ϕH(L) − λϕL(L) ≥ 0, then both auction formats have a monotonic equilibrium with no alloca-
tive inefficiencies, and hence the more effective rent dissipation by the war of attrition generates
higher revenue. Note that this latter finding is in full accord with the revenue ranking results in
Krishna and Morgan (1997).

There is also a range of parameters ϕH(L) ∈ [ϕL(L), λϕL(L)) where the war of attrition in-
volves overlap in bidding supports but the symmetric equilibrium of the all-pay auction is effi-
cient. In this range, allocative efficiency favors the all-pay auction, whereas the rent for the high
type favors the war of attrition. At one end of the parameter range (where ϕH(L)− ϕL(L) is pos-
itive but close to zero), rents in both mechanisms vanish, and hence the inefficiency of the war of
attrition dominates revenue comparison. At the other end of the parameter range (where ϕH(L)
approaches λϕL(L) from the left), the inefficiency of the war of attrition disappears and the bidder
rent difference relative to the all-pay auction dominates.

Proposition 10. If VH (L) > VL (H), the revenue ranking between the symmetric equilibria of the war of
attrition and the all-pay auction is ambiguous. In particular, the all-pay auction generates a strictly higher
expected revenue than the war of attrition when φH(L)− φL(L) ≤ 0, whereas the war of attrition generates
a strictly higher expected revenue than the all pay auction when φH(L)− λφL(L) ≥ 0.

Proof. See Appendix A.6.

5. Conclusions

Correlation in signals causes problems for the existence of monotone equilibria in all-pay auctions.
This limits seriously the scope of the traditional analysis based on auction theoretic arguments. In
a simple model with two types of bidders, we show that the non-existence of monotone equilibria
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has significant implications for the efficiency of allocations. We show that even if we let the
number of players be arbitrarily large, the allocation may be inefficient when the bidders have
affiliated private values.

We hope our findings in this simple setting inspires further work in related models. In ad-
dition to exploring richer informational models, further research should address contests with
multiple prizes as well as contests with less extreme outcome functions and study efficiency and
information aggregation in such environments.

A. Omitted Proofs

A.1. Proof of Lemma 2

To show that ψ(n) = VH(n)pH(n)− VL(n)pL(n) is single-crossing, it is sufficient to establish the
log-supermodularity of Vk(n)pk(n) in k and n. We know that pk(n) is log-supermodular by the
monotone likelihood ratio property. Hence we need to show only that Vk(n) is log-supermodular.
Since

Vk (n) = Eθ

[
v (θ, ti)

∣∣∣Yi = n, ti = k
]
,

and since we have assumed the log-supermodularity of both v (θ, ti) and p (θ, t) , the result follows
from the fact that log-supermodularity is preserved by integration and multiplication (See Karlin
and Rinott (1980)). �

A.2. Proof of Proposition 2

We shall prove this result through a series of lemmas. The first lemma shows that in any symmetric
equilibrium the low-type bidder earns a payoff of zero. This result follows from the fact that the
function ψ takes a positive value at N − 1.

Lemma A.1. In any symmetric equilibrium F∗, 0 ∈ supp[FL
∗ ] and as a consequence the low-type bidders

earn no rents.

Proof. Suppose to the contrary that BL ≡ min
(
supp[FL

∗ ]
)
> 0. Then by Lemma 1, we must have

0 ∈ supp[FH
∗ ] and FH

∗ (BL) > 0. Since the high type is then indifferent between bidding zero and
BL, we can derive an alternative expression of BL as follows:

uA(BL, H|F∗) = 0 =⇒ BL = VH(N − 1)pH(N − 1)
(

FH
∗ (BL)

)N−1
,

where we used FL
∗ (BL) = 0. Using this expression, we compute the expected payoff from bidding

BL to the low type, to obtain

uA(BL, L|F∗) = −BL + VL(N − 1)pL(N − 1)
(

FH
∗ (BL)

)N−1
= −ψ(N − 1)

(
FH
∗ (BL)

)N−1
,
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The last expression is strictly negative because ψ(N − 1) > 0 and FH
∗ (BL) > 0, leading us to a

contradiction of BL ∈ supp[FL
∗ ].

The next lemma presents a sufficient condition for existence of a monotone strategy equilib-
rium.

Lemma A.2. If ψ(0) ≥ 0, then the all-pay auction has a unique symmetric BNE in monotone strategies.

Proof. Since ψ(n) is single-crossing, ψ(0) ≥ 0 implies ψ(n) > 0 for all n = 1, · · · , N − 1. Hence
the condition implies that an increment in bid is more beneficial to the high type:

∂

∂b
uA(b, H|F∗)−

∂

∂b
uA(b, L|F∗) =

∂

∂b

N−1

∑
n=0

ψ(n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
> 0.

In other words, the bidder’s expected payoff function is supermodular in (b; ti), so any symmetric
equilibrium must be in monotone strategies.15 Since 0 ∈ supp[FL

∗ ] by the previous lemma,
and since the low type has a chance to win only if his opponents are all low types in this
monotonic equilibrium, we have supp[FL

∗ ] = [0, BL] where BL := max
(
supp[FL

∗ ]
)

= BH :=
min

(
supp[FH

∗ ]
)

= VL (0) pL (0). Furthermore, we can characterize FL
∗ from the indifference

condition between bidding zero and every b ∈ supp[FL
∗ ] to the low type:

b = VL (0) pL(0)
(

FL
∗ (b)

)N−1
,

for each b ∈ [0, VL (0) pL (0)]. The bid distribution of the low type is therefore uniquely deter-
mined.

For the high-type bidders, indifference at all b ∈ supp[FH
∗ ] holds if and only if

N−1

∑
n=0

pH (n)VH (n)
(

FH
∗ (b)

)n
− b = VH (0) pH (0)−VL (0) pL (0) ,

where the expression on the right-hand side indicates the expected payoff to the high type from
bidding BH, namely his information rent: ψ(0) ≥ 0. From this indifference condition, we see the
uniqueness of FH

∗ (b) for b ∈ supp[FH
∗ ], and using FH

∗ (BH) = 1, we get

BH := max
(

supp[FH
∗ ]
)
=

N−1

∑
n=0

pH (n)VH (n)−VL (0) pL (0) .

We next examine the case of ψ(0) < 0. The following lemma demonstrates that in this case

15As u(b, k|F∗) is supermodular, we have supp[FL
∗ ] ≤ supp[FH

∗ ] in the strong set order (See Milgrom and Shannon
(1994)). This result has two implications on the equilibrium support. First, each support must be a connected interval,
for otherwise there exists a pair of bids bH < bL such that bL ∈ supp[FL

∗ ] and bH ∈ supp[FH
∗ ]. Second, the supports

must be disjoint, because the strict supermodularity implies that if two bids, say b1 and b2 > b1, are indifferent to the
low type, then b2 must be strictly preferred to b1 by the high type.
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the high-type bidders also earn zero rent in equilibrium. Together with Lemma A.1 and A.2, the
lemma tells us that there is full rent dissipation if and only if ψ(0) < 0.

Lemma A.3. If ψ(0) < 0, then 0 ∈ supp[FH
∗ ] in every symmetric equilibrium F∗, and as a result, the

high-type bidders earn a payoff of zero.

Proof. Suppose min
(
supp[FH

∗ ]
)
= BH > 0. Since the union of the supports is a connected interval

by Lemma 1, we must have FL
∗ (BH) > 0. Also, since the low type earns a payoff of zero from

bidding BH by Lemma A.1, we have BH = VL(0)pL(0)
(

FL
∗ (BH)

)N−1. Using this expression, we
can compute the corresponding payoff to the high type:

uA(BH, H|F∗) = −BH + VH(0)pH(0)
(

FL
∗ (BH)

)N−1
= ψ(0)

(
FL
∗ (BH)

)N−1
< 0.

Because every bidder has an option of bidding zero, any bids in the support must yield a nonneg-
ative expected payoff. Hence ψ(0) < 0 results in BH = 0.

To fully characterize the equilibrium supports, we show in next lemma that each support is a
connected interval and that supp[FL

∗ ] ⊂ supp[FH
∗ ].

Lemma A.4. Suppose ψ(0) < 0. In any symmetric BNE F∗, both supp[FL
∗ ] and supp[FH

∗ ] are connected
intervals.

Proof. Suppose to the contrary that there is an open interval (b′1, b′2) ⊂ [0, BL] such that supp[FL
∗ ]∩

(b′1, b′2) = ∅. Let (b1, b2) be the maximal (in the sense of set inclusion) open interval such that

(b′1, b′2) ⊂ (b1, b2) and supp[FL
∗ ] ∩ (b1, b2) = ∅

Then b1 and b2 must belong to supp[FL
∗ ] ∩ supp[FH

∗ ], and FH
∗ (b2) > FH

∗ (b1) by Lemma 1. Using
Lemma A.1, we first obtain an alternative expression for b1 and b2:

b1 =
N−1

∑
n=0

VL(n)pL(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n

b2 =
N−1

∑
n=0

VL(n)pL(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b2)

)n
,

where we used FL
∗ (b1) = FL

∗ (b2) to derive the expression of b2. Also, it follows from Lemma A.3
that b1 ∈ supp[FH

∗ ] yields a payoff of zero to the high type, thereby

uA(b1, H|F∗) = −b1 +
N−1

∑
n=0

VH(n)pH(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n

=
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n
= 0.
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Observe that the expression ψ(n)
(

FL
∗ (b1)

)N−1−n (FH
∗ (b1)

)n is single-crossing in n as ψ(n) is the
unique sign-changing factor in that expression. This implies that

uA(b2, H|F∗) =
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b2)

)n

=
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n
·
(

FH
∗ (b2)

FH
∗ (b1)

)n

> 0,

where the inequality comes from the (discrete version) Folk single-crossing lemma and the fact

that
(

FH
∗ (b2)

FH
∗ (b1)

)n
is a strictly increasing function in n. Therefore, the high type is strictly better off by

bidding b2 rather than b1, contradicting the indifference condition between b1 and b2 to the high
type. A similar argument can be used to establish that supp[FH

∗ ] is also connected.

The proof of existence and uniqueness of equilibrium for the case ψ(0) < 0 is based on the
following lemma:

Lemma A.5. Define a function G : [0, 1]× [0, 1]→ < as

G (x, y) =
N−1

∑
n=0

g (n) xn yN−n−1,

where the function g : {0, 1, · · · , N − 1} → < is single-crossing, g (0) < 0, and ∑N−1
n=0 g (n) > 0.

Then there exists a unique mapping ξ : (0, 1] → (0, 1) such that G (ξ (y) , y) = 0 for every y ∈ (0, 1].
Furthermore, the mapping ξ is continuous, strictly increasing, and limy↓0 ξ (y) = 0.

Proof. We begin by enumerating some properties of function G. First, G is clearly continuous, and
it is easy to check that for any x > 0 there is some δx > 0 such that G (x, y) > 0 for y ∈ (0, δx),
and for any y > 0 there is some δy > 0 such that G (x, y) < 0 for x ∈

(
0, δy

)
. In particular,

G (1, y) > 0 for every y ∈ (0, 1). This follows from the fact that g (n) is single crossing in n, that

∑N−1
n=1 g (n) > 0, and that yN−n−1 is strictly increasing in n for y ∈ (0, 1). Consequently, there exists

a pair of (x, y) ∈ (0, 1)× (0, 1) at which G(x, y) = 0.
The following pairwise strict single-crossing property of G is the key to the lemma: if G (x, y) =

0 for some (x, y), then

G(x′, y) < 0 for x′ ∈ (0, x) but G(x′, y) > 0 for x′ ∈ (x, 1) (A.1)

G(x, y′) > 0 for y′ ∈ (0, y) but G(x, y′) < 0 for y′ ∈ (y, 1). (A.2)

To prove (A.1), fix x ∈ (0, 1) and y ∈ (0, 1) such that G (x, y) = ∑N−1
n=0 g (n) xn yN−n−1 = 0. Then

for any x′ 6= x, we have

G
(

x′, y
)
=

N−1

∑
n=0

g (n)
(
x′
)n yN−n−1 =

N−1

∑
n=0

g (n) xnyN−n−1
(

x′

x

)n

.
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Since g (n) is single-crossing in n, so is g (n) yN−n−1xn because both yN−n−1 and xn are sign-

preserving functions of n. For x′ > (<) x, the fraction
(

x′
x

)n
is strictly increasing (decreasing,

respectively) in n. Consequently, (A.1) follows by the Folk single-crossing lemma. The proof for
(A.2) is completely analogous so is omitted.

Using the properties of G just established, we can now prove the lemma. Fix y ∈ (0, 1]. Since
G (x, y) < 0 for x sufficiently small and G (1, y) > 0, there is some x such that G (x, y) = 0 by
continuity of G. Because G(x, y) as a function of x satisfies the single-crossing property by (A.1),
this sign-changing point is unique, and hence defines a unique ξ (y) for which G (ξ (y) , y) = 0.

To see that limy↓0 ξ (y) = 0, recall that for every x > 0, there exists a δx > 0 such that G (x, y) >
0 for all y ∈ (0, δx). This means that for all y < δx, we have ξ (y) < x. Since x can be chosen
arbitrarily low, it follows that limy↓0 ξ (y) = 0. Finally, continuity and strict monotonicity of
ξ (y) follow in a straightforward manner from the continuity and pairwise strict single-crossing
property of G(x, y). The proof is now complete.

The existence and uniqueness of equilibrium can be established as follows.

Proof. By Lemmas A.1, A.3 and A.4, when ψ(0) < 0, in any equilibrium we must have 0 ∈
supp[FL

∗ ] ∩ supp[FH
∗ ] and both supports are connected intervals. Consequently, there must be

some interval
[
0, BL

]
where the two supports overlap. Note that every bid b ∈ [0, BL] must yield

zero expected payoff (i.e., the same payoff) to both types. Below we demonstrate that there exists
only one pair of (FL

∗ , FH
∗ ) satisfying this property.

For each y ∈ (0, 1], we define ξ : (0, 1]→ (0, 1) as the solution to the equation:

N−1

∑
n=0

[
VH(n)pH(n)−VL(n)pL(n)︸ ︷︷ ︸

=ψ(n)

]
(ξ (y))n yN−n−1 = 0. (A.3)

As the function ψ(n) satisfies all the given properties for function g in Lemma A.5, we know from
that lemma that there exists a unique continuous and strictly increasing mapping satisfying (A.3)
and limy→0 ξ(y) = 0.

Given this function ξ, we define BL as

N−1

∑
n=0

VH (n) pH (n) (ξ (1))n = BL.

For each b < BL, let FL
∗ (b) ∈ [0, 1) denote the unique value of y that solves the equation

N−1

∑
n=0

VH (n) pH (n) (ξ (y))n yN−n−1 = b.

As the expression on the left-hand side of the equation is strictly increasing in y and b < BL, the
solution FL

∗ (b) exists and is unique. Furthermore, it is easy to check that the solution FL
∗ (b) retains

all the necessary properties of a distribution function: it is strictly increasing and continuous in
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b, FL
∗ (0) = 0, and FL

∗ (BL) = 1 (by definition of BL). Label ξ(FL
∗ (b)) = FH

∗ (b). Then FH
∗ (b) is

strictly increasing in b and FH
∗ (0) = 0. This process characterizes the symmetric equilibrium on

supp[FL
∗ ] ∩ supp[FH

∗ ].
To characterize the equilibrium on supp[FH

∗ ] ∩ {supp[FL
∗ ]}c, let

BH =
N−1

∑
n=1

VH (n) pH (n) .

For each b ∈
(

BL, BH
)
, set FL

∗ (b) = 1 and define FH
∗ (b) as the solution to the equation

N−1

∑
n=0

VH (n) pH (n) xn = b.

Since the left-hand side is strictly increasing in x, FH
∗ (b) is uniquely determined.

A.3. Proof of Proposition 7

We analyze the system of linear differential equations (DE-2). For each type k = L, H, we define
Gk (b) := 1− Gk

∗ (b) and gk (b) := −gk
∗ (b). This notation is for convenience since it allows us to

rewrite (DE-2) as a homogeneous system:[
gL (b)
gH (b)

]
= h

[
a1 a2

a3 a4

] [
GL (b)
GH (b)

]
:= A

[
GL (b)
GH (b)

]
, (A.4)

where

h := −
[

ϕL(L)ϕH(H)− ϕL(H)ϕH(L)
]−1

< 0,

a1 := ϕH(H)pL (L)− ϕL(H)pH (L) > 0,

a2 := ϕH(H)pL (H)− ϕL(H)pH(H) = pL (H) pH (H)
[
VH(H)−VL(H)

]
> 0,

a3 := −ϕH(L)pL (L) + ϕL(L)pH (L) = pL (L) pH (L)
[
VL(L)−VH(L)

]
< 0,

a4 := −ϕH(L)pL (H) + ϕL(L)pH (H) .

Unlike the sign of the other parameters, the sign of a4 is undetermined by the primitives of the
model, but as will be seen, whenever the two bid supports are overlapped in equilibrium, we have
a4 > 0. The desired symmetric equilibrium can be characterized by a straightforward phase-plane
analysis of (DE-1) and (A.4) over the plane

[
GL (b) , GH (b)

]
∈ [0, 1]× [0, 1].

We start by defining the region in the plane where overlapping bidding supports are feasible,
i.e. the region where (A.4) admits gL (b) ≤ 0 and gH (b) ≤ 0 (recall that gk (b) := −gk

∗ (b)). Since
a1 > 0, a2 > 0 and h < 0, we see from (A.4) that gL (b) ≤ 0 holds always. For gH (b) ≤ 0, on
the other hand, we need a4 > 0 and a3GL (b) + a4GH (b) ≥ 0, which outlines the region D where
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overlapping supports are feasible:

D :=
{[

GL, GH
]
∈ [0, 1]× [0, 1] :

GH

GL ≥ −
a3

a4

}
.

To derive explicit solutions for the bid distributions, we note that the matrix A has two real
eigenvalues

r1 =
h
2
(a1 + a4 − a) < 0 and r2 =

h
2
(a1 + a4 + a) < r1,

where we introduce another parameter a :=
√
(a1 − a4)2 + 4a2a3 for a simple exposition. To see

that both r1 and r2 are real-valued, write

a1 − a4 = pL (L) pH (H)
{

VH(H)−VL(L)
}
+ pL (H) pH (L)

{
VH(L)−VL(H)

}
≥ pL (L) pH (H)

{
VH(H)−VL(H)

}
+ pL (H) pH (L)

{
VH(L)−VL(L)

}
,

where the inequality follows from VL(H) ≥ VL(L) and log-supermodularity of p. As a result,

(a1 − a4)
2 ≥

[
pL (L) pH (H)

{
VH(H)−VL(H)

}
+ pL (H) pH (L)

{
VH(L)−VL(L)

}]2

.

Observe that−a2a3 is simply the product of the two terms inside the bracket above. Consequently,
we have (a1 − a4)

2 + 4a2a3 ≥ 0.
The general solution to (A.4) is then[

GL (b)
GH (b)

]
= c1

[
k1

1

]
er1b + c2

[
k2

1

]
er2b, (A.5)

where c1 and c2 are free parameters and k1 and k2 are normalized eigenvector components:

k1 =
a1 − a4 − a

2a3
< 0 and k2 =

a1 − a4 + a
2a3

< k1.

We are now ready to analyze the three mutually exclusive cases in Proposition 7.

Case (i). ϕH(L) ≥ λϕL(L)

In this case, a3 < a4 ≤ 0 and therefore D = ∅, meaning that the system (DE-2) does not have a
feasible solution with (gL

∗ (b), gH
∗ (b))� 0. Hence there should be no overlap between the two bid

supports. The equilibrium
(
GL
∗ , GH

∗
)

described in case (i) of Proposition 7 follows by solving the
necessary indifference condition (DE-1) separately for GL

∗ and GH
∗ . First, (DE-1) for type k = L,

pL (L) gL
∗ (b)VL(L)

1− pL (L) GL
∗ (b)

= 1,
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𝒟𝒟 = ∅
𝐺𝐺𝐻𝐻(𝑏𝑏)

1

1𝐺𝐺𝐿𝐿(𝑏𝑏)

Figure 5: Equilibrium Trajectory in Case (i).

with initial condition GL
∗ (0) = 0 gives the formula for GL

∗ (b). Then setting the boundary condition
GL
∗
(

BL
)
= 1 (recall that BL = sup supp[GL

∗ ]) gives the formula for BL. Similarly, (DE-1) for type
k = H is

pH (H) gH
∗ (b)VH(H)

1− pL (L)− pH (H) GH
∗ (b)

= 1,

which with initial condition GH
∗
(

BL
)
= 0 gives the formula for GH

∗ (b). Figure 5 displays the
equilibrium trajectory which is marked by arrows (recall that GL (b) := 1− GL

∗ (b) and GH (b) :=
1− GH

∗ (b)).

Case (ii). ϕL(L) ≤ ϕH(L) < λϕL(L)

We now work directly with functions (GL, GH). In Case (ii), we have a4 > 0 and

[
GL (b) , GH (b)

]
∈ D ⇔ GH (b)

GL (b)
> − a3

a4
=

ϕH(L)pL (L)− ϕL(L)pH (L)
ϕL(L)pH (H)− ϕH(L)pL (H)

> 1.

Since GH (0) /GL (0) = 1 < −a3/a4, bid zero cannot be in the support of GH
∗ . It is easy to check

that the only possibility is that there is a bid interval [0, BH ], where only type L is active, and
GL
∗ (b) in that interval follows from the indifference condition (DE-1) for type L together with

initial condition GL
∗ (0) = 0. The formula for BH is

BH = VL(L) log
[

ϕH(L)−VL(L)pH (L)
ϕL(L)−VL(L)pH (L)

]
< VL(L) log [pL(H)]−1 ,

This is derived from the condition

1
GL (BH)

=
1

1− GL
∗ (BH)

= − a3

a4
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1

1

𝒟𝒟
𝐺𝐺𝐻𝐻(𝑏𝑏)

𝐺𝐺𝐿𝐿(𝑏𝑏)

𝐺𝐺𝐻𝐻(𝑏𝑏)
𝐺𝐺𝐿𝐿(𝑏𝑏)

= −
𝑎𝑎3
𝑎𝑎4

(a) Case (ii)

𝒟𝒟

1

1

𝐺𝐺𝐻𝐻(𝑏𝑏)

𝐺𝐺𝐿𝐿(𝑏𝑏)

𝐺𝐺𝐻𝐻(𝑏𝑏)
𝐺𝐺𝐿𝐿(𝑏𝑏) = −

𝑎𝑎3
𝑎𝑎4

(b) Case (iii)

Figure 6: Equilibrium Trajectory in the war-of-attrition

that defines the point where the equilibrium path hits the region D (see Figure 6-(a), where the
shaded area indicates D). It is easy to verify from (A.4) that we have a trajectory

[
GL (b) , GH (b)

]
with gL (b) < gH (b) < 0 for b ∈

[
BH, BL

]
, where BL is pinned down by GL (BL

)
= 0. To get

an explicit formula for the bidding distributions, we plug initial conditions GL (BH) = − a4
a3

and
GH (BH) = 1 into (A.5), which gives:

GL (b) = c̃1 exp [r1 (b− BH)] + c̃2 exp [r2 (b− BH)] , (A.6)

GH (b) = d̃1 exp [r1 (b− BH)] + d̃2 exp [r2 (b− BH)] , (A.7)

where

c̃1 =
(a1 + a4 + a) (a1 − a4 − a)

4a3a
< 0, c̃2 = − (a1 + a4 − a) (a1 − a4 + a)

4a3a
> 0

d̃1 =
a1 + a4 + a

2a
> 0, d̃2 = − a1 + a4 − a

2a
< 0,

and BL is obtained from boundary condition GL (BL
)
= 0:

BL = BH +

(
− 1

ah

)
· log

(
a4 (a1 − a4 + a)− 2a2a3

a4 (a1 − a4 − a)− 2a2a3

)
.

The remaining part of GH(b) for b > BL follows directly from indifference condition (DE-1) for
type H, where the initial condition GH (BL

)
is obtained by computing (A.7) at b = BL.

Case (iii). ϕH(L) < ϕL(L)

In the last case, all points
[
GL (b) , GH (b)

]
satisfying 0 ≤ GL (b) ≤ GH (b) are in the set D,

including the initial point
[
GL (0) , GH (0)

]
= [1, 1]. The system (DE-2) then pins down a unique
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trajectory from
[
GL (0) , GH (0)

]
= [1, 1] to

[
GL (BL

)
, GH (BL

)]
, where GH (BL

)
> 0 and where

BL defined by GL (BL
)
= 0 (see Figure 6-(b)). Using initial conditions GL(0) = GH(0) = 1, we get

the formulas for the bidding distributions from (A.5):

GL (b) = ĉ1er1b + ĉ2er2b, (A.8)

GH (b) = d̂1er1b + d̂2er2b, (A.9)

where

ĉ1 =
(a1 − a4 − 2a3 + a) (a1 − a4 − a)

4a3a
< 0, ĉ2 =

(−a1 + a4 + 2a3 + a) (a1 − a4 + a)
4a3a

> 0,

d̂1 =
a1 − a4 − 2a3 + a

2a
> 0, d̂2 =

−a1 + a4 + 2a3 + a
2a

< 0,

and the highest bid BL in the low-type bid support is determined by GL
∗
(

BL
)
= 0 as before:

BL =

(
− 1

ah

)
· log

(
(a1 − a4 − 2a3 − a) (a1 − a4 + a)
(a1 − a4 − 2a3 + a) (a1 − a4 − a)

)
.

Lastly, the part GH
∗ for b > BL can be obtained from indifference condition (DE-1) for type k = H,

where the initial condition GH (BL
)

is obtained by computing (A.9) at b = BL.

A.4. Proof of Lemma 5

We compare the probability of misallocation between the war of attrition and the all-pay auction
separately for the three cases enumerated in Proposition 7. The first two cases are easy: LW

∗ =

LA
∗ = 0 in case (i) and LA

∗ = 0 but LW
∗ > 0 in case (ii).

In Case (iii), the symmetric equilibrium features a full overlap in both auction formats. We
computed in the proof of Proposition 7 the equilibrium bid distributions as:

GL
∗ (b) = 1− ĉ1er1b − ĉ2er2b and GH

∗ (b) = 1− d̂1er1b − d̂2er2b,

where r1, r2, ĉ1, ĉ2, d̂1, and d̂2 are real numbers such that r2 < r1 < 0, ĉ1 < 0, ĉ2 > 0, d̂1 > 0, and
d̂2 < 0. The slope of the equilibrium path can then be written as

dGH
∗ (b)

dGL
∗ (b)

=
−d̂1r1er1b − d̂2r2er2b

−ĉ1r1er1b − ĉ2r2er2b =
d̂1 + d̂2

r2
r1

e(r2−r1)b

ĉ1 + ĉ2
r2
r1

e(r2−r1)b
,

where the last step divides both sides by a positive number −r1er1b so that both the nominator
and denominator remain positive. Given that d̂2 < 0 and ĉ2 > 0, we see that the nominator is
increasing in b while the denominator is decreasing in b, so that the slope dGH

∗ (b)
dGL
∗ (b)

increases in b. In
other words, the equilibrium path bends upwards as b increases, as displayed in Figure 4.

The corresponding bidding distributions in the two-player all-pay auction are uniform. De-
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noting them by FL
∗ (b) and FH

∗ (b), we can write them in terms of the notation used here as
FL
∗ (b) = − (r1ĉ1 + r2ĉ2) b and FH

∗ (b) = −(r1d̂1 + r2d̂2)b. Hence it follows that

dFH
∗ (b)

dFL
∗ (b)

=
d̂1r1 + d̂2r2

ĉ1r1 + ĉ2r2
= lim

b↓0

dGH
∗ (b)

dGL
∗ (b)

.

Hence the slopes of the equilibrium paths in the two auction formats coincide at the origin.
Therefore the area under the equilibrium path of the war of attrition is strictly larger than that
of the all-pay auction, which means that the probability of misallocation is higher in the war of
attrition.

A.5. Proof of Proposition 8

When ϕH(L) ≥ ϕL(L) · λ, we know from Proposition 7 that LW
∗ = 0. Hence the ranking ΠW

∗ > ΠS
∗

is immediate from Corollary 2.
When ϕH(L) ≤ ϕL(L), zero is in the support of both types in the war of attrition. In this case,

the mechanism extracts full surplus but suffers from inefficiency. The social cost of the inefficient
allocation amounts to VH(L) − VL(H) and can occur only when one of the bidders is of type H
and the other is of type L, i.e., with probability P(1). The surplus loss LW

∗ is hence bounded by
P(1) [VH(L)−VL(H)], which is less than P(1) [VH(L)−VL(L)], i.e. the information rent given up
to the bidders in the standard auctions. Therefore, we obtain ΠW

∗ > ΠS
∗ .

In the remaining case, ϕH(L) ∈ (ϕL(L), ϕL(L) · λ), the war of attrition suffers from an ineffi-
cient allocation and at the same time leaves rents to the high type. For revenue comparison, first
note that a surplus loss can occur only if the low type makes a bid above BH. In this case the sur-
plus is reduced by VH(L)− VL(H), which is smaller than VH(L)− VL(L). This gives us an upper
bound for LW

∗ :
LW
∗ < P(1)

(
1− GL

∗ (BH)
) [

VH(L)−VL(L)
]
.

Furthermore, we see from (6) that the high-type bidders’ rent is bounded from above by
GL
∗ (BH) pH(L)[VH(L)− VL(L). By summing over the possible realizations of the types, we get a

bound for the aggregate information rent:

2

∑
n=1

P(n) · n ·UW
∗ (H) <

2

∑
n=1

P(n) · n · GL
∗ (BH) pH(L)

[
VH(L)−VL(L)

]
= P(1)GL

∗ (BH)
[
VH(L)−VL(L)

]
,

where the last equality follows from the fact that P(1) = pH(L)∑2
n=1 P(n) · n. Combining the two

upper bounds and using the fact that FL
∗ (BH) ≤ 1, we obtain:

ΠW
∗ > Π−P(1) [VH (L)−VL (L)] = ΠS

∗ .

Therefore, the expected revenue in the war of attrition is higher than in standard auctions in all of
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the cases.

A.6. Proof of Proposition 10

When ϕH(L) ≤ ϕL(L), the bid zero is in the support of both types in both auction formats, and
hence the rents are fully dissipated; UA

∗ (H) = UW
∗ (H) = 0. By Lemma 5, the probability of

misallocation is strictly higher in the war of attrition than in the all-pay auction. With VH (L) >

VL (H) this implies LW
∗ > LA

∗ and so ΠA
∗ > ΠW

∗ .
When ϕH(L)− λϕL(L) ≥ 0, the bidding supports are disjoint and the allocation is efficient in

both mechanisms and LW
∗ = LA

∗ = 0. By Lemma 3 we have UA
∗ (H) > UW

∗ (H), and therefore we
obtain ΠA

∗ < ΠW
∗ .

B. Supplementary material

Supplementary material related to this article can be found online at [url to be added].
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ALL-PAY AUCTIONS WITH AFFILIATED BINARY SIGNALS:
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This supplementary material contains the proof of Proposition 1, 3 and 6 in the main article.

A. Proof of Proposition 1

We first introduce some additional notation. Throughout the main body of this proof we assume
that v (θ, ti) depends non-trivially on θ. The other case, the affiliated private values case, is easier
and dealt with at the end. When v (θ, ti) depends on θ, i.e., when the other bidders have rele-
vant information about bidder i’s valuation, we need consider the expected payoff conditional on
winning. If there is an atom at b̂ in the bid distribution, a bidder submitting b̂ ties with a posi-
tive probability for the highest bid, in which case the winner is determined by uniform rationing
among tying bidders. Since the probability of getting the object depends on the number of tying
bidders, we must take into account the information that the event of winning conveys about θ.

Consider the event that the state is θm and n (with n = 0, · · · , N − 1) of bidder i’s opponents
are tied for the highest bid b̂. Define p(n, θm ; b̂) as the probability of this event. The following
lemma determines when a large number of bidders that tie at b̂ is good news and when it is bad
news about θ. To state the lemma, denote the probability mass function on Θ in the presence of n
tying bidders at b̂ by

qb̂ (θm |n ) :=
p(n, θm ; b̂)

M
∑

m=1
p(n, θm ; b̂)

,

and its cumulative distribution function by Qb̂ (θm |n ). The lemma provides a simple criterion
of whether Qb̂ can be ranked in the first-order stochastic dominance: for n′ > n, Qb̂ (θm |n′ ) ≤
Qb̂ (θm |n ) for all θm ∈ Θ. To state this criterion, let Fk

∗ (b̂−) = limb↑b̂ Fk
∗ (b) denote the left-hand

limit of Fk
∗ at b̂ for each type k = L, H. The probability of the event that type k bids at the atom b̂

can then be written as ∆k(b̂) := Fk
∗ (b̂)− Fk

∗ (b̂−).

∗Chang Koo Chi: chang-koo.chi@nhh.no; Pauli Murto: pauli.murto@aalto.fi; Juuso Välimäki:
juuso.valimaki@aalto.fi
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Lemma A.1. For each θm ∈ Θ, the posterior distribution Qb̂ (θm |n ) is
nonincreasing in n
nondecreasing in n
independent of n

 if
(

∆H(b̂)− ∆L(b̂)
)

FL
∗ (b̂−)


>

<

=


(

FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂).

Proof. The proof exploits the fact that if p(n, θm ; b̂) is log-supermodular (log-submodular) in
(n, θm), then the posterior distribution Qb̂ (θm |n ) is non-increasing (non-decreasing, respectively)
in n. We hence investigate the properties of p(n, θm ; b̂). Using our notation, the joint probability
mass function is

p(n, θm ; b̂) = q (θ)
(

N − 1
n

)(
αm∆H(b̂) + (1− αm)∆L(b̂)

)n

×
(

αmFH
∗ (b̂−) + (1− αm) FL

∗ (b̂−)
)N−n−1

.

Taking logarithms and then grouping the terms independent of θm into η (n) and the terms inde-
pendent of n into ν (θm), we have:

ln p(n, θm ; b̂) = η (n) + ν (θm) + n ln

 αm

(
∆H(b̂)− ∆L(b̂)

)
+ ∆L(b̂)

αm

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)
+ FL

∗ (b̂−)

 .

Since the expression in the bracket above is strictly increasing (decreasing) in αm if(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) > (<)

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

and since αm is increasing in m by affiliation, the claim follows.

Since the event of winning is more likely when the number of tying bidders n is small, winning
is good news on θ whenever qb̂ (θ |n ) is stochastically decreasing in n, and vice versa. Following
this reasoning, the next lemma determines whether a small over- or under-bidding from an atom
increases or decreases the payoff conditional on winning. Let Wk (b) denote the expected value of
the object conditional on winning with bid b and with signal k = L, H. We have:

Lemma A.2. Let b̂ be a possible atom of at least one of the bidding distributions. If(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) ≥

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂), (1)

then we have
lim
b↓b̂

Wk (b) ≥ Wk(b̂) ≥ lim
b↑b̂

Wk (b) . (2)

If the inequality of (1) is reversed, then so are the inequalities of (2).

Proof. Let V̂b (n; k) denote the expected value of the object conditional on n other bidders bidding
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b̂:

V̂b (n; k) =
M

∑
m=1

qb̂ (θm |n ) v (θm, k) .

By bidding b = b̂, the bidder wins with probability 1
n+1 if there is a tie with n other bidders. Hence,

conditional on winning, the probability of tying with n other bidders is given by:

1
n+1 pb̂ (n)

N−1
∑

n=0

1
n+1 pb̂ (n)

, n = 0, · · · , N − 1,

where pb̂ (n) indicates the marginal probability of tying with n others at bid b̂. Consequently,

Wk(b̂) =
N−1

∑
n=0

1
n+1 pb̂ (n)

N−1
∑

n=0

1
n+1 pb̂ (n)

V̂b (n; k) .

By bidding slightly above b̂, the bidder wins against all bidders who pool at b̂, so that winning
conveys no additional information on n. Conditional on winning, the probability of n bidders
submitting b̂ is hence pb̂ (n) and therefore

lim
b↓b̂

Wk (b) =
N−1

∑
n=0

pb̂ (n) V̂b (n; k) .

By bidding slightly below b̂, a bidder wins only if there is no bidder who bids b̂, and hence

lim
b↑b̂

Wk (b) = V̂b (0; k) .

Since the probability distribution
(

pb̂ (0) , · · · , pb̂ (N − 1)
)

first-order stochastically dominates

(strictly) the distribution

 pb̂(0)
N−1
∑

n=0

1
n+1 pb̂(n)

, · · · ,
1
N pb̂(N−1)

N−1
∑

n=0

1
n+1 pb̂(n)

, which in turn strictly dominates the dis-

tribution (1, 0, · · · , 0), we have

lim
b↓b̂

Wk (b) > (<)Wk(b̂) > (<) lim
b↑b̂

W (b)

if V̂b (n; k) is strictly increasing (decreasing) in n, and

lim
b↓b̂

Wk (b) = Wk(b̂) = lim
b↑b̂

Wk (b)

if V̂b (n; k) does not depend on n. By Lemma A.1, V̂b (n; k) is strictly increasing (decreasing) in n if(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) > (<)

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂)
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and independent of n if the above inequality holds with equality, and hence the result follows.

The next lemma shows that the lowest bid in the support of the bids is made by the low-type
bidders only and that it results in a payoff of zero.

Lemma A.3. The lowest bid is VL (0) in any symmetric equilibrium and it is in the support of the low-
type bidders. High-type bidders do not have an atom at VL (0). As a result, the low type earns zero in
equilibrium.

Proof. Suppose first that there is no mass point at the lowest bid b. Then the probability of winning
at b is zero and hence the expected payoff is also zero. It is not possible that b < VL (0), since a
slight overbidding would lead to strictly positive payoffs. It is also not possible that b is in the
support of H but not L and that b < VH (N − 1) since winning at any bid b + ε would imply that
all the bidders are of type H and there would be a profitable deviation for H. A bidder of type L
never bids above VL (N − 1) < VH (N − 1) in equilibrium. To see that it is not possible that b is in
both supports, it is enough to observe that the value of the object conditional on winning is strictly
higher to H than to L. Hence they cannot both earn zero expected profit.

The same argument shows that both players cannot have a mass point at b. The lowest bid
b cannot have a mass point for low-type bidders with b > VL (0) since that would lead to an
expected loss. Hence the claim of the lemma follows.

Lemma A.4. Mass points are possible only at VL (0) .

Proof. Suppose that there is another mass point at some b̂ > VL (0). If(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) >

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

then by Lemma A.2 the value of the object conditional on winning jumps upwards by bidding
slightly above b̂. Since the probability of winning also increases by overbidding, this is a strictly
profitable deviation for any bidder bidding b̂.

If (
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) <

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

then ∆L(b̂) > 0 so that a low type must be bidding b̂ with a positive probability. By Lemma A.3,
the payoff for the low type is zero, and hence the value of the object conditional on winning at
b̂ must be zero for the low type. By Lemma A.2 a slight underbidding would increase the value
conditional on winning above zero, which would then be a profitable deviation for the low type
bidder.

The only case left is if(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) =

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

so that the expected value of the object does not depend on the number of tying bidders. Since
the low type has a zero expected profit, the high type makes a strictly positive expected profit
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at b̂. But overbidding increases discretely the probability of winning without affecting the value
conditional on winning, and so bidding b̂ + ε for ε small enough is a profitable deviation for the
high type.

Obviously there cannot be a mass point at some b̂ < VL (0) since overbidding would be strictly
optimal for both types.

Lemma A.5. The support of the low-type bidders cannot have connected components of positive length.

Proof. Suppose to the contrary that there is such a component and suppose that it is not in the
support of the high-type bidder. Then winning at a higher bid implies a lower expected value
and this is not compatible with the zero profit requirement in either a first-price or a second price
auction.

Consider next the possibility of overlapping connected components for the two types. In the
second-price auction, the bid in a symmetric equilibrium must be the value of the object condi-
tional on tying for the winning bid (otherwise a deviation either up or down would be strictly
optimal). This cannot be the same for the two types of bidders.

In the first-price auction, write the payoff of type k = L, H who bids b as

uFP (b, k|F∗) =
N−1

∑
n=0

pk (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(Vk (n)− b) .

If the bidding supports overlap, then we must have

∂uFP (b, k|F∗)
∂b

= 0

for k = H, L. We can write the derivative of the payoff function as:

∂uFP (b, k|F∗)
∂b

=
N−1

∑
n=0

pk (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1

×
[(

n
f H
∗ (b)

FH
∗ (b)

+ (N − n− 1)
f L
∗ (b)

FL
∗ (b)

)
(Vk (n)− b)− 1

]
. (3)

As a first step towards showing that the supports cannot overlap, we show that there cannot be
an interval immediately above VL (0), where both types have a positive density. Let b ≡ VL (0),
and note that by the previous Lemmas we have FL

∗ (b) > 0 and FH
∗ (b) = 0. Then, evaluating (3)

at b, we see that all of the terms with n ≥ 2 vanish, and we are left with

∂uFP (b, k|F∗)
∂b

∣∣∣∣
b=b

= pk (0)
(

FL
∗ (b)

)N−1
[
(N − 1)

f L
∗ (b)

FL
∗ (b)

(Vk (0)− b)− 1
]

+pk (1)
(

FL
∗ (b)

)N−2
f H
∗ (b) (Vk (1)− b)

=
(

FL
∗ (b)

)N−2
pk (0)

[
(N − 1) f L

∗ (b) (Vk (0)− b)− FL
∗ (b)

]
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+
(

FL
∗ (b)

)N−2
pk (1) f H

∗ (b) (Vk (1)− b) .

Noting that Vk (1) > Vk (0), VH (0) > VL (0) and pH(1)
pH(0)

> pL(1)
pL(0)

, we have

∂uFP (b, L|F∗)
∂b

∣∣∣∣
b=b

= 0 =⇒ ∂uFP (b, H|F∗)
∂b

∣∣∣∣
b=b

> 0,

so it is not possible to have a connected component (VL (0) , VL (0) + ε) where both types are
indifferent.

As a second step, we will rule out overlapping components strictly above VL (0). By usual
arguments, the union of the two supports must be a connected set. Therefore, if the low type is
active for b′ > VL (0), there must be a region between VL (0) and b′, where only the high type has
a positive density. We will now show that if the high type has a positive density, the value of the
low type is strictly decreasing. Since we already know that uFP(VL(0), L|F∗) = 0, this rules out the
possibility that the low type is active for any b′ > VL (0).

Suppose that only the high type has a positive density at b, i.e., f H
∗ (b) > 0 and f L

∗ (b) = 0.
Then

∂uFP(b, k|F∗)
∂b

=
N−1

∑
n=0

pk (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(Vk (n)− b)− 1
)

.

If the high-type has a positive density, we must have

∂uFP(b, H|F∗)
∂b

=
N−1

∑
n=0

pH (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)
= 0.

Noting that n f H
∗ (b)

FH
∗ (b)

(VH (n)− b) is increasing in n, we see that

pH (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)

is single-crossing in n. Since pL(n)
pH(n)

is strictly decreasing in n, the single-crossing lemma implies
that1

N−1

∑
n=0

pL (n)
pH (n)

· pH (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)
< 0.

Moreover, since VL (n) < VH (n) for all n, this implies that

∂uFP(b, L|F∗)
∂b

=
N−1

∑
n=0

pL (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VL (n)− b)− 1
)
< 0,

1For a discrete domain N, the single-crossing lemma states that if f : N → < satisfies the (strict) single-crossing
property and ∑ n∈N f (n) = 0, then ∑ n∈N f (n)g(n) ≥ (>) 0 for an (strictly) increasing function g : N → <. Note that
the given properties of f imply ∑ n≥k f (n) ≥ 0 for every k. Hence the lemma follows from the fact that every increasing
function can be approximated by ∑ i γi1{n≥ki}.
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and hence the value of the low type must be negative for any b > VL (0).

Lemma A.6. In a symmetric equilibrium of the second-price auction, the low-type bidders all bid VL (0) and
the high-type bidders randomize using an atomless distribution on [VH (0) , E[v (θ, ti) |ti = H, Yi ≥ 1 ]]. In
a symmetric equilibrium of the first-price auction, low-type bidders all bid VL (0) and the high-type bidders
randomize using an atomless distribution on [VL (0) , E[v (θ, ti) |ti = H ]− pH (0) (VH(0)−VL (0))].

Proof. Lemmas A.1 ∼ A.5 imply that the low bidders must have a degenerate distribution at the
lowest point and that the high-type bidders must play according to an atomless mixed strategy.
The support of the high-type bidders distribution is uniquely pinned down by the constant profit
condition in both auction formats.

Lemma A.6 establishes the uniqueness of a symmetric equilibrium under the assumption,
maintained up to this point, that v (θ, t) depends non-trivially on θ. The case of affiliated private
values, where v (θ, t) = v (t), is easier since no pay-off relevant information can be obtained by
the outcome of a rationing event at a mass point. Lemma A.2 does not hold since with private
valuations we must have

lim
b↓b̂

Wk (b) = Wk(b̂) = lim
b↑b̂

Wk (b)

for any atom b̂. This affects the statement of Lemma A.4, according to which no atoms above
VL (0) can exist. It is easy to show that with private valuations, the unique equilibrium in the case
of second-price auction involves two atoms: both types bid their own value with probability 1.
The nature of the unique equilibrium in the first-price auction is unchanged.

B. Proof of Proposition 3

The result we established in Proposition 2 in the main text tells us that the unique symmetric
equilibrium is monotonic if and only if

VH (0)
VL (0)

≥ pL (0)
pH (0)

. (4)

For the proof of Proposition 3, we need therefore investigate the limiting behavior of each side of
(4) as the number of bidders N increases.

Case 1 - Mineral Rights Model

We first show that the ratio VH(0)/VL(0) on the left-hand side converges to one as N → ∞ in
the mineral rights model. To keep our notations simple, let t = (L, L, · · · , L) denote the vector of
signal realizations with ti = L for all i and t′ = (H, L, · · · , L) the vector with ti = L for all i 6= 1
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and t1 = H. Then the ratio can be written as

VH (0)
VL (0)

=
E[v (θ) |t′ ]
E[v (θ) |t ] =

M
∑

m=1
q (θm |t′ ) v (θm)

M
∑

m=1
q (θm |t ) v (θm)

,

where the posterior belief on θ given t can be calculated with the Bayes rule: for each θm,

q
(
θm
∣∣t′ ) =

q (θm) αm (1− αm)
N−1

M
∑

x=1
q (θx) αx (1− αx)

N−1
and q (θm |t ) =

q (θm) (1− αm)
N

M
∑

x=1
q (θx) (1− αx)

N
.

Since we have αm < αm+1 for each m, both posterior beliefs assign a unit mass to θ = θ1 as N → ∞.
Consequently,

lim
N→∞

VH (0)
VL (0)

=
v(θ1)

v(θ1)
= 1.

We next investigate the limit of the ratio pL(0)/pH(0) as N → ∞. We first put this ratio as

pL (0)
pH (0)

=

M
∑

m=1
qL(θm)(1− αm)N−1

M
∑

m=1
qH(θm)(1− αm)N−1

, (5)

where
qL(θm) =

q (θm) (1− αm)
M
∑

x=1
q (θx) (1− αx)

and qH(θm) =
q (θm) αm

M
∑

x=1
q (θx) αx

are the posteriors of state θm after observing signal L and H, respectively. Dividing the top and

bottom of (5) by (1− α1)
N−1 and then noting that

(
1−αm
1−α0

)N−1
→ 0 for all m = 1, · · · , M − 1 as

N → ∞, we have

lim
N→∞

pL (0)
pH (0)

=
qL(θ1)

qH(θ1)
> 1. (6)

The first claim of Proposition 3 is then immediate from Proposition 2.

Case 2 - Affiliated Private Value Model

In the private value model, the left-hand side of (4) is simply vH
vL

which is constant over the number
of bidders. The likelihood ratio on the other side is as in the mineral rights model, and its limit
as N → ∞ is given by (6) above. To complete the proof, we prove below that the ratio pL(0)

pH(0)
is

8



increasing in N. To emphasize its dependence on N, we rewrite (5) as

pL (0; N)

pH (0; N)
=

M
∑

m=1
ξL (m)

M
∑

m=1
ξH (m)

,

where
ξk (m) = qk (θm) (1− αm)

N−1 , t = L, H. (7)

Note that the ratio

ξL (m)

ξH (m)
=

qL (θm)

qH (θm)
=

1− αm

αm
·

M
∑

x=1
q (θx) αx

M
∑

x=1
q (θx) (1− αx)

is decreasing in m by affiliation.
To see how pL(0; N)/pH(0; N) varies over N, consider next the ratio for N + 1:

pL (0; N + 1)
pH (0; N + 1)

=
qL (θ1) (1− α1)

N + · · ·+ qL (θM) (1− αM)N

qH (θ1) (1− α1)
N + · · ·+ qH (θM) (1− αM)N ,

or with ξk(m) defined in (7), we can simplify it further into

pL (0; N + 1)
pH (0; N + 1)

=

M
∑

m=1
ξL (m) (1− αm)

M
∑

m=1
ξH (m) (1− αm)

.

The proof is done if we can show that

pL (0; N + 1)
pH (0; N + 1)

>
pL (0; N)

pH (0; N)
,

that is,
M
∑

m=1
ξL (m) (1− αm)

M
∑

m=1
ξH (m) (1− αm)

>

M
∑

m=1
ξL (m)

M
∑

m=1
ξH (m)

. (8)

The key here is that both ξL(m)
ξH(m)

and (1− αm) are decreasing in m. The following lemma establishes
(8) and hence completes the proof.

Lemma B.1. Let M be a positive integer and {δm}M
m=1, {xm}M

m=1, and {ym}M
m=1 denote sequences with

all strictly positive terms (i.e., δm, xm, ym > 0 ∀ m) such that δm−1 > δm and xm−1
ym−1

> xm
ym

for all
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m = 2, · · · , M. Then we have
M
∑

m=1
δmxm

M
∑

m=1
δmym

>

M
∑

m=1
xm

M
∑

m=1
ym

. (9)

PROOF OF LEMMA B.1: In what follows, we will repeatedly use the fact that whenever A, B, a, b >

0 and A/a > B/b, we have
Aq + B
aq + b

>
A + B
a + b

(10)

for q > 1 (this is easy to prove by differentiating the left-hand side with respect to q).
We prove the lemma using induction. First, (9) is clearly true if M = 2: If δ1 > δ2 and x1

y1
> x2

y2
,

we have
δ1x1 + δ2x1

δ1y1 + δ2y1
=

δ1
δ2

x1 + x2
δ1
δ2

y1 + y2
>

x1 + x2

y1 + y2
,

where the inequality uses (10).
Fix an integer M > 2. As an induction hypothesis, suppose that (9) holds when the summation

is taken from m = 2 to m = M:
M
∑

m=2
δmxm

M
∑

m=2
δmym

>

M
∑

m=2
xm

M
∑

m=2
ym

,

whenever δm−1 > δm and xm−1
ym−1

> xm
ym

for all m = 3, · · · , M. Then, taking the summation from
m = 1, we can write

M
∑

m=1
δmxm

M
∑

m=1
δmym

=
δ1x1 + δ2

(
x2 +

δ3
δ2

x3 + · · ·+ δM
δ2

xM

)
δ1y1 + δ2

(
y2 +

δ3
δ2

y3 + · · ·+ δM
δ2

yM

) . (11)

Let
χ :=

x2 + x3 + · · ·+ xM

x2 +
δ3
δ2

x3 + · · ·+ δM
δ2

xM
. (12)

Since δk
δ2

< 1 for all k = 3, ..., M, we have χ > 1. Using this defitition, we can write the term in the
parantesis in the nominator of (11) as:

x2 +
δ3

δ2
x3 + · · ·+

δM

δ2
xM =

1
χ
(x2 + x3 + · · ·+ xM) . (13)

Since
(

1, δ3
δ2

, δ4
δ2

, · · · , δM
δ2

)
is a decreasing sequence, the induction hypothesis gives:

x2 +
δ3
δ2

x3 + · · ·+ δM
δ2

xM

y2 +
δ3
δ2

y3 + · · ·+ δM
δ2

yM
>

x2 + x3 + · · ·+ xM

y2 + y3 + · · ·+ yM
,
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which we can rearrange as

y2 +
δ3

δ2
y3 + · · ·+

δM

δ2
yM <

x2 +
δ3
δ2

x3 + · · ·+ δM
δ2

xM

x2 + x3 + · · ·+ xM
y2 + y3 + · · ·+ yM

=
1
χ
(y2 + y3 + · · ·+ yM) , (14)

where the last equality uses (12). Plugging equality (13) and inequality (14) in (11) gives

M
∑

m=1
δmxm

M
∑

m=1
δmym

>
δ1x1 +

δ2
χ (x2 + x3 + · · ·+ xM)

δ1y1 +
δ2
χ (y2 + y3 + · · ·+ yM)

=

δ1χ
δ2

x1 + x2 + · · ·+ xM
δ1χ
δ2

y1 + y2 + · · ·+ yM
>

M
∑

m=1
xm

M
∑

m=1
ym

,

where the last inequality uses (10) and the facts that δ1χ
δ2

> 1 (since δ1 > δ2 and χ > 1) and that
x1
y1

> x2+···+xM
y2+···+yM

(since x1
y1

> xm
ym

for all m = 2, · · · , M). �

C. Proof of Proposition 6

If vHqH (θ1) ≥ vLqL (θ1), then by Propositions 1 and 3 in the main text both standard and all-pay
auctions result in an efficient allocation for all N. Therefore, the first item of Proposition 6 follows
from Lemma 3, which states that the bidder rent is higher in the standard auctions than in the
all-pay auction.

If vHqH (θ1) < vLqL (θ1), then by Propositions 2 and 3 the equilibrium is non-monotonic in the
all-pay auction for large N, in particular, the equilibrium bidding distributions for both types of
players are intervals containing 0. To prove the second item of Proposition 6, we need to show
that there is a bid b′ > 0 such that if only high types bid above b′ whenever N ≥ N′ for some
N′ < ∞, then there exists δ > 0 such that by bidding b′ a low type earns an expected payoff of at
least δ. In this case, we can conclude that there exists an ε > 0 such that Pr{b̃L

N > b′} > ε, where b̃L
N

is the maximal bid by a low type bidder in a game with N bidders. Since also Pr{b̃H
N < b′} ≥ b′

vH
,

there is a strictly positive probability that the low type wins, and the claim follows.
Any b′ < vH is in supp[FH

∗,N ] for N large enough. Hence for such b′, we have UH
∗,N = 0. Suppose

that only high types bid above b′. Then we have

M

∑
m=1

qH (θm)Eπm,N
(
b′
)
=

b′

vH
, (15)

where πm,N (b′) is the (random) probability of winning with bid b′in state m if there are N bidders,
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i.e.
πm,N

(
b′
)
= FH

∗,N
(
b′
)NH

m,N ,

where NH
m,N is the (random) number of high types in state m if the total number of bidders is N.

By the law of large numbers,
NH

m,N
N → αm almost surely. Hence

πm,N
(
b′
)
→ FH

∗,N
(
b′
)αm N

in probability. It follows from this that

πm,N
(
b′
)
→

(
π1,N

(
b′
)) αm

α1

and therefore, noting that limb→0 πm,N (b) = 0 for all m, and α1 < αm for m > 1, we have

lim
k→∞

lim
N→∞

πm,N
(
b′k
)

π1,N
(
b′k
) = 0, (16)

where {bk}∞
k=1 is a sequence with b′k → 0. Combining (15) and (16), we have

lim
k→∞

lim
N→∞

vHqH (θ1)
π1,N

(
b′k
)

b′k
= 1,

which, along with our assumption vHqH (θ1) < vLqL (θ1), implies that

lim
k→∞

lim
N→∞

vLqL (θ1)
π1,N

(
b′k
)

b′k
=

vLqL (θ1)

vHqH (θ1)
> 1.

The inequality means that for small enough b′, low types get a strictly positive payoff. This
contradicts the fact that low type must obtain a payoff of zero in equilibrium. It follows that
limk→∞ limN→∞ Pr{b̃L

N > b′k} > 0. Noting that for any b′ > 0, Pr{b̃H
N < b′} ≥ b′

vH
, we then note

that the probability that the low type wins the auction is bounded away from zero. �
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