
Dynamic Bilateral Trading in Networks∗

Daniele Condorelli†

d-condorelli@northwestern.edu

November 2009

Abstract

I study a dynamic market-model where a set of agents, located in a network that

dictates who can trade with whom, engage in bilateral trading for a single object under

asymmetric information about the private values. My equilibrium characterization

provides new insights into how economic networks shape trading outcomes. Traders

who link otherwise disconnected areas of the trading network become intermediaries.

They pay the object at their resale values but, if they have a high value, they consume

and extract a positive rent. All other traders, except for the initial owner of the object,

make zero profit. The object travels along a chain of intermediaries before someone

consumes it. Intermediaries who are located later in the trading chain have a lower

probability of acquiring the object, but they pay lower prices for it. Compounding,

early intermediaries gain a payoff advantage over late ones. Adding links to the network

increases downstream competition and it is beneficial to the initial owner. However,

it has ambiguous effects on the other traders and may be detrimental to total welfare,

when information is asymmetric. More generally, inefficient outcomes are possible if

information is not complete and the network is not fully connected.

∗Special thanks go to Andrea Galeotti and Philippe Jehiel who read several earlier drafts and provided

suggestions that improved the paper substantially. I also thank Yeon-Koo Che, Rakesh Vohra and Asher

Wolinsky for several insightful conversations. Finally, I thank all seminar participants at Northwestern

University for their helpful comments before, during and after my presentation.
†Department of Economics at University College London (Ph.D. candidate) and Department of Manage-

rial Economics and Decision Sciences at Northwestern University (visiting scholar). Contact address: 2001

Sheridan Road, Evanston, IL 60208, USA. Telephone:+1 847-644-1785. Website: http://www.kellogg.

northwestern.edu/faculty/condorelli/

1

mailto:d.condorelli@ucl.ac.uk
http://www.kellogg.northwestern.edu/faculty/condorelli/
http://www.kellogg.northwestern.edu/faculty/condorelli/


1 Introduction

I consider a finite-horizon dynamic model where a set of agents located in an exogenous

network engage in bilateral trading for a single object, initially owned by one of them. Traders

are risk neutral and have a high or low monetary evaluation for the object, which is private

information. Values are drawn from the same support and are independently but possibly

asymmetrically distributed. In each round the owner of the good can either consume the

good, make a take-it-or-leave-it offer to a single agent located in his neighborhood, or wait

one round. If an offer is made and accepted, the terms of trade are enforced. Thereafter,

a new round of trading starts. The game ends if someone consumes the object or a known

deadline is reached. Traders do not discount the future and all actions are publicly observed.

This model provides a novel framework to investigate how the existence of a network of

potential transactions, in which agents are embedded, affect their trading and bargaining

outcomes under asymmetric information. In particular, the model captures well the main

features of over-the-counter (OTC) trading in financial instruments. OTC refers to bilateral

trading between buyers and sellers, as opposed to trading in centralized exchanges.1 Products

such as credit default swaps, forward rate agreements, and exotic options are almost always

traded in this manner. These instruments are often associated with a specific maturity

date and can change hands several times before reaching a consumer. Furthermore, bilateral

transactions are not guaranteed by the stock exchange, and are subject to counter-party risk.

Therefore, bonds of trusts between trading firms are particularly important, and represent

the main source of the trading network structure in which OTC transactions take place.2

A number of insights emerge from the characterization of a set of perfect Bayesian equi-

libria for the market game outlined above. Two types of active traders arise endogenously

in each equilibrium, final customers and intermediaries.3 Final customers receive only offers

at a high price, that they accept only when they have a high value for the object, and leave

them with zero profit. Intermediaries acquire the object at lower prices, equal to their resale

values. They resell the object in their neighborhood if their value is low, while they consume

1The notational amount of OTC derivatives outstanding at the end of 2008 exceeded 500 trillion dollars,

according to statistics from the Bank for International Settlements.
2See Allen and Babus (2009) for a survey of papers on financial networks. This model could be applied

also to international trading networks (e.g. see Rauch (1999), (2001) and Casella and Rauch (2002))
3A trader is active if he takes at least one action with positive probability along the equilibrium path.
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it and make a positive profit, if their value is high. Whether a trader becomes an intermedi-

ary, a final customer or remains inactive is determined jointly by the prior information and

the network structure. Traders on the periphery of the network and high value traders tend

to become final customers, while players that are essential to provide access to valuable areas

of the network or have a low expected value become intermediaries (see subsection 5.1). This

is in line with a large body of empirical evidence illustrating that bridging two areas of an

economic network that would otherwise be disconnected provides a payoff advantage. See

for example the analysis of structural holes in Burt (1992).

In equilibrium, the object travels along a chain of intermediaries who make offers to final

customers, until consumption takes place. Intermediaries acquiring the object later have a

smaller probability of realizing a profit upon consumption. Though, the price that they pay

is lower, because the resale values decrease as rounds pass, every time an offer is rejected.

In general, the first effect dominates the second, and intermediaries who acquire the object

earlier in the trading chain are better off than those who acquire it later (see subsection 5.2).4

Ex-post efficiency is attained under complete information (see section 3), when the net-

work is fully connected, or if players are ex-ante identical. However, in general, the interplay

between asymmetric information and network structure can generate inefficiencies (see sub-

section 5.4). In fact some high value player might remain inactive and never receive an offer,

even if all other traders have a low value for the object.

Comparative statics show that the initial owner is better off when the network becomes

more connected. More generally, an increase in connectivity will increase, ceteris paribus,

the resale value of each trader. However, for traders other than the initial owner, an increase

in the resale value has ambiguous effects. It may harm an intermediary, because it increases

the price that he has to pay for the object. It may be beneficial to a final customer, if it

changes him in to an intermediary. Moreover, I show with an example that an increase in

connectivity can also represent a source of inefficiency (see subsection 5.3).5

This paper is a first attempt to introduce asymmetric information into a dynamic model

4Intermediaries can also receive other offers earlier in the game, before they acquire the good for resale,

at a price that they will only accept if they have a high value. When this is the case, a clear-cut payoff

ranking, favoring early over late intermediaries, is available only if traders are ex-ante identical.
5In addition, subsection 6.1 analyzes networks with a large number of traders and subsection 6.2 charac-

terize optimal networks.
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of exchange in networks. Its main contribution is to the literature on the impact of network

structures on market outcomes, a topic which has not been explored exhaustively.6 Kran-

ton and Minehart (2001) was perhaps the first paper to provide a non-cooperative model

of exchange in a network. They study networks of buyers and sellers under asymmetric

information. Sellers use auctions to sell their goods, after which no further trade takes place.

Therefore, intermediation and resale do not figure in their model. Blume et al. (2009) study

a two stage game of complete information, where intermediaries, sellers and buyers coexist.

Intermediaries choose bid and ask prices to offer to sellers and buyers to whom they are con-

nected. Traders accept or reject their offers. Nava (2009) develops a static model of Cournot

competition in networks, under complete information. Players who buy sell and retail are

determined endogenously in equilibrium. In his model prices increase along the supply chain

because each trader has local market power.7 In contrast with these three papers, the ap-

proach to trade in my paper is dynamic and the market model is fully decentralized (i.e.

only bilateral negotiations are allowed).

The most closely related dynamic model is Gale and Kariv (2007). They analyze trade in a

network under complete information. Their main result, that an efficient outcome is attained

in the long run, is in line with my full information finding in proposition 1 (see section 3).8

The present paper is also related to the literature on decentralized markets with matching

and bargaining under complete information, initiated by Rubinstein and Wolinsky (1985).

Calvo-Armengol (2003) and Corominas-Bosh (2004) were the first to consider an environment

where the matching technology is constrained by a network structure.9 In contrast to this

set of papers, in my paper the analysis is not restricted to bipartite buyer-seller networks,

and there is both incomplete information and resale of goods in equilibrium.

6As Jackson (2008) puts it in a section on networked markets “[...] there is much left to be learned in

this extensive area of application where network play such a central and critical role.”
7Kakdade et al. (2005) and (2004) adopt a static and centralized competitive equilibrium perspective. In

their models traders are price takers and prices are defined by market clearing conditions.
8My work is also related to Jehiel and Moldovanu (1999). They study dynamic resale processes with

externalities under complete information, in a setting where everyone can trade with everyone else. Zheng

(2002) and Calzolari and Pavan (2006), on the other hand, analyze models including resale under asym-

metric information. Their focus is non mechanism design and their informational structure is more general.

However, they do not address the limitations imposed by a network structure.
9Recent contributions to this area include Polanski (2007a), Abreu and Manea (2009) and Manea (2009).

Furthermore, Polansky (2007b) considers a model of information pricing in networks, with random matching.
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2 Model

The economy consists of a set of traders, N ≡ {1, . . . , n}, and two types of goods: money,

which is distributed to all players in large quantity, and a single indivisible object, initially

owned by agent 1. Each trader i is risk neutral and has a binary private monetary evaluation

for the good, vi, normalized to be either zero or one. Therefore, if trader i consumes the good

with probability xi and expects to pay mi, then his utility is xivi −mi. The common prior

probability that vi = 1 is denoted πi ∈ [0, 1], and values are assumed to be independently

distributed.

Traders are located in a connected and undirected network G = (N,E), where the set

of players coincides with the set of vertices N , and E ⊆ 2N×N is the set of edges between

pairs of players. Existence of an edge between two players means that trade between them

is possible. Traders i and j are neighbors if {i, j} ∈ E (also written ij ∈ E). A network is

undirected if ij ∈ E implies that ji ∈ E. A path from i to j in G is a non-empty graph where

the set of vertices is {i, b1, . . . , bm, j} ⊆ N and the set of edges is {ib1, b1b2, . . . , bmj} ⊆ E.

I refer to a path by the ordered sequence of its vertices b(i, j) = (i, b1, . . . , bm, j), and refer

to the length of the path by the cardinality of the set of edges. A network G is connected if

there is a path between every pair of players.10

The game consists of a finite number of rounds T . Agents do not discount the future

and all actions taken by all traders are observed by everyone in the network. Each round t

develops in a number of stages. Denote by st ∈ N the owner of the good at the beginning

of round t. First, st can make a take-it-or-leave-it offer to one of his neighbors, or make no

offer. In the former case, I denote the chosen neighbor it and the price asked pt ∈ [0, 1].

Second, if st makes offer (it, pt), then it decides whether to accept or reject it. If the offer

is accepted, st transfers the object to it and receives a payment pt from it. Finally, at the

end of the round, the current owner of the object decides whether or not to consume it. If

the object is consumed, the game ends. Otherwise, the game proceeds to round t + 1. The

game also ends if it reaches the end of round T . Of course, mixed strategies are allowed

at all stages. Everything but private values is common knowledge, including the network

structure.

10The assumption of connectedness is without loss of generality. No activity occurs in an area of the

network that is disconnected from the initial owner of the object.
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A triple 〈G,π, T 〉 is a network trading game, which is an extensive form games with

observed actions, independent types and a common prior.11 The adopted solution concept is

perfect Bayesian equilibrium. Informally, a perfect Bayesian equilibrium is a strategy profile

and a belief system such that the strategies are sequentially rational given the belief system,

and the belief system is consistent with Bayesian updating, wherever possible, given the

strategy profile. See Fudenberg and Tirole (1991) for a formal definition.12

Some of the assumptions I make can be relaxed. First, most of the results extend to

the case in which, in case of sale, the seller must bear a transaction costs, which is edge

specific and depends on the identity of the buyer and the seller. From here on, therefore,

it is intended that each result, unless otherwise specified in a footnote, will be valid in

a setting with transaction costs, perhaps after minor modifications. Second, discounting

can be accommodated easily within a finite horizon model, and, again, most of the result

would hold with only slight modifications. Third, full observability of prior actions is not

strictly necessary for the survival of the specific equilibria that I construct. In fact, because

generically each player play a pure strategy along the equilibrium path, knowing the round

of the game in which an offer is received and the identity of the seller making that offer will

provide a sufficient statistic of all past actions.

3 Efficiency and Complete Information Games

This section develops the benchmark case of trading games played under complete infor-

mation. As a preliminary step, I present the standard notion of efficiency tailored to this

environment. If the profile of values is known, a feasible outcome is an allocation of the goods

11This is a Bayesian game of incomplete information and, for each player, the only two types à la Harsanyi

are the payoff types, either zero or one.
12The notion of Perfect Bayesian Equilibrium (PBE), which is extensively used in economics, imposes as

assumptions about the belief systems a number of propositions which appear in Kreps and Wilson (1982)

treatment of Sequential Equilibirum (SE) as consequences of a single consistency requirement. I adopt

the notion of PBE for two reasons. First, there are some technical difficulties in extending the sequential

equilibrium notion to infinite games. Second, the set of SE and the set of PBE would coincide in my

environment with only two possible types if the set of possible prices was discrete (see Fudenberg and Tirole

(1991)). Therefore I conjecture that, if SE was appropriately defined, the two sets would coincide also in the

limit (see Fudenberg and Levine (1986)).
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to the players that is achievable within T rounds of sequential trade. An outcome is Pareto

efficient (or simply efficient) if it is feasible and there is no alternative feasible outcome that

would make at least one trader strictly better off without making any other trader worse off.

Because utility is linearly transferable through monetary exchanges, an efficient outcome is

one where the object is allocated to a value one player, if any, who can be reached by the

object in at most T rounds of trade.

The first and second fundamental theorems of welfare economics hold trivially in this

economy, since competitive equilibrium outcomes and efficient outcomes coincide.13 The

next proposition states that, even when trading is decentralized, an efficient outcome is

always attained under complete information. The proof is in appendix B.

Proposition 1 (Equilibrium in the Full Information Game). Assume that values are known,

πi ∈ {0, 1} for all i ∈ N . In every network trading game 〈G,π, T 〉 every sub-game perfect

equilibrium outcome is efficient.

The equilibrium takes the following form. Player 1, also hereinafter referred to as the

initial owner, consumes the good if v1 = 1, or no other player with has value one can be

reached in less than T rounds of trade. Otherwise, denote by OT the set of traders other

than 1 who have value one and can be reached in less than T rounds. For each i ∈ OT and,

for each path (1, b1, . . . , bm, i) with length less than T , there is a subgame perfect equilibrium

that takes the following form. Trader 1 sells the good to b1, b1 sells the good to b2 and so

on, until player i ∈ OT buys the good from bm and consumes it. The price along the trading

path is constant and equal to one. Every trader other than the initial owner makes zero

profit

The main insight from the analysis is that a network structure does not generate inef-

ficiency per se, if information is complete. This is in line with other work on networked

economies in settings without informational asymmetries (e.g. Blume et al. (2009) and Gale

and Kariv (2007)).14

13Competitive equilibria outcome can be computed in the standard way, allowing for the technical limita-

tions imposed by the network structure.
14In general, as Gomes and Jehiel (2005) analysis implies in a related environment, in the absence of

consumption externalities, dynamic processes of social and economic interaction under complete information

tend to converge in the long run to an efficient outcome.
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4 Trading Equilibria

Let us now focus on the case where information on values is asymmetric. The next theorem

is the first main result of this paper.

Theorem 1 (Equilibrium Existence). A perfect Bayesian equilibrium exists for each network

trading game 〈G,π, T 〉.15

The proof is constructive and follows the backward induction logic (see appendix A,

where transaction costs are explicitly considered). It proceeds in three steps. First a unique

equilibrium for a game starting in the last round T is constructed, for every possible owner in

T and for any state of beliefs. Second one or more equilibria for an arbitrary game starting

in round t − 1 are constructed for each possible owner and profile of beliefs, assuming that

the set of equilibria for a game starting in t has been computed. Finally, an equilibrium for

the whole game is constructed by induction. Observe that equilibrium uniqueness can not

be guaranteed generically, unless the set of possible networks is appropriately restricted.

The next example clarifies the equilibrium construction algorithm. The exposition in-

cludes a number of observations related to the general properties of trading equilibria, which

are instrumental to the discussion in section 5.

Example 1 (Equilibrium Construction). Players {1, 2, 3, 4} are located in a network, where

E = {12, 13, 23, 24} and π = {0, π, 1/8, 1/2} (see Figure 1). Assume that T = 3 and that

player 1 is the initial owner. The game is solved backward, starting with round T .

Round T. Take any arbitrary history that led to round T , and assume that µT is the state

of beliefs and the owner is player 1, that is sT = 1. Since T is the last round, both players 2

and 3 will accept every price pT ≤ 1 if they have value one, while they will reject every price

greater than zero if they have value zero.

Therefore, in equilibrium, player 1 offers the object at price pT = 1 to player 3 if µT3 >

µT2 . Otherwise, he offers the object at pT = 1 to player 2. Player 1’s expected payoff is

max{µT3 ;µT2 } and all other players make zero profit. An analogous argument can be made to

obtain an equilibrium when sT is either 2, 3 or 4.

15Equilibrium existence,to my knowledge, is not guaranteed by existing results because the game is dynamic

and the action space is not finite.
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Figure 1: Trading Network in Example 1

Round T-1. Let µT−1 be the state of beliefs at the beginning of round T − 1 and assume

first that sT−1 = 1. Hereafter, I can assume that µst = 0, because if vst = 1, then st would

have consumed the good instead of putting it up for sale. In general, I can make the following

two observation.

Observation 1. In any round t, it is a dominant strategy for a trader i who acquires the

good, to consume it only if vi = 1, and to put it up for sale only if vi = 0.

Observation 2. It follows from Bayesian updating that, whenever a trader puts the good for

sale, he must have value zero. That is, µtst = 0 for all t and st.

Player 1 can make an offer to either 2 or 3, or make no offer, in which case he remains

the owner in round T and beliefs do not change. To obtain an equilibrium it is necessary

to pin down the acceptance strategies of players 2 and 3, for any price that may be offered
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to them. The analysis in round T shows that rejecting an offer in T − 1 will provide zero

utility to 2 and 3, because the owner in round T will again be player 1. Therefore, if they

have value one, it is a best reply for 2 and 3 to accept any price pT−1 ≤ 1.

If they have value zero, a best reply for 2 and 3 is to accept any price below or equal to

their value from reselling the object in period T . The resale value of a player i in round

t, denoted V ti , depends on the network configuration and on the state of beliefs. If player i

accepts an offer in round T − 1 and puts the object up for sale, he is signalling a value zero

and therefore µTi = 0. The beliefs about the seller and the other players remain unchanged.

Therefore VT2 = max{µT−1
3 ;µT−1

4 } and VT3 = µT−1
2 . This logic applies throughout the game,

as stated in the two observations below.

Observation 3. In equilibrium a trader i with vi = 0 accepts an offer in round t if and only

if the price offered pt is equal to or below his resale value in round t+ 1, denoted V t+1
i .

Observation 4. In equilibrium, a buyer i with vi = 1 will always accept any price pt ≤ V t+1
i ,

or otherwise he will reveal his type and in equilibrium will make zero profit for sure.

Having fixed the strategies of the potential buyers, the following simple observations apply

to the strategies for sellers.

Observation 5. If i’s acceptance probability is constant in the interval [pl, ph], then it is

never optimal for a seller to offer the object to i at any price pt ∈ [pl, ph] such that pt 6= ph.

Observation 6. In any round t, it can never be optimal for a seller st to offer the object

too a trader i at a price below i’s resale value, that is V t+1
i .

Therefore, if player 1 is the owner in round T − 1, he only needs to consider four possible

offers, in addition to not making any offer:

(i) Player 1 asks pT−1 = 1 to player 2. In this case player 2 accepts if and only if v2 = 1.

In case of a refusal player 1 assumes that µT2 = 0 and in round T offers pT = 1 to

player 3. The expected payoff for player 1 is: µT−1
2 + (1 − µT−1

2 )µT−1
3 . The expected

payoff for 2 and 3 is zero.

(ii) Player 1 asks pT−1 = 1 to player 3. In this case player 3 accepts if and only if v3 = 1.

In case of a refusal player 1 offers pT = 1 to player 2 in round T . The expected payoff

for player 1 is: µT−1
3 + (1− µT−1

3 )µT−1
2 . The expected payoff for 2 and 3 is zero.
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(iii) Player 1 asks pT−1 = VT2 to player 2. Player 2 accepts for sure and his expected profit

is 1− VT2 if he has value one and zero otherwise. Player 1 obtains VT2 .

(iv) Player 1 asks pT−1 = VT3 to player 3. In this case player 1 obtains VT3 . Player 3 obtains

1− VT3 if v3 = 1 and zero otherwise.

Player 1 is indifferent between offers (i) and (ii). Moreover, offer (iv) is always dominated

by offer (i) and (ii). Finally, not making any offer is also strictly dominated by (i) and (ii).

Therefore, an optimal strategy for player 1 is either (iii) or either of (i) and (ii), depending

on the state of beliefs. To sum up, an equilibrium is obtained for the continuation game

starting in T − 1 with sT−1 = 1. Analogously, an equilibrium can be obtained when the seller

at T − 1 is another player than 1.

Round T − 2 = 1. Let us now analyze the entire game. Therefore, let µ1 = π and s1 = 1.

The analysis is developed under two assumptions. Under assumption A the expected value

of player 2, π2 = π, is relatively low, while under assumption B it is relatively high.

Assumption A: 1/2 > 1/8 + 7/8π. First, we need to compute the equilibrium acceptance

strategies for traders 2 and 3. Consider 2 first. If v2 = 0, according to observation 3, player

2 accepts every price below or equal to VT−1
2 = 1/2 + 1/16 = 9/16.16 If v2 = 1, by accepting

an offer at a price p1 he gets 1 − p1, whereas if he rejects the offer he gets a payoff that

can be computed by looking at round T − 1, for the case where 1 is the owner in T − 1,

µT−1
2 is determined according to Bayesian updating and µT−1

−2 = µT−2
−2 . Let V T−1

2 (µT−1
2 ) be

this payoff. In this case V T−1
2 (µT−1

2 ) = 1/2 for all µT−1
2 ≤ π2, because it is always optimal

in round T − 1 for player 1 to offer player 2 a price of 1/2. In fact, under assumption A,

1/2 > 1/8 + 7/8π, which is the maximum that player 1 could achieve by making a different

offer in T − 1. Therefore an optimal strategy for player 2 is to accept every p1 ≤ 9/16 and

reject higher prices.

Next, consider player 3. If v3 = 0, player 3 accepts every price below or equal to his resale

value VT−1
3 = max{π, 1/2} = 1/2, where the second equality follows from assumption A.17 If

16This is the expected payoff that player 2 obtains in the game starting at round T − 1, with sT−1 = 2

and µ2
−2 = π−2, µ

2
2 = 0. In this subgame player 2 resells at price one to 3 and 4.

17This is the expected payoff that he will obtain in the game starting at round T − 1, with sT−1 = 3 and

µ2
−3 = π−3, µ

2
3 = 0. In this subgame trader 3 asks price 1/2 to 2, who then resells to 4 at price one.
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v3 = 1, V T−1(µT−1
3 ) = 0 for any µT−1

3 because player 3 will obtain no offer in round T − 1.

Therefore, it is optimal for player 3 with v3 = 1 to accept every price p1 ≤ 1.

Equilibrium path under assumption A. In round one player 1 offers p1 = 1 to player 3, who

accepts only if v3 = 1, and thereafter consumes. In case of a refusal, player 1 offers p2 = 1/2

to player 2, who accepts regardless of his value, and consumes if v2 = 1. If v2 = 0, in the

last round, player 2 asks for a price p3 = 1 to player 4, who accepts only if v4 = 1.

Assumption B: 1/2 < π. The acceptance strategy of player 3 is computed as under As-

sumption A. The only difference is that the resale value of 3 will now be equal to π.

Instead, when v2 = 1 player 2 will not play a pure strategy after an history in which he

obtains an offer in round T −2. To see this, note that, under assumption B, the best strategy

for player 1 in round T − 1 if he believes that player 2 has value one with probability π, is to

ask pT−1 = 1 from player 3 and, if refused, to ask pT = 1 from player 2; hence, V T−1
2 (π) = 0.

On the other hand, if player 1 in round T − 1 believes that player 2 has value zero, when

in reality player 2 has value one, the expected payoff of 2 is V T−1
2 (0) = 1/2 > V T−1

2 (π). It

follows that it can not be part of an equilibrium for player 2 with v2 = 1 to mimic a value zero

trader and refuse all prices above VT−1
2 = 9/16. If he adheres to this strategy he obtains zero

profit, whereas accepting a price p ∈ (9/16, 1) would provide a positive payoff. Moreover, it

cannot be part of an equilibrium for 2 with v2 = 1 to accept with probability one offers above

9/16, because if he rejects, then the seller would believe that he has value zero and 2 would

find this profitable.18

Therefore, in this case the acceptance strategy of player 2 with v2 = 1 must involve mixing.

In particular, player 2 accepts any price below or equal to 9/16, and he randomizes his

acceptance decision for all prices in (9/16, 1], in such a way that, upon refusal, the seller

changes his belief about 2 to µT−1
2 = 3/7. However, for this to be a best reply player 2 must be

indifferent between accepting and rejecting an offer at a price p1 in that interval. Therefore,

the payoff of player 2, upon refusing price p1, must be equal to 1 − p1. This can happen

because if player 1 assumes µT−1
2 = 3/7, then he is indifferent between two courses of action

starting in T − 1: either asking price p2 = 1/2 from 2, or asking price pT−1 = 1 from 3

and in case of refusal asking price pT = 1 from 2 in round T . Therefore, he can randomize

18Note that player 2 cannot refuse a price below or equal to 9/16 as otherwise he would signal that he has

value one.
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between the two options, as a function of the price posted to 2 in T − 2 in such a way that

player 2 becomes indifferent between accepting and rejecting at T − 2.19

Equilibrium path under assumption B. Player 1 will ask a price of one from player 3 in

round T − 2, who will accept only if he has value one. In case of a refusal player 1 will ask

a price of one from player 2 in round T − 1. In round T − 1 player 2 will accept any price

below or equal to 1.

It should be emphasized that the outcome of the game under assumption A is ex-post

efficient, while it is inefficient under assumption B. In fact, in the latter case, player 4

never gets an offer, even if he happens to be the only player in the game with value one.

Therefore, in contrast to the complete information case, ex-post efficiency is not guaranteed

under incomplete information. This point is discussed in more detail in section 5.4.

Even though in the above example it is assumed that T = 3, increasing the number of

rounds to four or more will not change the set of equilibrium payoffs. The idea is that,

because learning is irreversible, the number of payoff relevant offers that can be made in

any equilibrium of any game, before everyone learns everything, is finite. Therefore, the

equilibria constructed according to Theorem 1 are not sensitive to the time horizon of the

game, when this is sufficiently long.20

Proposition 2 (Time Stability of Equilibria). For each given G and π there exist a number

of rounds T ∗ such that, for each T ≥ T ∗ the set of equilibrium payoffs in the game 〈G,π, T 〉,
computed according to the equilibrium construction algorithm in appendix A, coincides with

the set of equilibrium payoffs in the game 〈G,π, T ∗〉.

This property is exploited in the next section. I refer to it either by using T ∗ rather than

T in the definition of a network trading game, or by stating that the number of rounds is

sufficiently large.

19This example also shows that Markov equilibria will not always exist in network games, as sometimes

the seller’s future price will have to depend on the present one, which does not affect the continuation payoffs

in the game that starts in the following round.
20This property is common to other settings with a fixed deadline and no discounting (see e.g. Jehiel and

Moldovanu (1999)).
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5 Equilibrium Analysis

This section characterizes the main properties of equilibrium outcomes. From hereon, I focus

on equilibria where sellers play pure strategies along the equilibrium path. Such equilibria

always exist, while equilibria where sellers randomize their decisions along the equilibrium

path are non-generic. In fact, they can be eliminated by introducing transaction costs and

thereafter appropriately restricting the set of possible priors and transaction costs, without

reducing the dimensionality of the set where these parameters are defined.21

In what follows, I discuss first how the location of a trader in the trading network deter-

mines the role that he will play in the trading process and the terms of trade he will face.

Next, I provide results on the distribution of payoffs among traders and then I perform some

comparative statics. Finally, I discuss efficiency under incomplete information. All proofs

are in appendix B.

5.1 Final Customers and Intermediaries

In a given equilibrium, a trader is active if he takes at least one action with positive proba-

bility. Player 1 is always active and makes a strictly positive expected profit. Active traders

other than the initial owner can be divided in two classes: final customers and intermediaries.

Final customers are active traders who only get offers at price one. This implies that final

customers never acquire the object if they have value zero, and their payoff is always zero.

Intermediaries are active traders who, at some point in the game, get an offer such

that they can buy the object, even if they have value zero, in order to resell it in their

neighborhood. In contrast to the complete information case, under asymmetric information

an intermediary with value one obtains a positive expected profit. An intermediary with

value zero, instead, makes zero profit, because no seller will ever ask him to pay a price

below his equilibrium resale value (see observations 3 and 6).22

21The analysis could be extended to equilibria where sellers mix within offers along the equilibrium path

without much difficulties. However an additional machinery would be needed to present the results.
22The fact that only intermediaries extract a positive rent is a consequence of the binary value assumption.

In a more general setting, final customers would be also able to extract a lower but still positive information

rent, as standard in asymmetric information environments.
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To summarize, the following Table 1 reports the sign of the interim payoff (value one in

the second and value zero in the third column) and the ex-ante payoff (fourth column) for

player 1, final customers and intermediaries.

Table 1: Interim and Ex-ante Equilibrium Payoffs

Roles (πi > 0) Ui(1) Ui(0) Ui

Initial Owner 1 ≥ 0 > 0

Intermediary ≥ 0 0 ≥ 0

Final Customer 0 0 0

The distinction between intermediaries and final customers is exhaustive for each equilib-

rium of network trading games, as stated in the following proposition.

Proposition 3. In every equilibrium of a network trading game 〈G,π, T 〉, every active

player is either the initial owner, an intermediary or a final customer.

The idea of as follows. Whenever a player is not an intermediary, he will only obtain

offers that he will accept exclusively if he has value one. However, if this is the case, the last

of these offers must be at price one, otherwise that seller could improve his profit. Therefore,

anticipating this, previous sellers will also make offers at price one.

Whether a player is either active or not and whether he is either a final customer or an

intermediary are determined endogenously in equilibrium and will depend on the complex

interaction of the exogenous variables.23 While it is difficult to derive simple conditions

that identify the roles of traders in arbitrary trading network games, there are two classes

of traders, isolated traders and bottleneck traders, whose equilibrium role in the trading

network can be more easily characterized.

A player i 6= 1 is an isolated trader of G if he is connected to only one player, that is

ij ∈ E for only one j ∈ N \ i. For isolated traders I can establish the following proposition.

Proposition 4 (Isolated Traders). In every equilibrium of any game 〈G,π, T 〉, an isolated

trader i with πi > 0 is either a final customer or an inactive trader.

23The fact that players with intermediating roles arise endogenously is in contrast with other models of

intermediation, where intermediaries are exogenously assigned to their role, as for example in Rubinstein

and Wolinsky (1987), and Blume et al. (2009).
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The idea is that players who are at the perimetry of the network will never be useful to

intermediate the good to some other area of the network. Therefore no trader will have no

interest in selling the object to them at prices lower than one.

A bottleneck trader is a trader i 6= 1 whose presence is necessary for the network to remain

connected. Formally, let G−i be the network obtained by removing node i and all his incident

edges from G.24 Player i is a bottleneck trader in G if the network G−i is not connected.

Now, let G1
−i denote the largest connected subgraph of G−i which includes player 1. Let

Gi = G−G1
−i be the connected subgraph of G which contains i and is obtained by deleting

all vertices in G1
−1 and their incident edges.25 Call Ũi(0) the maximum equilibrium payoff of

i with vi = 0 in 〈Gi,π, T ∗〉, assuming that i is the initial owner of an object.26

Proposition 5 (Bottleneck Traders). Consider a network trading game 〈G,π, T ∗〉, and

suppose that i is a bottleneck trader of G. If Ũi(0) > πi, then in every equilibrium where i is

an active player, i is an intermediary.

Proposition 5 states that a sufficient condition for an active trader to be an intermediary

is that the profit that he can extract from reselling to the part of the network for which he

provides monopolistic access is greater than his own expected value. When this is the case,

a player selling to a bottleneck trader i will always prefer to demand a price equal to the

resale value of i, and have this offer accepted for sure, rather than asking a price of one, and

selling only if i has value one.

The concept of structural hole, introduced by Burt (1992), refers to the absence of con-

nections within two groups of agents in a social network. Burt’s argument is that individuals

who fill structural holes, by offering connection between otherwise separated groups, obtain

important advantages, in economic and social terms. My analysis provides a foundation for

such advantage, explaining how individuals who are essential for connecting a valuable part

of the trading network to the initial owner may extract a larger rent than other individuals.27

24Write G−i = (N \ {i}, E−i), where E−i = {{j, j′} ∈ E : j, j′ 6= i}. In general, a network G′ is a subset

of G if it is obtained from G by removing a set of players and their incident edges.
25In example 1, player 2 is a bottleneck trader. G1

−i = ({1, 3}, {13}) and Gi = ({2, 4}, {24}).
26Observe that T ∗ is always defined specifically for the game under consideration.
27The analysis of structural holes in Goyal and Vega-Redondo (2007) adopts a surplus sharing rule that

provides an exogenous advantage to players who have an intermediating role. Hence, they consider a network

formation game and focus on whether equilibrium networks include players who fill structural holes.
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While bottleneck and isolated traders do not exhaust all possible types of players in

arbitrary trade networks, a player is either an isolated or a bottleneck trader when the

trading network is a tree, that is a graph where every pair of players is connected via a

unique path. The implications of Proposition 5 are illustrated in the following example.

1

Π1=Π

2

Π2=Π

3

Π3=Π

4

Π4=Π

5

Π5=Π

6

Π6=Π

7

Π7=Π

8

Π8=Π

Figure 2: Trading Network in Examples 2 and 3

Example 2 (Isolated Traders and Bottleneck Traders in a tree). Assume that players

1, 2, . . . , 8 are located in the network depicted in Figure 2, that T ≥ 7, player 1 is the initial

owner, and 1 > π > 0. The set of isolated traders is {3, 4, 6, 7, 8}, while {2, 5} is the set

of bottleneck traders. Note that Ũ2(0) = 1 − (1 − π)5 > π and Ũ5(0) = 1 − (1 − π)3 > π.

Therefore if player 2 and 5 are active players in equilibrium, then they are intermediaries.

It is not difficult to see that in any network that is a tree, if the number of rounds is

sufficiently large, (i) all players connected to player 1 will be active, and (ii) a bottleneck

trader will be active if and only if all other bottleneck traders in the unique path going from

player 1 to him are active intermediaries.28

28In example 2, trader 2 is active because he is connected to trader 1. Therefore trader 5 is also active.
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5.2 Payoff Ranking for Intermediaries

This section investigates how the location of an intermediary in the trading chain affect

his payoff, when he has value one.29 By trading chain I mean the ordered sequence of

intermediaries that receive offers with positive probability, at prices equal to their resale

values.30 The question is whether an intermediary who makes his first appearance early

in the trading chain achieves a higher payoff than an intermediary who appears later, or

viceversa.

Two countervailing effects are present. First, intermediaries who obtain offers in later

rounds will get them with a lower probability than intermediaries who get offers earlier in

the game. Second, offers received by intermediaries in later rounds will be at lower prices,

as formally stated in the next proposition.

Proposition 6 (Decreasing Prices). Consider a trading network game 〈G,π, T 〉. Let it and

it+k indicate two intermediaries along the trading chain, selling the object in round t and

t+ k, with k ∈ N. Let pt−1 and pt+k−1 be the price that it and it+k pay for the object, if they

receive offers, in rounds t− 1 and t+k− 1. In equilibrium, pt−1 ≥ pt+k−1 holds with equality

if and only if no other player accepts with positive probability an offer from round t to t+ k

at a price greater than pt+k−1.31

The price of the object decreases over time because, as rounds of trade take place, it

becomes known that there are fewer traders who are potentially interested in consuming

the object. This, in turn, reduces the resale value of the object, which is the price that

intermediaries are asked to pay. More formally, assume that it and it+k are two consecutive

intermediaries in the trading chain and let X(it) = {xt, xt+1, . . . , it+k} be the ordered set of

players to which it makes offers from round t to t + k − 1. Let αj indicate the probability

that player j ∈ X(it) accepts his offer. The price at which an intermediary it acquires the

29Recall that final customers and intermediaries with value zero always make zero profit.
30Recall that we consider equilibria where sellers adopt a pure strategy along the equilibrium path and

therefore the chain is well defined.
31Suppose that transaction costs were present and equal to τ for each edge of the network. In this case

the relation within prices in round t − 1 and t + k − 1 would be pt−1 + τ ≥ pt+k−1. That is, transaction

costs tend, ceteris paribus, to reduce earlier prices as the total amount of the expected transaction costs that

remains to be paid must be decreasing in time.
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good in round t− 1 is equal to his resale value, that is:

pt−1 = αxtpt + (1− αxt)αxt+1pt+1 + · · ·+ pt+k−1
∏

j∈X(it)\it+k

(1− αj)

Because the seller is rational the sequence of prices must be weakly decreasing and we can

conclude that pt−1 ≥ pt+k−1.

The decrease in price and the reduced probability of obtaining an offer are countervailing

forces, but the second dominates the first. In particular, the decrease in price is sufficient

to compensate intermediaries for the reduced probability of getting an offer induced by the

event that some final customers, who get earlier offers, have value one and consume the

object. Nevertheless, it does not compensate the later intermediary for the reduction in

probability due to the event that other intermediaries who intervene earlier in the trading

chain may themselves consume the object if they have value one.32

However, it it not possible to conclude from this observation alone that a clear-cut interim

payoff ranking exists for intermediaries with value one. In fact, an intermediary could also

receive an offer earlier in the game (i.e. before the round in which he acquires the object at

his resale value), at a price that he is supposed to accept only if he has value one. This early

offer will not change his interim payoff, because a rational seller will keep him indifferent

between accepting and rejecting. However, it will reduce the payoff of intermediaries who

have earlier positions than him in the trading chain, but receives their offers after he has

obtained the early offer. Therefore, when value are known but the game has not started yet,

a payoff ranking among intermediaries with value one participating in the trading chain can

not be established in general.

Instead, when all agents are ex-ante identical, an offer made early to some intermediary

will at most equalize his payoff to the level of that of the intermediary preceding him in the

trading chain. Therefore, as formally stated in the following proposition, it is possible to

establish that intermediaries who are earlier in the trading chain will obtain payoff greater

or, at worst, equal to the intermediaries that come later.33

32This phenomenon is easy to see if two intermediaries acquire the object one immediately after the other

with no other players receiving offers in between. They must be paying the same price, but the second one

is worse off than the first, as he only gets the good if the previous one has value zero.
33The result is robust to the presence of small transaction costs and the introduction of discount rates
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Proposition 7 (Payoff Ranking for Intermediaries). Consider a network trading game

〈G,π, T 〉 where πi = πj > 0 for all i, j ∈ N . Take any equilibrium of the game and let

it and it+k indicate two intermediaries along the equilibrium path, selling the object for the

first time in round t and t+ k, with k ∈ N, then Uit(1) ≥ Uit+k(1).

This result shows that the heterogeneity in outcomes generated by the network struc-

ture is not limited to that arising from the different roles of traders in the network (i.e.

intermediaries or final customers). The following example illustrates the result.

Example 3 (Intermediaries’Payoff ranking in a tree). Consider again the environment in

example 2. It can be checked that the equilibrium path is the following: Player 1 first asks

a price p1 = 1 − (1 − π)5 to intermediary 2. If v2 = 0, player 2 ask a price of one to final

customer 3 and 4, and then asks a price p4 = 1−(1−π)3 to intermediary 5. In fact, if player

5 has value zero, he asks a price of one to his final customers 6 and 7 and 8. Therefore,

conditional on both having value one, the relation between the interim payoff of 2 and 4 is

U2(1) = (1− π)5 > U4(1) = (1− π)6.

In general, whenever the network is a tree it is possible to rank the payoff between any

two traders who are on the same path to the initial owner, even if traders are ex-ante

heterogeneous. In this case, in fact, it is not possible for an intermediary who is later in the

trading chain to receive an offer before an intermediary who comes earlier. Therefore, for

any two given intermediaries with non zero expected value lying on the same path from the

initial owner, we can conclude that the one closer to the initial owner will obtain a strictly

higher payoff, when he has value one, than the one who is more far away.

5.3 Comparative Statics

It is now possible to perform some comparative statics on how equilibrium payoffs change in

response to changes in the exogenous variables. Since my main focus is on the effects of the

network structure on trading outcomes, I will examine changes in connectivity only. I say

that the network G′ = (N ′, E ′) is more connected than G = {N,E} if N = N ′ and E ⊂ E ′.

First, consider the initial owner of the object.

close to one. Furthermore, when players are asymmetric, it is always possible to make the proposition valid

for traders who are sufficiently far away in the trading chain.
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Proposition 8 (Comparative Statics: Initial Owner). Let 〈G,π, T ∗〉 and 〈G′,π, T ∗〉 be two

games which differ only because G′ is more connected than G. Then for every equilibrium of

〈G,π, T ∗〉 there exists an equilibrium of 〈G′,π, T ∗〉 where the initial owner achieves a higher

or equal expected payoff.34

The intuition behind the result is that an increase in connectivity accentuates downstream

competition between intermediaries. In contrast, there is no analogous result for traders other

than the initial owner. In particular, a change in connectivity could have both positive and

negative effects on them. The reason is that an increase in connectivity that increases the

resale value of a player will be beneficial to him if it changes him from being a final customer

to being an intermediary, but it will have a negative effect if he is already an intermediary,

because it will increase the price that he pays for the object. This is illustrated by the

following example.

Consider the two networks depicted in Figure 3 and let the label “new” on an edge

indicate the extra edge that is added to the graph. Consider the equilibrium outcome before

and the after the addition of the new edge. In case (a) the equilibrium utility of player 2

when v2 = 1 decreases from U2(1) = 1 − πm to U2(1) = (1 − πm)2 when the extra edge is

added. That is, player 2 acquires the good at a higher price after the introduction of the

new edge. Instead, in case (b) the equilibrium utility of player 2 when v2 = 1 increases

from U2(1) = 0 to U2(1) = 1 − πh when the extra edge is added. In this case player 2 is a

final customer initially and becomes an intermediary after the introduction of the new edge,

because 1 prefers to route the good via the lowest expected value trader.

The effect of an increase in connectivity on total welfare can sometimes be negative. This

phenomenon has been referred to in the literature on transportation networks as Braess

paradox. To see this point consider the two networks depicted in figure 4. In case (a) the

equilibrium is ex-post efficient before the introduction of the new edge, while it is inefficient

thereafter. In fact player 1 will only offer the object at price 1 to players 2 and 4 and player

3 will never receive an offer, even if he happens to be the only player in the network with

value one. In case (b) the introduction of a new edge makes the outcome of the trading game

ex-post efficient, as in the new equilibrium all players receive offers with positive probability.

34This result will not hold if there are large transaction costs or the number of rounds is not sufficiently

large.
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Figure 3: Change in own connectivity - πh > πm > πl
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Figure 4: Braess Paradox - πh > πm > πl
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5.4 Efficiency under Incomplete Information

An outcome of the trading game under incomplete information is a mapping from the pro-

file of values into the set of possible allocations of the goods in the economy. Following

Holmstrom and Myerson (1983), I say that an outcome is ex-post Pareto efficient (or simply

efficient) if it is feasible, and there is no alternative outcome such that (i) all players are

weakly better off for all profiles of values, and (ii) there is at least one profile of values for

which at least one player is strictly better off.

In contrast to the full information case, incomplete information limits the range of network

trading games in which an efficient outcome is achieved. First, because it is not clear in

advance who has a value of one, inefficiencies may arise if the number of rounds is insufficient

for all players to be reached with an offer before the deadline.35 It is not surprising, however,

that time constraints generate inefficiencies. Therefore, let us consider a setting where the

deadline is sufficiently far away.

In this case, a network where everyone is connected to the initial owner always induces

an efficient outcome. For example, see figure 5 for the lower bound on the set of efficient

networks. In particular, the initial owner extracts all the available surplus by making an

offer at price one to all players in sequence, until the object is sold.36

In general, because in equilibrium no one will refuse an offer, unless he gets a later offer at

a lower price, a necessary and sufficient condition for an equilibrium to implement an efficient

outcome is that every player has a positive probability of receiving at least one offer along

the equilibrium path. A violation of this condition represents a second source of inefficiency,

which I refer to as market power. To illustrate this point consider again the example 1 under

assumption B. An inefficient outcome ensues in the example 1 under assumption B because

player 4 never gets an offer in equilibrium. In fact, player 1 prefers to exploit his market

power and play tough by asking a price of one from player 2, therefore running the risk of

not selling at all, rather than asking a price that player 2 could afford if he had value zero.37

35In fact, suppose that player i with πi > 0 never gets an offer in equilibrium but he could be reached

within T rounds of trade. An efficient outcome is not achieved whenever vi = 1 but vj = 0 for all j 6= i.
36Not surprisingly, if transaction costs were present at each edge only a network where everyone were

connected to the initial owner would be efficient. Because transaction costs are paid only in case of sale, the

initial owner will minimize the expected cost by making early offers to players with low transaction costs.
37Note that there is no separating equilibrium where player 1 asks a higher price in the first round and
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Figure 5: Star Network, n=7

Inefficiencies arise, in general, when there exist one or a group of players who jointly

represent a bottleneck in some area of the network, and who all receive offers at price

one. This suggests that inefficiencies will tend to disappear in networks that are very well

connected or where everyone is ex-ante similar. In particular, if the number of trading rounds

is sufficiently large the following can be established.

Proposition 9 (Efficiency in Homogeneous Networks). In every game 〈G,π, T ∗〉, where

πi = πj for all i, j ∈ N there exists an efficient equilibrium.

The idea is that, even in the worst case scenario for attaining efficiency, where there is

just one player i who grants exclusive access to a single isolated player j, the expected payoff

a lower price later. In fact, whenever player 2 anticipates that a lower price will be offered in later rounds

he will always refuse the current offer. However the situation might be different if traders discounted the

future. In this case the seller might reach a “compromise” with the value one buyer rather than taking

a tough stance. But, this would clearly not eliminate inefficiencies for all values of the parameters (see

Fudenberg and Tirole (1983)).
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to i from reselling to the isolated trader j only, is at least equal to his own expected value.

Therefore, i will receive an offer at his resale value and, in turn, will be able to make an offer

at price one to j (see proposition 5). Note that this result is not robust to the introduction

of small transaction costs, or small differences in the expected value of players. However, if

transaction costs and ex-ante trader heterogeneity are introduced, efficiency can be restored

by making the network more finely connected. In fact, in general, the higher the connectivity

of the network, the higher will be the chance of an efficient outcome.

6 Extensions

In this section I consider two extensions to the standard model. First, I study equilibria in

large networks. Second, I compute optimal network structures, for the initial owner and for

the other traders considered jointly. Proofs are in appendix B.

6.1 Large Networks

Consider a setting where agents are ex-ante identical, that is πi = π > 0 for all i, and suppose

that the number of traders grows large. Will the payoff to the initial owner converge to one

in the limit? My results show that as the number of players increases, the payoff of the

initial owner converges to one in most cases, but not always, in a sense that I will made

more formal soon.38 First, to see that a payoff of one is not guaranteed, suppose that the

network grows forming a path, starting from player 1, with player 2 connected to 1, player

3 only to player 2, and so on. In this case, the ex-ante equilibrium payoff of player 1 will be

constant and equal to π + (1− π)π. All buyers will make positive ex-ante profit, which will

decrease for players farther away from the initial owner, and converge to zero in the limit.

More generally, I can prove that the equilibrium profit of the initial owner converges to

one if and only if the network architecture E is such that the number of equilibrium final

customers grows with the set of traders N . In order to formalize this idea, some further

38This is contrast with (i) the case of complete information, where the expected payoff converges to one

as the probability that there is no player with value one converges to zero, and (ii) the standard optimal

auction framework, where the payoff to the seller converges to the upper bound of the support of values as

the number of players grows (see Myerson (1981) and Riley and Samuelson (1981)).
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definitions are required. First, define a countably infinite sequence of graphs {G}n as a

sequence of connected networks G1, G2, . . . where (i) G1 ⊂ G2 ⊂ . . . and (ii) G1 includes

only player 1, G2 includes 1, 2, and so on. Assume that {G}n admits a limit. Next, let S(G)

be the set of subgraphs of G that are trees. For any graph G′ ∈ S(G), let l(G′) indicate

the number of isolated traders in G′ (i.e. the number of leaves in the tree G′). Finally, let

G∗(G) = arg maxG′∈S(G) l(G
′) be the subtree with the highest number of isolated traders.

Proposition 10 (Limit Payoffs for n → ∞). For each Gn ∈ {G}n, let Ûn
1 be the highest

ex-ante payoff of player one across all equilibria in the network game 〈Gn,π, T ∗〉, with πi =

πj > 0 for all i, j ∈ N . Then, limn→∞ Û
n
1 = 1 if and only if limn→∞ l(G

∗(Gn))→∞.39

The idea behind the proof is that, whenever the number of isolated traders is finite in the

subtree of G with the maximum of isolated traders, then the number of players who are not

arranged in a path (i.e. are connected to more than two traders) will also be finite. Therefore,

because it is not possible to extract a surplus from the intermediaries lying consecutively in

a path, the number of players from which a surplus can be extracted remains finite and the

surplus collected by the initial owner is bounded away from one in the limit.

It is possible to measure the set of graphs in which the initial owner makes a payoff

of one by embedding the space of possible network into a probability space. One way to

do this is as follows. Let us assume that for fixed N = {1, . . . , n}, the set of edges E

is determined randomly, with each possible edge {i, j} belonging to E with probability

0 < p < 1, independently of other edges (often referred to as Erdős-Rényi model). Once

the probability space G(n, p) has been constructed, it is now possible to ask about the limit

probability, as n tends to infinity and p remains constant, that the number of leaves in

all subtrees of G remains finite. It is relatively easy to show that that, for each k ∈ N,

limn→∞ Pr{l(G∗(Gn) > k)} → 1.40 Therefore, within this natural probability space, for

almost all network configurations, the initial owner’s profit tends to one as the number of

traders grows.

39The presence of transaction costs would definitively bound below one the profit of the initial owner.
40In fact, for every constant p and k ∈ N almost every graph in G(n, p) is k-connected, where a graph G is

said to be k-connected if there is no set of k − 1 vertices whose removal disconnects the graph (see Lemma

11.3.2 in Diestel (2005)). Therefore, by Lemma 1 in the proof of Proposition 10, there must be a subtree

with an infinite number of leaves in a k-connected graph with k > 1.
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6.2 Optimal Network Structures

I will now keep the set of players N and the prior π fixed, and compute the optimal network

structure E (i.e. the set of edges), from the point of view of player 1, and and from that

of the other traders jointly considered. Finding optimal networks is interesting in thinking

about modeling network formation and, furthermore, it provides upper bounds for the payoff

of the initial owner and the joint payoff for other players.

It is easy to see that the optimal network for the initial owner is the star network, where

{12, 13, . . . , 1n} ⊆ E, or any other network that includes the star network as a subgraph

(see Figure 5). In this case, all outcomes are ex-post efficient (i.e. the surplus is maximized)

and the entire surplus generated is collected by the the initial owner.

Instead, as formalized in the next proposition, the network structure that maximizes the

ex-ante utilitarian welfare of all traders other than the initial owner is a path, possibly not

including all traders, with player 1 at one end and some other trader appropriately chosen

at the other.

Proposition 11 (Optimal Networks). Fix N , and assume that πi > 0 for all i ∈ N . The

network structure E for which the game 〈G,π, T ∗〉 has an equilibrium that maximizes the

sum of ex-ante payoffs of traders other than 1 is a path. Player 1 is at one end and at the

other end is player

j∗ = arg max
j∈N\1

1−
∏

{i∈N\{1,j}|πi≤πj}

(1− πi)

 (1− πj).

Included in the path, in no particular order between 1 and j∗, are all other players with

π ≤ πj∗. The remaining players are disconnected from the network.41

In the optimal network every connected trader other than j∗ is an intermediary and pays

41When transaction costs are positive the optimal network structure that is jointly preferred by the buyers

is not easy to characterize. To see this consider the following example. Let T > 4 and N = {1, 2, 3, 4}.
Assume that π2 = π3 = π4 = π, whereas π1 = 0. Also, let τ be the transaction cost for each edge. In

this case, a network where all players are in a path provides zero payoff to all buyers, because, due to

transaction costs, the initial owner will always ask a price of 1 from his neighbor. However, in a network

where E = {12, 23, 24} traders 2,3 and 4 achieve a joint payoff of π{1− (1− τ)[1− (1− π)2]}. In fact, 1 will

ask to 2 a price of (1− τ)[1− (1− π)2], and 3 will demand one to 3 and 4.
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the price πj∗ .
42 Including a player i with πi > πj∗ is not profitable because, even though it

provides positive payoff to j∗, it increases the price paid by all players other than j∗ who are

already in the path (e.g. this follows trivially for example if πi = 1).

7 Conclusions

In this paper I develop a theory of decentralized trading in networks under asymmetric

information. I show how traders’ payoffs are shaped in equilibrium by the complex interplay

of incomplete information and network architecture. In particular, traders that provide

monopolistic access to some valuable area of the network become intermediaries and, in

contrast to the case of complete information, are able to extract a positive rent. Furthermore,

I show that it is the joint effect of asymmetric information and poorly connected networks

that produces inefficiencies. In fact, when information is complete or the network is highly

connected (e.g. if everyone is connected to the initial owner) inefficiencies disappear.

The model has been developed under a number of non-trivial restrictions. In particular, I

assume that traders have two possible values only, that all traders know the network structure

and observe all actions, that there is a deadline to the negotiations and that traders do not

discount the future. While relaxing these assumptions would seem worthwhile and might

provide some new insights, my main results appear robust to changes to these hypotheses.

In terms of future research, I see two promising avenues. First, to consider network for-

mation games assuming that subsequent interactions are modeled using equilibria of network

trading games. Second, to approach the problem from a mechanism design perspective. In

particular, to allow traders to negotiate more flexibly with agents in their neighborhood.

Condorelli and Galeotti (n.d.) made some progress in this direction. In this paper, which

is work in progress, we consider a setting almost identical to the present one, with the only

difference that, in each round, the owner of the good can run a second price auction with a

reserve price, in which all traders in his neighborhood are allowed to participate. Remark-

ably, we observe that, in some cases, the initial owner will do better from bilateral bargaining

42The result is extended easily to cover the case where the resulting network must connect all traders in

N . In this case, a path would still be optimal. At one end would be player 1 and at the other end would be

the trader, different from 1, with the highest expected value.
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than running an auction, assuming that he can not set individualized reserve prices.43 To

illustrate this point consider the following four-players example depicted in figure 6. Let

N = {1, 2, 3, 4}, π = {0, π, 0, π}, and E ≡ {12, 13, 34}. In a bilateral bargaining game,

player 1 is able to achieve 1− (1− π)2. Instead, by running an auction the initial owner can

at most obtain π.44

1

Π1=0

2

Π2=Π

3

Π3=0

4

Π4=Π

Figure 6: Auctions vs Bilateral Trading

43If a seller can exclude bidders from joining the auction or set individualized reserve prices, then he can

always replicate the outcome of bilateral bargaining through an auction.
44This is what he gets if he set a reserve price of π or a reserve price of 1, as setting any other reserve

price would provide an inferior payoff.
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Appendix A: Proof of Theorem 1

The proof shows how to construct one or more equilibria for each trading game. I will assume

that there is an edge specific transaction cost 0 ≤ τ(i, j) < 1 which the seller must bear only

in case of sale. I first construct a unique equilibrium for a game starting in the last round T ,

for any possible owner and state of beliefs. Thereafter I show how to construct one or more

equilibria in a generic time t − 1 for each possible owner, profile of beliefs, and past public

history, using the equilibria that I have computed for time t. By induction, I construct a set

of equilibria for the whole game. A set of examples is provided to facilitate the reader.

Call h ∈ H an arbitrary history of the associated perfect information game (which I

also call a public history) and call Z the set of terminal histories. Histories in the original

imperfect information game are elements of the set {∅} ∪ (H× {0, 1}n). An information set

for player i is a set of elements in H \ Z × {0, 1}n that takes the following form: Ii(h, vi) =

{(h, vi, v−i) : v−i ∈ {0, 1}n−1}. The profile of strategies specifies a behavioral strategy at each

information set of each player in the game. In this setting with common prior, independent

types and observed action, a system of beliefs specifies for all non terminal public histories h

a profile of common posterior probabilities µ(h) = (µ1(h), . . . , µn(h)), where µi(h) indicates

the probability that player i has value one (I will often write, omitting to mention the history,

µ = 〈µ−i, µi〉).

Consumption decisions.

As a first step, I can fix from now the optimal consumption decisions in the entire game (i.e.

after any public history): all buyers who obtain the good will consume it as soon as possible

if and only they have value one. That is, for any public history h:

cti(vi)[h] =

1 if vi = 1

0 otherwise
(1)

This is an optimal strategy because: (i) no one can obtain in any equilibrium strictly more

than one; (ii) consuming is a weakly dominated strategy for a player with value zero as he

can not obtain less than zero by trying to resell. The following is an important consequence
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of this strategy in terms of belief updating: after any public history, a player i who does not

consume the good will signal that he has value zero.

Equilibrium in round T.

As planned, let’s consider first an arbitrary game starting at time T , with sT in the role of

the owner and with state of beliefs being µT at the beginning of the round (i.e. at a point

in which the seller has already signalled that he has value zero by not consuming in T − 1),

after public history hT . Let’s start backward within the round and consider the strategy of

buyers in the neighborhood of sT upon obtaining an offer at price pt. Because T is the last

round it is straightforward to determine an optimal strategy for all buyers after any public

history:

aTi (pT , vi)[h] =

1 if pT ≤ 1 and vi = 1

0 otherwise

Next, let’s consider a seller. The probability that an offer from sT at price pT ≤ 1 is accepted

is equal to Evi
[aTi (pT , vi)] = µTi for each i ∈ NsT . Therefore, in round T , the value for sT

from offering the good to player i ∈ NsT at price pT is:

Evi
[aTi (pT , vi)][p

T − τ(sT , i)] + {1− Evi
[aTi (pT , vi)]}vsT = µTi [pT − τ(sT , i)] + (1− µTi )vsT

Formally, I can allow for the possibility that sT does not make an offer without modifying the

formula above by assuming that there exists a fictitious player 0 (with µTi = 0) connected to

all players, that will always rejects any offer. Selling to player 0 is a dominant strategy for a

seller with value one. Therefore consider a seller with vsT = 0. By inspection of the objective

function I conclude that a seller with vst = 0 sets pT = 1 and i = argmaxi∈Ns µ
T
i [1−τ(sT , i)].

If the seller has more than one optimal offer there will be a multiplicity of equilibria,

which, for the case of round T are all payoff equivalent for all players. However, it is easy

to see that ties are non-generic. Denote by V T
i (sT ,µT , vi) the payoff of player i with value

vi. The value for a trader who is a seller is V T
i (i,µT , 0) = maxj∈Ni

µTj (1 − τ(st, i)) or

V T
i (i,µT , 1) = 1, while the value to all other players i 6= sT (including those not connected

to sT ) is V T
i (sT ,µT , vi) = 0.
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From an equilibrium in t+1 to an equilibrium in t

Let’s now consider the game at the beginning of round t, with a generic owner st, arbitrary

state of beliefs µt and past history ht. Define a profile of continuation payoffs as a list of

possible equilibrium payoffs (i.e. a payoff for each type of each player) in a continuation game

(starting at a certain time t, with arbitrary owner st and beliefs µt). While for a game that

starts in round T there is a unique profile of equilibrium payoffs, in a general continuation

game multiple payoffs vectors can in principle arise due to multiple equilibria. Therefore,

the set of continuation profiles is a correspondence assigning to each round, state of beliefs

and owner a set of profiles of continuation payoffs. Let P(t, s,µ)(i, v) be the set of possible

continuation payoffs for a player i with value v in a game starting in round t with seller s

and beliefs µ.

In order to construct an equilibrium in the entire game, I will need to operate an equi-

librium selection that might in principle depend on past history (not only, as the Markov

property would require,on the state of beliefs and on the identity of the current seller).

Therefore, I introduce the notation V t
i (st,µt, vi)[h] to indicate the continuation payoff of a

player i with value vi, when the owner is st and beliefs are µ, according to a given profile

in P(t, st,µt), after a specific public history h including all actions up to the beginning of

round t. Throughout this section I will be assuming that P(t+1, s,µ) is well defined in t+1

for each s and µ.45

Let’s now proceed backward within round t. I have already discussed consumption deci-

sions (see strategy (1)). Therefore let’s consider first a buyer i connected to st.

A buyer with value zero.

Let’s consider the strategy of a buyer with value zero after history [ht, (i, pt)] including all

events up to his information set. Set at = 1 and define V t+1
i (i, 〈µt−i, 0〉, 0)[ht, (i, pt), ati],

hereinafter also referred to as V t+1
i , by making a selection from P(t + 1, i, 〈µt−i, 0〉). To

simplify the analysis I make this selection independently from the entire past history. V t+1
i

45The proof that the equilibrium correspondence is indeed always well defined (not only in round T ) will

follow once the induction hypothesis has been established.
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is the expected value that player i could make by selling the good in round t+ 1 or later.46

Because, in the equilibrium we are going to construct, no one will ever ask to player i

a price below his expected profit from reselling the good, refusing an offer to buy always

provides zero continuation utility to a player with value zero. Therefore, the following

strategy is optimal for a buyer with value zero:

ati(p
t, 0)[ht, (i, pt)] =

1 if pt ≤ V t+1
i

0 otherwise
(2)

A buyer with value zero refuses any offer below, and accepts any offer above, his expected

resale value, computed taking in to account that if he puts for sale the good, then everyone

knows that he has value zero.

Bayesian updating.

Assume that ati(p
t, 1)[ht, (i, pt)] is the strategy played by a buyer i with value one, after

history ht. When the rejection of an offer by player i is observed, the beliefs about players

other than i remains unchanged (i.e. µt+1
−i = µt−i). Taking in to account strategy (2) of a

player with value zero along the same public history, updating in case of refusal from player

i proceeds as follows:

µt+1
i =


1 if pt ≤ V t+1

i

µt
i(1−at

i(p
t,1)[ht])

µt
i[1−at

i(p
t,1)[ht]]+(1−µt

i)
if pt > V t+1

i

(3)

This is standard Bayesian updating, except that I are fixing also an out of equilibrium belief.

That is, even out of equilibrium, if someone refuses an offer at a price below V t+1
i I assume

that the deviator has value one. The motivation is that equilibria supported otherwise do

not satisfy the intuitive criterion requirement (see Cho and Kreps (1987)): deviating for a

player with value zero is a strictly dominated strategy, while a player with value one could

benefit from rejecting an offer below the resale value, assuming that he could convince the

seller that he has not value one for sure (see Example 4 later).

46Note that the buyers knows that the seller has value zero and so the proposal of the seller can not signal

anything that i does not know
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A buyer with value one.

Next, consider a buyer with value one, connected to st. If he accepts the offer from st he gets

1 − pt and the game ends, because he immediately consumes the good. In case he refuses,

he gets his future continuation utility, as determined by the equilibrium selected from the

the set P(t + 1, st, 〈µt−i, µt+1
i 〉), with µt+1

i determined according to Bayesian updating, for

the particular public history at stake.

First, let’s operate an arbitrary selection from the possible continuation equilibria in

order to define uniquely the payoff of player i in two particular instances: (i) when he re-

fuses an offer and beliefs remains unchanged, i.e. V t+1
i (st, 〈µt−i, µti〉, 1)[ht, (i, pt), ati], with

ati = 0 and (ii) when he refuses an offer and everyone believes that he has value zero

V t+1
i (st, 〈µt−i, 0〉, 1)[ht, (i, pt), ati], with ati = 0. Henceforth I assume that these two con-

tinuation equilibria do not depend on the price offered in round t.

It is a straightforward consequence of the assumptions on belief updating that refusing

any price pt such that pt ≤ V t+1
i is a dominated strategy for a player with value one. In fact,

a refusal would signal that the buyer has value one, and in equilibrium no one would ever

make him an offer at a price below one (i.e. P(t+ 1, s, 〈µ−i, 1〉)(i, 1) = {0} for all s and µ−i

if s 6= i). Therefore, let’s now restrict attention to the case where 1 ≥ pt > V t+1
i . I consider

four cases in turn, that exhaust all possibilities.

Case 1. First, consider the case where both 1 − V t+1
i (µti) ≤ V t+1

i and 1 − V t+1
i (0) ≤ V t+1

i

(note that 1 − V t+1
i (µ) is the price at which player i is indifferent between accepting and

rejecting an offer given that µt+1
i = µi in case of refusal). A best reply for a buyer with value

one in round t is the following:

ati(p
t, 1)[ht, (i, pt)] =

1 if pt ≤ V t+1
i

0 otherwise.
(4)

If buyer i behaves as above, the refusal of a price above V t+1
i leaves beliefs unchanged and

provides him with V t+1
i (µti), which is greater than the payoff from accepting the offer.47

47There exists no other best reply in pure strategies, but there might exist a class of mixed strategies that

are best replies, where the buyer randomize his acceptance for prices above Vt+1
i . This does not happen in

example 1 but it can happen if there exist a 0 < µ′i < µt
i such that V t+1

i (µ′i) can be selected lower than

1− Vt+1
i (see example 6). This remark applies to the next three cases as well.
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Figure 7: Trading network in examples 4 and 5

Example 4. Players 1 (π1 = 0), 2 (π2 = 1/2), 3 (π3 = 2/3) and 4 (π3 = 3/4) are located in

a line and τ(i, j) = 0 for all i and j (see Figure 7 below). Assume that s1 = 1 and T = 3. In

round one player 2, no matter his value, refuses any price strictly above V2
2 = 3/4, because

1− V 2
2 (π2) = 1− V 2

2 (0) = 2/3.

Case 2. Next, assume that V t+1
i (µti) = V t+1

i (0) < 1− V t+1
i . In this case, a best reply for a

buyer with value one is the following:

ati(p
t, 1)[ht, (i, pt)] =

1 if pt ≤ 1− V t+1
i (0)

0 otherwise.
(5)

Accepting a price strictly above 1 − V t+1
i (0) can never be profitable, as by refusing player

i can guarantee himself V t+1
i (0). Refusing a price between V t+1

i and 1 − V t+1
i (0) is not

convenient either, as by refusing player i mimics a value zero player and obtains V t+1
i (0).

Example 5. Players 1 (π1 = 0), 2 (π2 = 1/2), 3 (π3 = 2/3) and 4 (π4 = 3/4) are located in

a line and τ(i, j) = 0 for all i and j (see Figure 1 above). Assume that s1 = 1 and T = 2.

I have that V 2
2 (π2) = V 2

2 (0) = 0. Therefore, in round one, player 2 with v2 = 1 accepts any

price p1 ≤ 1− V T
2 (π2) = 1.

Case 3. Next, consider the case where V t+1
i (µti) > V t+1

i (0) and also 1 − V t+1
i (0) > V t+1

i .

The following is a best reply:

ati(p
t, 1)[ht, (i, pt)] =

1 if pt ≤ 1− V t+1
i (0)

0 otherwise.
(6)

Accepting a price above 1 − V t+1
i (0) can never be convenient, as by refusing beliefs are

left unaltered and i obtains V t+1
i (µti). Further, refusing a price below 1 − V t+1

i (0) is not
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convenient because it provides at most V t+1
i (0).48 As shown in the following example, the

presence of a time constraints (or transaction costs) is crucial for the possibility that a player

benefitting from being considered with high expected value.

0 0

0

Τ 0

0 0

0

0

0

1

Π1=0

2

Π2=1�4

3

Π3=1�4

4

Π4=0

5

Π5=1�2

6

Π6=1�2

7

Π7=0

8

Π8=0

9

Π9=0

10

Π10=0

11

Π11=Π

Figure 8: Trading network in example 3

48In this case, along with the possible mixed equilibria, there exists also another best reply in pure

strategies:

at
i(p

t, 1)[ht] =

1 if pt ≤ max{Vt+1
i ; 1− V t+1

i (µt
i)}

0 otherwise.
(7)

This is optimal because refusing a price below the max above will lead the seller into believing either that

the buyer has value 1 for sure or that the buyer has value zero for sure. In both case the buyer is worse off

by refusing. On the other hand, refusing a price above that maximum provides no signal about player i and

therefore guarantees him V t+1
i (µt

i) in the continuation of the game. Note that the one I are considering in

the main text is the one that is best for the seller, while the one presented in this footnote his best for the

buyer.
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Example 6. A set of 11 players is located in a network (see figure 8). I assume that
3
4
− τ

4
< π < 49

64
− 15τ

64
, s1 = 1, T = 7 and τ is very small (such that the interval where π is

defined is non-empty). Observe that V 2
2 (π2) = 3

8
− 3(1−τ)

16
, because in round two player 1 will

make an offer to player 2 at price 1 − V 2
2 (π2) that he will only accept if he has value one.

In this case player one makes a profit of 49
64
− 15τ

64
. However, V 2

2 (0) = 0, because in this case

player 1 in round 2 will sell to player 4 at price π (the payoff that player 1 obtains by selling

to 3 is 3
4
− τ

4
). Finally, note that V2

2 = 3
4
− τ

4
, as 2 will immediately resell to 1 if he obtains

the good. Therefore, in round 1, player 2 will accept any offer below 1− 3
8
− 3(1−τ)

16
.

Case 4. Finally, consider the case where V t+1
i (µti) < V t+1

i (0) and 1 − V t+1
i (µti) > V t+1

i .

Finding a best reply in this last case is slightly more complicate as an equilibrium in pure

strategies will not exist.49

First, let’s write V t+1
i (β) to denote V t+1

i (st, 〈µt−i, β〉, 1)[ht, (i, pt), ati]. Next, call φti =

max
{

1− V t+1
i ;V t+1

i (0)
}

. I can show that there exists a µ∗i ∈ (0, µti) such that for all η ∈ [0, 1]

I have that {ηφti + (1− η)V t+1
i (µti)} ∈ P(t+ 1, st, 〈µt−i, µ∗i 〉)(i, 1).50 In order to construct an

equilibrium I will assume that the selected continuation equilibrium in t+1 when µt+1
i = µ∗i ,

depends not only on i and the previous public history, but also on pt. In particular, I ask that:

V t+1
i (µ∗i ) = η(pt)φti + (1− η(pt))V t+1

i (µti), where η(pt) =
(1−V t+1

i (µt
i)−pt)

φt
i−V

t+1
i (µt

i)
, (i.e. the probability

that continuation φti ensues, η(pt), is such that η(pt)φti + [1− η(pt)]V t+1
i (µti) = 1− pt). The

49For a contradiction suppose there is a p∗ ≥ Vt+1
i such that all offers strictly above p∗ are refused,

while those below or equal to p∗ are accepted. First, try to set any Vt+1
i ≤ p∗ < 1 − V t+1

i (µt
i). Because

1− p∗ > V t+1
i (µt

i), there exists small ε such that 1− (p∗ + ε) > V t+1
i (µt

i). This implies that accepting price

p∗+ ε is preferred to refusing it (as beliefs remain unchanged upon refusal), which contradicts the statement.

So, consider p∗ ≥ 1−V t+1
i (µt

i). Because V t+1
i (0) > V t+1

i (µt
i), there exists ε such that V t+1

i (0)−ε > V t+1
i (µt

i).

This implies that there exists a price p∗ − ε ≤ p∗ that a player with value one would like to refuse, given

that he will induce the beliefs that he has a value zero, which contradicts the statement.
50To see this point observe that if V t+1

i (µt
i) < V t+1

i (0) then player one must be an intermediary making

a positive profit when µt+1 = 0, but must receive an offer at price one if µt+1 = µt. Because the payoff

correspondence is piecewise constant and payoffs are upper hemi-continuous with respect to the priors it

must be the case that both continuation are possible for some µ∗i . Furthermore, if both are possible at µ∗i ,

some seller must be indifferent between two courses of actions and therefore by randomizing within the two

he can produce any payoff for i in the specified interval.
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following is an optimal strategy for a player with value one:

ati(p
t, 1)[ht, (i, pt)] =


1 if pt ≤ 1− φti
µt

i−µ∗i
µt

i(1−µ∗i )
if 1− φti ≤ pt < 1− V t+1

i (µti)

0 if pt > 1− V t+1
i (µti)

(8)

First, observe that it is clearly optimal to reject any price above 1− V t+1
i (µti). Furthermore,

note that it is optimal to accept any price below 1 − φti, as refusing will provide at most

V t+1
i (0). Finally consider the behavior of player one when the price is interval (1 − φti, 1 −
V t+1
i (µti)]. Given the strategy above, by rejecting the buyer induces belief µ∗i . Therefore,

given the continuations specified as a function of pt, the buyer is indifferent between accepting

and rejecting for each price in that interval, and therefore he can mix between acceptance

and rejection with arbitrary probability.

Note that along the equilibrium path a seller will always ask price equal to 1− V t+1
i (µti)

to a player that randomizes with constant probability in the interval (1− φti, 1− V t+1
i (µti)].

Therefore, along the equilibrium path, sellers will have no need to randomize in the future

as η(pt) = 0.

0 0
1

Π1=0

2

Π2=2�3

3

Π3=1�2

Figure 9: Trading network in example 4

Example 7. Players 1 (π = 0), 2 (π = 2/3), 3 (π = 1/2) are located in a line and

τ(1, 2) = τ(2, 3) = 0 (see Figure 9 above). Assume that s1 = 1 and T = 3. I have that

1 − V2
2 = 1/2 > 0 = V 2

2 (π2) and V 2
2 (0) = 1/2. At T − 2 player 2 with v2 = 1 plays as

follows: he accepts any price below VT−1
i with probability one and any price below 1 with

probability a(pT−2, 1) = 1/2 (i.e. µ∗i = 1/2). A rejection from player 2 in round one induces

belief µ2
2 = 1/2 in round two. At t = 2 player 1 is now indifferent between selling at price

p2 = 1 or p2 = 1/2 and I assume that he randomizes between the two with probability

η(p1) = 2(1 − p1). In equilibrium player 1 do not sells in round one (or asks for a price of

1) and asks for a price p = 1 in the second round, while player 2 accepts with probability for

sure in round two and, if he gets an offer, with probability 1/2 in round one.
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The seller.

Let’s turn to the seller. His utility from making an offer to player i at price pt is equal to:

Ev[a
t
i(p

t, vi)][p
t − τ(st, i)] + {1− Ev[ati(pt, vi)]}V t+1

st (st,µt+1, vst)[ht, (i, pt), ati] (9)

First, observe that, given the strategy of each type of buyer, both the beliefs at t+1 and the

expected probability of acceptance are well defined for each price and buyer. Second, observe

that V t+1
st (st, µt+1, vst)[ht, (i, pt), ati] (with at = 1) is well defined for all histories where the

seller has made an offer to some buyer in his neighborhood, as I have already operated a

selection in continuation equilibria for all possible profiles of beliefs that can arise at t + 1.

I’m left with the need to operate an arbitrary equilibrium selection for the case where the

seller does not make any offer, in order to define V t+1
st (st, µt, vst)[ht, (i, pt), at].

Because the acceptance strategy of all buyers connected to st is piecewise constant and

continuous from the left in pt, the space of relevant choices is finite and the maximization of

seller’s utility is well defined and has one solution (or more in case of ties). Therefore I have

obtained one equilibrium, or more if the seller has more than one optimal choice.

Constructing continuation values.

By varying the selections in continuations made I can populate P(t, s,µ), which will be used

in the analysis of round t − 1. It is important to observe that P(t, s,µ) can contain more

than one payoff values for some players other than the seller, even if st has a unique optimal

choice. This will happen if some of the sellers in rounds from t + 1 to T are indifferent to

some of their actions. It follows that in case of ties, the action taken by the seller in time t

will be selected during the analysis of round t−1 or even earlier rounds, as the next example

shows.

Example 8. Players 1 (π1 = 0), 2 (π2 = π), 3 (π3 = 1/5), 4 (π4 = 1/2) and 5 (π5 = 1/4)

are located in a line as in Figure 4 and τ is very small. Assume that s1 = 1 and T = 5 and

π > 1/4. Note that in round 2, V 2
2 (π) = 0 while V 2

2 (0) = 3/4(1− 1/2)(1− 1/5) = 3/10 and

V2
2 = 5/8. Therefore, if player 2 gets an offer in round one, he accepts any price below 7/10

(i.e. max{5/8; 7/10}) for sure and any price above with probability 4/3−1/(4π) as to induce

µ∗2 = 1/4. It is understood by the selection that if 2 received an offer in round one (e.g. at
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Figure 10: Network in Example 5

p1 = 3/4), then, while in round 2 player 1 would find in his interest to sell to player 3, the

latter in turn after selling to 4, would be indifferent between selling to 2 at price p4 = 1 and

p4 = 1/4 and therefore will play as established in the analysis of round one.

Equilibrium in the entire game

By progressing backward from round T , by induction, I can complete the construction and

arrive at an equilibrium for the game starting in round 1. Naturally, by employing different

selections from continuations payoffs I can generate a large multiplicity of equilibria. The

following example discusses multiple equilibria and thereafter the next section comments on

the fact that this type of multiplicity in non-generic.

Example 9. Players 1 (π1 = 0), 2 (π2 = 1/2), 3 (π3 = 3/4), 4 (π4 = 1/2) and 5 (π5 = 3/4)

are located in a line and τ(i, j) = 0 for all i and j (see figure 11). Assume that s1 = 1 and

T = 3.
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Figure 11: Network in Example 6

Let’s compute the strategies of players 2 and 4 in round one when the seller is player 1.

To do this, I need to compute P(2, 1,µ) first. As far as µ2 ≤ π2 and µ4 ≤ π4, µ3 = π3

and µ5 = π5 there are only two possible (pure) optimal offers for player 1 in round two. He

either sells to player 2 or to player 4 at price 3/4. In the first case, if both player 2 and 4

have value one, they make respectively a profit of 1/4 and 0. Instead, in the second case,

they make 0 and 1/4. Therefore I can conclude that [0, 1/4] ∈ P(2, 1, 〈0, µ2, π3, µ4, π5〉)(2, 1)

and [0, 1/4] ∈ P(2, 1, 〈0, µ2, π3, µ4, π5〉)(4, 1) for all µ2, µ4 ∈ [0, π2] × [0, π4]. Furthermore,

P(2, i, 〈0, µ2, π3, µ4, π5〉)(i, 1) = 3/4 for i = 2, 4 and µ2, µ4 ∈ [0, π2]× [0, π4].

I have the following cases, depending on how I operate a selection of continuation payoffs

(assume that I make the same selection for each µi ∈ [0, πi]):

• First, suppose that I select V 2
2 (0) = 1/4 and V 2

4 (0) = 0. According to the selection rules

I set V 2
2 (µ) = 1/4 for all µ ∈ [0, π2] and V 2

4 (µ) = 0 for µ ∈ [0, π2]. Also, V2
i = 3/4 for

i = 2, 4 and µ−i ≤ π−i (if i = 2 then −i = 4 and viceversa). Therefore, player 2 in

round one refuses any offer with p1 > 3/4, while player 4 accepts any price p1 ≤ 1. It

is implied by the selected continuations that in round one player one will first make an

offer at price 1 to player 4 (that will be accepted if and only if 4 has value one) and,

in case of refusal, he will, in round two, sell to player 2 at p2 = 3/4, being indifferent

between selling to 2 and 4. Player 2 will accept.

• Second, suppose that I select V 2
2 (0) = 0 and V 2

4 (0) = 1/4. Then, the analysis is as

above but the roles of 2 and 4 are reversed.

• Third, suppose, that V 2
2 (0) = 1/4 and V 2

4 (0) = 1/4. In this case both players believe

that they will receive an offer in the continuation of the game whenever they get an

offer in round one. This selection is possible, because it is conditional on two different

public histories. Therefore they will both refuse any price above 3/4. Here, in round

one, player 1 asks a price p = 3/4 to any of the players in round 1 and, according to
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the selected continuations, repeat the offer in round two. Therefore his payoff will be

lower in this third case than in the first and second.

• Fourth, assume that V 2
2 (0) = 0 and V 2

4 (0) = 0. In this case both players foresee that

if they receive an offer today, they will not obtain another one in the second round.

Therefore, they accept in round one any price below or equal to one. The payoff of

player 1 will be equal to that in case 1 and 2.

• Finally any other combination of continuations in [0, 1/4] is also possible. For example,

both players may believe that player 1 will make in round two an offer to one or the

other with equal probability.

It is easy to see, at this point, that by perturbing the beliefs or introducing transaction

costs, the multiplicity disappears. In fact, whenever, for example π5 = 3/4 + ε, player 1 will

find optimal to sell to 4 in round two. This same result can be obtained by introducing a

small transaction cost for one of the links between 1 and 3.

However another type of multiplicity that arises from multiple best replies from buyers

can be illustrated using case 4. Assume that the selection is the following for player 2:

V 2
2 (0) = V 2

2 (0) = 1/4 but V 2
2 (π2/2) = 1 − pt. Then player 2 will accept for sure any price

below 3/4 but may also accept with probability 2/3 the prices between 3/4 and 1 (inducing

belief π2/2 = 1/4).

Finally, another possibility of refinement deserves mention: I might want to require that

the selected continuation is independent from the identity of the player who gets the offer,

hereby eliminating the cases 3 and 4 above and other similar cases.

Deterministic Trading Chains

The previous example shows that, even along the equilibrium path, the seller can sometimes

be indifferent between two or more different offers. This produces a number of equilibria in

which he mixes between two or more offers. It is easy to see that by introducing transaction

costs, and by randomly perturbing the priors and transaction costs, the occurrence of a tie

has probability zero. Therefore equilibria where the seller randomizes are non generic.
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Appendix B: Proofs of Propositions in Section 5 and 6

Proof of Proposition 1. Let’s consider a setting with transaction costs. Let the cost of a

path b(i, j) be the total transaction cost needed for carrying the good from i to j along

b(i, j). For example, if b(i, j) = (i, b1, . . . , bm, j) the cost of the path is equal to τ(i, b1) +∑m−1
k=1 τ(bk, bk+1)+τ(bm, j). We denote by b∗k(i, j) the path between i and j of at most length

k who generates the minimum cost among all paths b(i, j) of length at most k. If the path

exists let c∗k(i, j) be the cost of b∗k(i, j). If such path does not exist, we set c∗k(i, j) =∞. Let

O = {i ∈ N | vi = 1}. If O is not empty then an outcome is efficient if and only if player

i∗ = arg mini∈O c
∗
T (1, i) consumes the good, c∗T (1, i∗) < 1 and the good reaches i∗ from 1

along path b∗T (1, i∗). If O is empty or c∗T (1, i∗) > 1 then an outcome is efficient if some player

j consumes the good and the good reaches j from 1 along a zero cost path.

I will now show that all subgame perfect equilibria of the game attains efficient outcomes.

The game with perfect information can be solved by backward induction. First, whenever

the set O is empty or there is no i∗ = arg mini∈O c
∗
T (1, i) such that c∗T (1, i∗) < 1, in every

round of the game, every trader will be willing to pay at most zero for the good. Therefore,

due to transaction costs the only equilibria are those where the goods moves around edges

with zero transaction cost.

Next assume that there exists i∗ = arg mini∈O c
∗
T (1, i) with c∗T (1, i∗) < 1. For simplicity

assume that both the player i∗ and the path b∗T (1, i∗) that minimizes the transaction costs is

unique and takes exactly T rounds. This makes the argument more sharp, but of course the

proof extends easily to cases where ties are present. By reasoning backward it can shown

that, in round one when player 1 is the seller, player b1 ∈ b∗T (1, i∗) has the highest willingness

to pay for the good, equal to 1−c∗k(i, j)+τ(1, b1), within all players connected to 1. Moreover,

the willingness to pay of every trader is reduced whenever the seller waits one round. The

willingness to pay is determined by solving the game backward, assuming that there are T−1

rounds and that b1 is the owner of the good. Therefore player 1 will sell to him at that price,

realizing a net profit of 1−c∗k(i, j), which corresponds to the total surplus. In round two, the

new owner b1 sells the good to b2 ∈ b∗T (1, i∗) at a price p2 = 1− c∗T (1, i∗) + τ(1, b1) + τ(b1, b2),

but makes zero profit due to transaction costs. In round T player bm ∈ b∗T (1, i∗) sells to good

to player i∗ at price one.
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Proof of Proposition 2. Because I focus on equilibria where traders do not take randomized

decision along the equilibrium path, each equilibrium payoff profile in a network trading

game can be identified by the ordered set of sellers, offers that are made and acceptance

decisions along the equilibrium path:

{(1, i1, p1, a1), (s2, i2, p2, a2), . . . , (sT , iT , pT , aT )}

.

I define a payoff producing offer as an offer (s, i, p, a), made in some round t, from trader s

to i, such that (i) µti > 0, (ii) p > V t+1
i , and (iii) ati(p, 1) > 0. That is a payoff producing offer

is one made at a price above his resale value, to a player who has value one with positive

probability, and that would be accepted with positive probability by that player.

First, I show that the number of payoff producing offers that can be made in any equilib-

rium, computed according to the algorithm in the appendix A is finite. If an offer is payoff

producing and p > V t+1
i , it must be that ati(p, 0) = 0. Therefore, given that ati(p, 1) > 0

the posterior belief about any player who refuses an equilibrium offer must strictly decrease,

that is µti > µt+1
i . In particular, according to the equilibrium characterization, if we are in

cases 1-3 of appendix A, ati(p, 1) = 1 and therefore µt+1
i = 0. In the first case, no other payoff

producing offer can be made to player i. Otherwise, if we are in case 4, ati(p, 1) =
µt

i−µ∗i
µt

i(1−µ∗i )
.

In this case, because there are no ties, µ∗ < µti and µt+1 = µ∗. Because sellers are rational

they will always ask price equal to the upper bound of the support in which the buyer is

mixing, given that the buyer randomizes with constant probability in the interval. In the

continuation game, the buyer will play a pure strategy. If he mimics a type zero player then

the offer made to him is not payoff payoff producing. If he plays a separating strategy, then

is value is fully revealed at the subsequent offer. Therefore, I conclude that the number of

payoff producing offers that can be made along the equilibrium path is finite.

With this in mind, it is possible to show that the number of offers that can influence

payoffs, call them payoff relevant, must be finite. In fact, the offer other than payoff pro-

ducing, which serve to transfer the object within intermediaries, all made at a price equal

to resale values, are of two types. They might be irrelevant for payoffs, if both the seller

and the buyer have µi = 0 and no other offer has been made in between. They are relevant

otherwise. Therefore, in general, there is a finite number of payoff relevant offer that can be

made, before µi = 0 for all i.
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Next, take an ordered sequence of payoff relevant offers

spro = ((s1, i1, p1, a1), (s2, i2, p2, a2) . . . (sn, in, pn, an))

where the index does not indicate the timing but only the order. Each sequence is finite, and

the set of all such sequences, denoted Spro, is finite. Next, I can show that, absent discounting,

any two equilibrium e and e′ of two network trading games, that differ possibly only on the

number of rounds, must produce the same profile of interim payoffs if the sequence spro(e)

of payoff relevant offers of e, is identical to the sequence in e′, denoted spro(e
′). This is easy

to see, because all the remaining offers, which are not payoff relevant, involve a sale from

a player with value zero, who acquired at his resale value to another player with value zero

who will have the same resale value.

Because the number of possible equilibrium payoffs profiles is finite, and each can be

obtained in a finite game, there must be a T ∗ such that all profiles can be attained in games

with T < T ∗. Let’s fix this number as the reference number of rounds. To conclude the proof,

I need to show (I) that for any equilibrium e of a trading game with T > T ∗ rounds there

exist an equilibrium e′ in a game with T ∗ rounds such that the profile of interim utilities for

all types of all players are the same and (II) the converse that for any equilibrium e of a game

with T = T ∗ there exist an equilibrium e′ in the same game with T > T ∗. To show (I) note

that, because the payoffs can be entirely recovered from the set of payoff relevant actions,

in the equilibrium e there must be a number of redundant trading actions that would not

change the equilibrium if removed. To show (II) note that it must be an equilibrium for

player one to wait until the number of rounds left is T ∗ and then play as in e′.

Proof of Proposition 3. I need to prove that no player who only receives offers that would be

accepted if he has value one only, will ever receive any offer at a price strictly below one. In

fact, any player who receives an offer that he will accept also if he has value zero is classified

as an intermediary. Therefore, suppose there is a player i who only receives offers that would

be accepted if he has value one only. Then there must be a last round in which i receives an

offer. This offer will be at price one, if the seller selling to i is rational. It follows that also

the previous offer made to i must be at price one. In fact, the previous seller anticipates

that in equilibrium i has no other opportunity to acquire the good at a price lower than one

and so i must be willing to pay up to one for it. Therefore, by the same argument repeated

backward, all offers made to trader i will have a price equal to one.
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Proof of Proposition 4. I show that the no player st connected to an isolated player i with

πi > 0 will ever ask to i a price below one in equilibrium, in any round t. Suppose the game

is in round t, the owner is st and belief are µt. Furthermore, assume that t is the first round

in which st is willing to make an offer to i, so that µti = πi > 0. In fact, if no such round t

and seller st exists, then i must be inactive. Let V t+1
st (st, 〈µt−i, 0〉, 0) be the expected value

of st obtainable from selling the good at the beginning of time t + 1, assuming that player

i has value zero. Note that this must be greater or equal to V t+1
i (i, 〈µt−i, 0〉, 0), that is the

resale value of player i once he gets the good. In fact he can only immediately resell to st.

Furthermore, note that there must be a time t∗ ≥ t such that

V t∗

st (st, 〈µt−i, 0〉, 0) = V t+1
st (st, 〈µt−i, 0〉, 0) > V t∗

i (i, 〈µt−i, 0〉, 0)

because the sale from i back to st wastes one round. Therefore, it follows that at t∗ no offer

that i may have an interest in making will ever be accepted by a player i with value zero (i.e.

with price pt
∗ ≥ V t∗

st (st, 〈µt−i, 0〉, 0)). Now consider that in round t player i with value one

will refuse a price of one only if he expects to receive an offer with a lower price in the future.

However, this will never happen. In fact, it follows from proposition 3 that he will only receive

offers at price one. Because I have seen that st can achieve πi + (1−πi)V t∗

st (st, 〈µt−i, 0〉, 0) by

waiting until t∗, then it is clear that he will never make an offer at price below one to player

i earlier.

Proof of Proposition 5. Consider any equilibrium of 〈G,π, T 〉 where i is an active player.

Since i is a active he get an offer with positive probability from some player j ∈ G1
−i in some

round t, with beliefs being µt. The most that player j can achieve by asking a price that

only a type one of i accepts, is πi + (1 − πi)V t+1
j (j, 〈µt−i, 0〉, 0). Note that whenever a type

one accepts the offer it must be the case that he does not get a later offer at lower price.

Therefore, the value V t+1
j (j, 〈µt−i, 0〉, 0) does not include any resale to i at a price lower than

1 later on. Therefore, V t+1
j (j, 〈µt−i, 0〉, 0) will be also equal to the resale value of i in G1

−i ∪ i
when beliefs are 〈µt−i, 0〉, 0). In fact, if two players with value zero are connected (note that

µtj = 0 because j is reselling), time is sufficiently large, and transaction costs are zero they

must make the same profit by reselling the good.

Next, observe that, at any point in time, i will accept for sure a price below or equal to

his resale value. If time is sufficiently large, the resale value of i (when acquires the good for
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the first time), at time t with beliefs 〈µt−i, 0〉 will be greater or equal to:

Ũi(0) + (1− Ũi(0))V t+1
j (j, 〈µt−i, 0〉, 0).

Therefore, it follows that whenever Ũi(0) > πi asking for a price that only a type one of the

player would ever accept can not be optimal for player j.

Proof of Proposition 6. It is sufficient to prove the statement for any two successive interme-

diaries (i.e two intermediaries such that no other intermediary is within them in the trading

chain). The price at which an intermediary it acquires the good in round t−1 is equal to his

resale value V ti , computed when he is a seller in round t, with beliefs being µt = 〈µt−1
−i , 0〉.

Let X(it) = {xt, . . . , xt+k−1} be the ordered set of players to which it makes, in equilibrium,

an offer that is accepted with positive probability. Assume that only it+k = xt+k−1 accepts

an offer with probability one (otherwise it+k would not be the successive intermediary after

it). I now compare the price paid by it, that is pt−1 = V ti , with the one paid by it+k, that

is pt+k−1 = V t+k
it+k . Let αj indicate the probability that player j ∈ X(it) accepts his offer. I

know that, along the equilibrium path:

pt−1 = αxtpt + (1− αxt)αxt+1pt+1 + · · ·+ V t+k
it+k

∏
j∈X(it)\xt+k−1

(1− αj)

Next, observe that, because the seller is rational, the sequence of prices must be weakly

decreasing. Therefore I can conclude that pt−1 ≥ pt+k−1, with strict inequality unless no

player before it+k accepts with positive probability an offer of it at a price strictly V t+kxk
. This

happens for example if X(it) = {it+k}.

Proof of Proposition 7. It is sufficient to prove the statement for any two successive interme-

diaries (i.e two intermediaries such that no other intermediary is within them in the trading

chain). The price at which an intermediary it acquires the good in round t−1 is equal to his

resale value V ti , computed when he is a seller in round t, with beliefs being µt = 〈µt−1
−i , 0〉.

Let X(it) = {xt, . . . , xt+k−1} be the ordered set of players to which it makes, in equilibrium,

an offer that is accepted with positive probability. Assume that only it+k = xt+k−1 accepts

an offer with probability one (otherwise it+k would not be the successive intermediary after

it). Let αj indicate the probability that player j ∈ X(it) accepts his offer in equilibrium.
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Consider two cases. First, suppose that both it and ik received no other offer in the past.

I know that:

pt−1 = αxtpt + (1− αxt)αxt+1pt+1 + · · ·+ V t+k
it+k

∏
j∈X(it)\xt+k−1

(1− αj)

Next, observe that (i) the maximum probability with which an offer is accepted (but not for

sure) is achieved if a player value one accepts with probability one, and (ii) the maximum

price that could be charged is one. Therefore, I can write:

V tit ≤ 1−
∏

j∈X(it)\xt+k−1

(1− µtj) + V t+k
xt+k−1

∏
j∈X(it)\xt+k−1

(1− µtj) (10)

where I use the fact that only the belief of a player that receives an offer can be updated

passing to the next round. Observe that (10) holds with equality only if pt+j−1 = 1 for all

j ∈ {1, . . . , k − 1} or if X(it) = {it+k}. By rewriting, I get

1− V tit ≥ (1− V t+kxk−1
)

∏
j∈X(it)\xt+k−1

(1− µtj).

Therefore, evaluating the payoff of the two players at round t − 1 (or at any prior round)

the proposition holds with strict inequality, assuming that µt−1
it > 0:

Uit(1) = 1− V tit > Uit+k(1) = (1− V t+k
xk−1)(1− µtit)

∏
j∈X(it)\xt+k−1

(1− µtj).

Next, suppose that any of the players gets another offer in round t− 2 or earlier that he

will accept with some positive probability but not for sure (otherwise this would contradict

the statement that it and it+k sells for the first time in rounds t and t + k). First, if it got

another offer, this could only, in principle, increase his payoff, while the payoff of it+k remains

unchanged and so the proposition continue to hold. Therefore, as a worst case, assume that

it+k only got another offer earlier in the game. Because the seller who made the offer to

it+k was rational, and the offer accepted with positive probability, the price that has been

asked must made a type one player of it+k indifferent between accepting and rejecting (in

which case it+k expects to receive another offer in t + k). It follows that the payoff of it+k

will not change if he gets an earlier offer. However, the payoff of it+k will be reduced and in

particular Uit(1) will be discounted by the probability with the the offer is accepted by it+k,

that happens at most with probability π = µtit . It follows that in this case the proposition

will hold at worst with equality.
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Proof of Proposition 8. Let’s focus on the resale value of player one, that is U1(0). In fact,

if he has value one, is payoff will be equal to one always, no matter the set of edges. In an

equilibrium for the original game, let X(1) = {x1, . . . , xk} be the ordered set of players to

which 1 makes an offer that is accepted with positive probability.

First, suppose that all players in X(1) are final customers. Therefore assume that the

probability with which a j ∈ X(1) accepts an offer, αj, is equal to the prior probability that

j has value one, and the price asked is equal to one. The resale value of 1 is:

U1(0) = πx1 + (1− πx1)πx2 + · · ·+ πxk

∏
j∈X(1)\xk

(1− πj) = 1−
∏

j∈X(1)

(1− πj)

In this case, the introduction of a new edge can only make player 1 better off. In fact, he

can always replicate the same set of offers, possibly in a different order, after the introduction

of a new edge. The point here is that the introduction of a new edge can not prevent player

1 to treat someone as a final customer, if he finds in his interest to do so.

Next, assume that xx = i2 is the an intermediary, to which player 1 sells with probability

one, and that there are, in addition to final customers, possibly other players, who are later

intermediaries in the set X(1). The resale value of one is:

U1(0) = πx1p1 + (1− πx1)πx2p2 + · · ·+ Vk+1
i2

∏
j∈X(1)\i2

(1− πj)

Note that, by induction, assuming that the statement of the proposition holds, the resale

value of player i2 must increase thanks to introduction of the edge, assuming that the set

of players to which player 1 makes an offer stay the same. Therefore, for this reason, if we

can show that player one can replicate the same set of offers, we can prove that he must be

weakly better off. This is so because time is sufficiently large. In this case he can order the

final customers and the other intermediaries to which he makes offer that they accept only

if they have value one in such a way that, if he finds in his interest to do so, he will be able

to replicate the set of offers. Therefore the initial owner will obtain at least the same payoff

when the network becomes more connected.

Proof of Proposition 9. For an inefficiency to arise, some player i must not be receiving an

offer with positive probability in equilibrium. In fact, because agents are forward looking
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and offers are at prices below or equal to one, no player with value one will refuse an offer

unless he expects to get a subsequent offer with positive probability.

Therefore, for a contradiction suppose that there exists no equilibrium in the trading

game where player i gets an offer with positive probability. There are three possible cases

to consider: (i) i is connected to some intermediary (or to player 1), (ii) i is connected to

some final customer and (iii) i is only connected to inactive traders. First assume that i is

connected to some player j that is an intermediary (or to player 1). In this case, if time is

sufficiently large player j will always find profitable to make some offer to i . Instead, suppose

that i is connected a final customer. In this case the condition in Proposition 5-(II) holds, at

worst with equality, and therefore there will be an equilibrium in which the final customer is

an intermediary and the argument of the previous point applies. Therefore, consider finally

the case where i is connected only to inactive players. In this case the entire proof can be

applied to him and show that he must be receiving an offer, unless is not connected to any

active player. Proceeding by induction it become clear that every player must be active and

an efficient equilibrium must exist.

Proof of Proposition 10. To prove sufficiency one can note that 1−(1−π)l(G
∗(Gn)) represents

a lower bound to the payoff that can be obtained by player one. In fact, l(G∗(Gn) represents

the number of isolated traders that will be asked a price of one that they will accept if they

have value one. Therefore as l(G∗(Gn))→∞ I have that Ûn
1 → 1. To prove necessity, I need

the following auxiliary Lemma which shows that number of traders from which a surplus

can be extracted by player 1 is finite, if all subtrees of the limit graph limn→∞G
n presents

only a finite number of isolated traders (i.e. leafs).

Lemma 1. Any infinite tree that has a finite number of leafs must have at most a finite

number of vertices with degree three or more.

Proof. I will establish a contradiction by showing that any tree with an infinite number

of vertices of degree three or more, must have an infinite number of leafs. First, note that

that any tree with a finite number of leafs must be locally finite (i.e. every vertex must have

a finite number of neighbors). Then, observe that by König’s Lemma, any infinite graph

must include at least a path of infinite length. Next, assume that at least one infinite path,

say v1, v2, . . . includes an infinite number of vertices of degree three or more. This must be
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the case because if no infinite path contains an infinite number of vertices of degree three

or more, than the number of leafs is not finite (otherwise the number of leaf-to-leaf paths

would be finite and some of them will necessarily contain an infinite number of vertexes with

degree three or more).

Since the tree is locally finite, let k ≥ 3 be the upper bound on the degrees of vertices

included in the path v1, v2, . . . . The following algorithm proves the Lemma by contradiction

showing how to construct a sub-sub tree with an infinite number of leafs.

Algorithm As initial conditions let x = 2 (i.e. the index of the player used in each round

of the algorithm), let l(G) = 0 (i.e. the leaf counter at each round) and let L(G) =.

Step 1. Take vx. It has either degree 2 (I write d(vx) = 2) or 2 < d(vx) ≤ k. If d(vx) = 2 set

x := x+ 1 and restart with step 1. If 2 < d(vx) ≤ k then go to step 2.

Step 2. vx is connected to vx+1 and to to vx−1. Therefore, there are other y players connected

to him, with 1 ≤ y ≤ k − 2. If any of them is outside the path v1, v2, . . . then increase the

leaf counter by one l(G) := l(G) + 1, put the selected player in L(G), set x := x+ 1 and go

back to Step 1. Otherwise, go to Step 3.

Step 3. If none of the y players which are inside the path is a successor of vx than set

x := x+ 1 and go back to step 1. If there is a player which is a successor of vx, say vz, two

cases are possible: (i) there is still an infinite number of players in the path following vy or

(ii) this number is finite. In case (i), if vx+1 /∈ L(G), put vx+1 in L(G) and increase the leaf

counter l(G) := l(G) + 1. Then, in any case (i.e. even if vx+1 ∈ L(G)) go back to step 1

with x := y. In case (ii), if vx+1 /∈ L(G), put vx+1 in L(G) and increase the leaf counter

l(G) := l(G) + 1. Then note that there must still be an infinite number of player between vx

and vy, therefore, restart the argument in Step 1 by setting vx = vy but now going backward

with the indexes. Do this also if vx+1 ∈ L(G).

This process must identify an infinite number of leafs, as the cases where a leaf is not

selected are at most finite, given that the tree is locally finite and the number of vertexes

with degree three or more is infinite (observe that the cases in which a leaf is not selected

because it has been a leaf before are at most finite as no vertices can get more than k

connections).Q.E.D.

As a result, any infinite graph G where every sub-tree has a finite number of leafs must
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have at most a finite number of vertices with degree three or more. Furthermore, the

Lemma also implies that there is an infinite number of players with degree two that must

be connected one to each other in a chain and that the number of players outside the said

chain must remain finite. This implies that there is only a finite number of intermediaries

from which player 1 can extract a surplus in the game. Therefore,one sees that the profit of

the initial owner must be bounded away from one.

Proof of Proposition 11. Assume first that all players in N must be connected in G. First,

observe that Player 1 can always achieve a minimum ex-ante profit of π1+(1−π1) maxi∈N\1 πi

by asking to one of his neighbor a price of maxi∈N\1 πi. In fact, because a player with such

expected value exists, this must be (at least) the resale value of some player connected to

1 if the number of rounds is sufficiently large, when there are no transaction costs. Next,

observe that a chain where player 1 is at one end and player i(1) = argmaxi∈N\1 πi is at other

end (and all other players in between) has an equilibrium that maximize the total surplus

available in the network (i.e. the sum of ex-ante utility), that is 1 − (1 − π)n. Therefore,

because it also achieves the lower bound in ex-ante utility collected by player 1, it must

achieve a maximum for the joint welfare of the other player, i.e.
∑n

i=2 Ui. Note that this

has been established for an arbitrary number of traders connected in G. Therefore, I know

that the optimal network when only a subset of N is connected (if a player other than 1 is

disconnected he makes zero ex-ante utility) must be also a chain constructed as above, with

the player with the highest expected value at one end. It remains to be checked that the

set of players included in the line is determined as in the proposition. First, note that there

is no gain in excluding players with expected values lower than the player at the end of the

chain. Therefore, it is easy to see that j∗ is selected exactly as the j that maximize the joint

surplus of the traders other than player 1, which is:1−
∏

{i∈N\{1,j}|πi≤πj}

(1− πi)

 (1− πj).
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