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This paper explores the link between the house-price expectations of mortgage lenders and

the extent of subprime lending. It argues that bubble conditions in the housing market are

likely to spur subprime lending, with favorable price expectations easing the default concerns

of lenders and thus increasing their willingness to extend loans to risky borrowers. Since the

demand created by subprime lending feeds back onto house prices, such lending also helps to

fuel an emerging housing bubble. The paper, however, focuses on the reverse causal linkage,

where subprime lending is a consequence rather than a cause of bubble conditions. These ideas

are illustrated in a theoretical model, and empirical work tests for a connection between price

expectations and the extent of subprime lending.
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Subprime Mortgages and the Housing Bubble

by

Jan K. Brueckner, Paul S. Calem, and Leonard I. Nakamura*

1. Introduction

The spectacular run-up in US housing prices over the first years of the new century, along

with the subsequent price collapse, are watershed events in real-estate history. No previous

brief period witnessed such dramatic price escalation (on the order of 50 percent), and the

rapid 30 percent price drop that ensued was also unprecedented.

Researchers have expended considerable effort in trying to understand these events, but the

understanding is thus far incomplete. Investigators have asked whether expansionary monetary

policy early in the decade, and the resulting sustained period of low mortgage interest rates,

fueled the demand for housing, driving up prices. They have asked whether the growth in

subprime lending, occurring partly in response to affordable-housing goals, was the culprit,

amplifying the effect of low interest rates on demand. Researchers have also asked whether

high loan-to-value ratios along with irresponsibly lax mortgage underwriting were the sources

of price escalation. Finally, investigators have tried to link house-price patterns to market

fundamentals such as population and income growth.

A recent paper by Glaeser, Gottlieb and Gyourko (2010) conveniently tests a number

of these competing explanations in the context of a single study, and the results are not

particularly affirmative. Relying on a multi-decade regression relating house prices to interest

rates, the authors find that low interest rates can explain at most half of the price escalation

through 2008. To measure the effect of lax underwriting standards (and the consequent easing

of mortgage access), the authors use a regression of house prices on mortgage approval rates,

finding little effect on prices. They also show that the increase in loan-to-value ratios over the

period cannot explain the price explosion.

Similarly, although Coleman, LaCour-Little and Vandell (2008) show some role for market

fundamentals in the price escalation through 2003, they cannot find a link to the expansion in
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subprime lending, low interest rates, or high LTV ratios.1 But they argue that price increases

through 2003 laid the foundation for a “bubble” psychology, where market participants grew

to expect continuing future price increases.2 Glaeser, Gottlieb and Gyourko (2010) reach a

similar conclusion, arguing that, in the absence of measured links to the various factors they

investigate, responsibility for the price explosion may lie in irrational expectations, as suggested

by Case and Shiller (2003).

The role of expectations is studied by Mian and Sufi (2009). But instead of asking whether

optimistic expectations drove the escalation of house prices, they ask the narrower question of

whether favorable price expectations helped spur the growth of subprime lending. In particular,

the authors provide a test of what they call the “expectations hypothesis,” which asserts

that expectations of future house-price growth, by easing default concerns, spurred subprime

lending. They test the hypothesis in a highly indirect fashion. The approach compares price

growth in zip codes with low credit scores at the beginning of the period (potential subprime

areas) to price growth in non-subprime zip codes. The authors find no difference in price

escalation between potential subprime areas, where most subprime lending occurred, and non-

subprime zip codes, focusing on areas with elastic housing supply. They conclude that the

faster expansion of mortgage credit in subprime areas could not have been driven by favorable

price expectations, given that the actual price path was no different in these areas than in non-

subprime zip codes where credit expanded less. Instead, Mian and Sufi conclude that subprime

expansion was driven by supply factors, including relaxation of underwriting standards and

the growth of mortgage securitization.

As Glaeser et al. (2010) and Coleman et al. (2008) have argued, expectations likely played

a significant role in generating the housing “bubble.” Mian and Sufi (2009) explore this channel

through their indirect test for an expectations effect in subprime lending, implicitly viewing

such lending as a driver of the bubble. However, given the likely importance of price expec-

tations and the literature’s limited exploration of their effects, additional research is clearly

needed. The present paper fills this need by further exploring the role of lender price expec-

tations in the operation of real-estate markets. The paper investigates a causal channel like

that posited by Mian and Sufi, arguing that a favorable shift in lender expectations regarding
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future prices spurs subprime lending by easing default concerns.3 The resulting increase in the

demand for housing then feeds back into the market, driving up today’s housing prices. So ex-

pectations of future price growth generate current price escalation, feeding a housing bubble.4

Thus, the paper is built around the notion that subprime lending is both a consequence and

a cause of bubble conditions in the housing market. Most of the effort is devoted to exploring

the first channel, where the presence of a bubble spurs subprime lending, but the other causal

direction is also kept in focus.5

These ideas are developed in a detailed theoretical model, and the paper then offers a more

direct test of the link between price expectations and subprime lending than the one offered by

Mian and Sufi (2009). In the model, subprime lending is portrayed as an extension of credit to

borrowers with low “default costs.” These costs represent the penalty incurred by a borrower

who defaults on a mortgage, which include the cost of credit impairment, moving costs, and

possibly the costs associated with guilt. With their poor credit ratings, subprime borrowers

presumably have low default costs since default will not greatly worsen a credit standing that

is already bad.

Although a previous paper by Brueckner (2000) analyzed mortgage lending when default

costs are private information, the present analysis assumes that these costs (denoted C) are

observable. The model generates a minimum value of C below which mortgage lenders cannot

profitably offer a mortgage, and market-level changes that reduce this minimum will generate

an expansion in subprime lending.

One such change is a shift in lender expectations regarding future house prices. With a

more optimist view of future prices, default is less of a concern for lenders, allowing them to

extend mortgages to borrowers with even lower C ’s, thus leading to an expansion of subprime

lending. While the basic analysis in section 2 below makes this point, an extension of the

model allows the expansion of lending to feed back onto current house prices, bidding them

up. Section 3 of the paper goes further by embedding the model in an explicitly dynamic

setting, where a shift in expectations generates an intertemporal adjustment process.

To test for the effect of price expectations on subprime lending, the paper uses the Con-

sumer Credit Panel database from the Federal Reserve Bank of New York, aggregated up to
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the state level over the 2001-2008 period. The borrower-quality measure is the credit “risk

score,” which is analogous to the more familiar FICO score, being a measure of the borrower’s

creditworthiness. The dependent variable in the regressions is a state-level risk-score measure,

equal to the mean risk score for new borrowers in the state or, alternatively, the 10th or 25th

percentile of the state’s risk-score distribution. The key explanatory variable, which is intended

to capture price expectations, is the lagged annual rate of house-price appreciation, which relies

on the state-level CoreLogic price index. The regressions include additional covariates as well

as state and quarter fixed effects.

While the regression is meant to test for the causal path running from price expectations

to subprime lending, the reverse path (by which subprime lending causes price escalation) is a

potential source of simultaneity bias. Appropriate steps are taken to deal with this bias. The

empirical results, presented in section 4 of the paper, provide support for the main hypothesis

by suggesting a causal link between prior price appreciation and subprime lending at the state

level.

2. The Model

2.1. The setup

The model, which draws on the framework of Brueckner (2000), is simple and stylized

along a number of dimensions. The first simplifying assumption is that the mortgage term

consists of a single period. The borrower arranges a loan to purchase a standardized house of

value P0, and without loss of generality, the mortgage is assumed to be a 100 percent loan, so

that the amount borrowed equals P0. Repayment is required in the subsequent period. The

balance-due, denoted B, includes the principal P0 as well as interest, with the interest rate r

implicitly defined by 1 + r = B/P0.

The value of the house in the next period is denoted P . Since P may be lower than P0, with

the house value falling over the period, the borrower may default on the mortgage. Default

occurs when P is low relative to B, in which case the borrower is better off surrendering the

house to the lender via foreclosure rather than paying off the mortgage. The resulting loss of

the low-valued housing asset is more than offset by cancellation of a larger liability.
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The critical value of P , below which default occurs, depends on the magnitude of default

costs. These costs, denoted C , include the cost of credit impairment, moving costs, and any

psychic costs from failing to honor the mortgage contract, as noted above. The role of default

costs, which are sometimes called transaction costs, has been analyzed previously by Kau,

Keenan and Kim (1993, 1994), Riddiough and Thompson (1993), Brueckner (2000), Foote,

Gerardi, and Willen (2008) and others. In the model, default costs are heterogeneous across

borrowers, ranging from a minimum value C to a maximum value of C.

The magnitude of some elements of C , and thus the outcome of the default decision, can

be affected by “trigger events,” as discussed by Foote, Gerardi, and Willen (2008).6 Thus,

default costs provide a way in which trigger events can play a role in a model that retains the

spirit of the home-equity approach to default decisions.

Taking account of default costs, the borrower defaults on the mortgage when P satisfies

P − B < − C. (1)

P − B in (1) equals housing equity, which is retained by the borrower if he repays the mort-

gage and thus represents the (possibly negative) increment to wealth in the absence of default.

Conversely, −C in (1) gives the (negative) increment to wealth if default occurs. Therefore,

wealth is larger with default when housing equity is less than −C < 0. Note that the pres-

ence of default costs implies that equity must fall well below zero before default is desirable.

Rearranging, (1) shows that default is optimal when

P < B − C. (2)

Thus, default occurs when the house price is less than the mortgage balance-due less default

costs.

In contrast to the analysis of Brueckner (2000), where default costs are private information,

the current model assumes that C is observable. In reality, the borrower’s credit rating appears

to give a good picture of the default propensity, with C small (and default more likely) when

5



the credit score is low. The model assumes that there are no other unobserved influences on

C , which is perfectly proxied by the credit score.

With default costs thus observable, the lender tailors the mortgage contract offered to

the borrower to reflect the observed value of C . Competition among lenders ensures that the

resulting contract generates zero lender profit.

Computation of profit involves a key element: lender expectations regarding the next

period’s house prices, which help determine the perceived likelihood of default. Expectations

are represented by the continuous density function f(P ), which is the same for all lenders.

Generally, the density f will depend on the entire past history of house prices, which will

affect both the mean and variance of the distribution of anticipated prices, perhaps through

a Bayesian updating process. The basic analysis that follows, however, does not require a

description of exactly how expectations are formed. Instead, the main focus is on the effect

of an exogenous shift in expectations, conditional on a general form for f . The formation

of expectations must be specified, however, when the goal is to analyze the intertemporal

adjustment process generated by an expectations shift, as seen in section 3 below.

Suppose the lender is risk neutral, focusing on expected profit, and that he incurs a mort-

gage origination cost of k for each loan issued. Then, incorporating f and letting η < 1 denote

the lender’s discount factor, the expected present value of profit from offering a loan with a

balance-due of B to a borrower with default costs C is given by

π ≡ − k − P0 + η

∫ B−C

0
Pf(P )dP + η

∫ ∞

B−C
Bf(P )dP. (3)

Note that the lender transfers P0 to the borrower when the loan is made. In the next period, he

receives the loan balance B from the borrower over the range of house values where P ≥ B−C

holds and default does not occur. He takes possession of the house through foreclosure, earning

P from resale of the property, over the range of values where P < B − C and default does

occur. Without loss of generality, the foreclosure costs incurred by the lender are assumed to

be zero.7

Although this formulation portrays the lender as using his own money to extend the loan,

the analysis would be unaffected if he relied instead on borrowed funds (bank deposits). Then
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the outlay of P0 would disappear from (3), being replaced by the discounted next-period interest

payment −ηzP0, where z is the lender’s cost of funds. Note that under either formulation,

the supply of mortgage funds is viewed as perfectly elastic, unaffected by the total volume of

lending.

The zero-profit condition for lenders requires that π in (3) equals zero. The resulting

equation then implicitly defines a value of B that yields zero expected profit for a given value

of C . Recalling that 1 + r = B/P0, the equation also implicitly defines the interest rate that

generates zero profit from lending to a borrower with the given default costs.

2.2. The relation between B and C

Setting (3) equal to zero and totally differentiating, the effect of C on B is given by

∂B

∂C
= −

πC

πB
, (4)

where πC and πB are the derivatives of π with respect to these variables. Using Leibniz’s rule,

πC = η[Bf(B − C) − (B − C)f(B − C)] = ηCf(B − C) > 0. (5)

By making default less likely for a given B, higher default costs thus raise profit.

Similarly, the effect of B on profit is given by

πB = η

[∫ ∞

B−C
f(P )dP − Cf(B − C)

]
, (6)

where the first term comes from differentiating under the integral in (1). The sign of (6)

is ambiguous as a result of two opposing effects. First, an increase in B raises the lender’s

revenue in the event that default does not occur, an effect captured by the first term in brackets.

However, an increase in B makes default more likely, which has the opposite effect and leads

to the negative second term in (6). One would expect the positive effect to dominate the

second one, so that a larger balance-due raises expected profit. This outcome, for example, is
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guaranteed in the case where f is uniform and given by 1/(P − P ) over the support [P, P ] ,

provided that an additional assumption holds. In this case,

πB = η
P − B

P − P
, (7)

which is positive under the assumption that the lender does not ask the borrower to pay back

more than the maximal anticipated next-period house price (B < P ). More generally, with a

unimodal f , it can be shown that πB is positive provided that the density is not too steep over

its descending range.

Assuming that πB > 0, (4) is then negative, implying ∂B/∂C < 0. Thus, an increase

in C allows a reduction in B, with the lender setting the balance-due lower, or equivalently

charging a lower interest rate, for a better quality borrower (one with a higher C). Since such

a borrower is less likely to default, the amount B that the bank recovers when default does

not occur can be set lower. Therefore, a curve relating B to C is downward sloping over the

relevant range, as shown in Figure 1.8

That range is limited at the upper end by C , the maximal value of default costs. A

key additional assumption puts a lower limit on C . This assumption realistically imposes an

upper bound on B via a stylized form of the mortgage payment-to-income constraint. Such

a constraint has been a key feature of mortgage underwriting for decades, although income

requirements were substantially loosened for subprime borrowers in recent years.

To see the effect of the payment-to-income constraint, note that the mortgage payment is

a component of B, being equal to rP0 = B−P0. Assuming that borrower incomes are uniform

and equal to y despite heterogeneous default costs, the payment-to-income constraint is written

rP0/y ≤ α for some constant α < 1. Substituting, the constraint becomes (B − P0)/y ≤ α, or

B ≤ αy + P0 ≡ B̂. (8)

Let the value of C associated with B̂ in Figure 1 be denoted Ĉ. Then, referring to the

figure, the B ≤ B̂ requirement implies C ≥ Ĉ , so that an upper limit on the balance-due puts
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a floor of Ĉ under allowable default costs. The reason is that, in lending to a borrower with

default costs below Ĉ , zero profit would require a balance-due above the limit fixed by the

payment-to-income constraint. Thus, mortgages cannot be offered to borrowers of less than a

certain quality, those with C values lying below Ĉ. As seen in Figure 1, C is assumed to be

less than Ĉ , so that low-quality potential borrowers in the range [C, Ĉ] cannot get a mortgage.

The discussion so far has implicitly assumed that borrowers will always accept an offered

mortgage, regardless of the magnitude of the balance-due. In effect, (owner-occupied) housing

is assumed to be essential, so that a mortgage will be accepted regardless of its cost. Thus,

the demand more mortgage funds is perfectly inelastic.

2.3. Subprime lending

In the model, subprime lending corresponds to a reduction in Ĉ. In other words, subprime

lending gives some low-quality potential borrowers, who previously could not get a loan, access

to mortgage funds. Parametric changes in the model can generate a reduction in Ĉ and thus

the emergence of subprime lending. Three changes in particular are of interest. The first is a

relaxation of the payment-to-income constraint, as has occurred in recent years. The second

change is a decline in the cost of lending, perhaps reflecting efficiency gains from greater reliance

on the Internet. The third change, which is the main focus of the analysis, is a favorable shift

in the lender’s house-price expectations.

To analyze the effects of these changes, the explicit condition that determines Ĉ is needed.

This condition comes from setting π from (3) equal to zero, and then substituting B̂ in place

of B. The resulting condition determines the associated C value, namely Ĉ , and it is written

− k − P0 + η

∫ B̂−Ĉ

0
Pf(P, δ)dP + η

∫ ∞

B̂−Ĉ
B̂f(P, δ)dP = 0. (9)

In (9), δ is a shift parameter for the house-price density. It is assumed that an increase in δ

shifts the density toward higher values in the sense of stochastic dominance. In other words,

with an increase in δ, the cumulative distribution function shifts downward at each value of P

within the support of f . Thus, the δ derivative of F (P, δ) ≡
∫ P
0 f(z, δ)dz satisfies Fδ(P, δ) < 0

over this support, where the subscript denotes partial derivative.
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Using (9), the effect on Ĉ of an increase in α, the maximum payment-to-income ratio,

is easily derived. Totally differentiating (9) with respect to α and Ĉ, recognizing that α

determines B̂ via (8), yields

∂Ĉ

∂α
= −

πB(∂B̂/∂α)

πC
< 0, (10)

where the inequality follows because πC > 0, πB is assumed positive, and ∂B̂/∂α > 0 from

(8). Thus, by raising the maximum possible B, relaxation of the payment-to-income constraint

lowers the floor on C , allowing Ĉ to fall and spurring subprime lending. In other words, by

allowing lenders to recoup a larger balance-due when default does not occur, a higher α allows

lenders to extend mortgages to borrowers of even lower quality without incurring a loss.9

Similarly, since πk = −1, it follows that ∂Ĉ/∂k = 1/πC > 0. Thus, by raising profit, a

decline in mortgage-origination costs allows lenders to extend loans to lower-quality borrowers.

The effect on Ĉ of a shift in the lender’s house-price expectations requires more extensive

computation. The appendix shows that an increase in δ raises π holding Ĉ fixed, with

πδ = −η

[
CFδ(B̂ − Ĉ, δ) +

∫ B̂−Ĉ

0
Fδ(P, δ)dP

]
> 0. (11)

Therefore, differentiating (9),

∂Ĉ

∂δ
= −

πδ

πC
< 0. (12)

A favorable shift in the house-price density thus leads to a reduction in Ĉ , with more optimistic

price expectations spurring subprime lending. With better expectations, the perceived likeli-

hood of default declines, other things equal, allowing loans to be extended to even lower-quality

borrowers without generating a loss for the lender.

Recognizing that a shift in expectations is characteristic of a housing bubble, the results

in (10) and (12) are summarized as follows:

Proposition 1. A favorable shift in the density of anticipated future house prices
(as occurs under a housing bubble) spurs subprime lending, with the caliber of the
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lowest-quality borrower falling. This effect is reinforced by a relaxation of the payment-
to-income constraint or a decline in mortgage-origination costs.

2.4. Endogenizing P0

So far, the initial house price P0 has been viewed as fixed despite the increase in the number

of home buyers that follows from a decline in Ĉ. A full analysis, however, should allow P0

to be endogenous, so that it can change along with Ĉ in response to changes in the model’s

parameters. The size of houses, however, remains fixed at some standardized value.

To carry out this extension, the first step is to relate the number of demanders of housing

to Ĉ . Let G(C) denote the cumulative distribution function for default costs over the [C, C]

range, with G(C) = 0 and G(C) = N , the number of potential mortgage borrowers. Then, the

number of housing demanders as a function of Ĉ is simply N −G(Ĉ), which gives the number

of individuals with C values large enough to get a mortgage.

On the supply side, let S(P0) denote the supply function for new houses, which gives the

number of houses supplied as an increasing function of price. Note that housing production

is assumed to be instantaneous, so that producers have no need to consider prices outside of

the current period. Taking account of the supply function, the number of houses available

would then equal the stock passed on from the previous period, denoted H, plus S(P0). The

condition that equates housing supply and demand is then

Φ ≡ H + S(P0) − [N − G(Ĉ)] = 0. (13)

While a high price generates an increase in the number of houses, so that S(P0) > 0 holds

for large values of P0, units are removed from the housing stock when P0 is low. This outcome

reflects the existence of some alternate use for the housing land input, which is superior when

housing commands a low price. Thus, the supply function satisfies S(P0) > (<) 0 when

P0 > (<) P ∗, with P ∗ giving the price where supply is zero.

The second equilibrium condition, which is based on (9), links P0 and Ĉ from the lender’s

side. The required modification comes from (8), which makes B̂ a function of the now-

endogenous P0 instead of simply a constant. This function is B̂(P0) ≡ αy + P0, and it
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shows a positive relationship between B̂ and P0.
10 Substituting B̂(P0) in place of B̂ in (9),

the condition is rewritten as

− k − P0 + η

∫ B̂(P0)−Ĉ

0
Pf(P, δ)dP + η

∫ ∞

B̂(P0)−Ĉ
B̂(P0)f(P, δ)dP = 0. (14)

Conditions (13) and (14) jointly determine equilibrium values of Ĉ and P0.

The effect on these equilibrium values of a shift in house-price expectations can be analyzed

diagrammatically. The equilibrium is the intersection of two locii in (Ĉ, P0) space, with one

given by (13) and the other by (14). The locus given by (13), denoted the “supply-demand

(s-d) locus,” is downward sloping. Totally differentiating (13), the slope of the locus is given

by

∂P0

∂Ĉ |s−d

= −
Φ

Ĉ

ΦP0

= −
G′(Ĉ)

S′(P0)
< 0, (15)

where the sign follows from G′, S′ > 0.

The locus given by (14), denoted the “π locus,” is upward sloping. Its slope is given by

∂P0

∂Ĉ |π

= −
πC

πP0

=
−πC

πB(∂B̂/∂P0) − 1
> 0. (16)

Given πC > 0, the inequality in (16) is a consequence of the negativity of the last denominator

expression, which is easily demonstrated.11

Figure 2 illustrates the s-d and π locii and their intersection. When house-price expec-

tations shift, with δ increasing, the π locus shifts, while the s-d locus (which is independent

of δ) remains fixed. The shift in the π locus is leftward in the Ĉ direction, as shown in the

figure. This conclusion follows given that ∂Ĉ/∂δ|π < 0 holds from (12), which indicates that

Ĉ falls as δ increases, holding P0 fixed. As seen in Figure 2, this shift in the π locus reduces

the equilibrium value of Ĉ while raising P0.

Since (10) shows that the π locus again shifts to the left when α increases, a relaxation of

the payment-to-income constraint has the same impacts on Ĉ and P0 as a shift in expectations.

These same effects also arise when origination costs k decline. Summarizing yields.
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Proposition 2. When the current house price P0 is endogenous, a rightward shift in
the density of anticipated future prices (as occurs under a housing bubble) raises P0

while again spurring subprime lending, with the caliber of the lowest-quality borrower
falling. A relaxation of the payment-to-income constraint or a decline in mortgage
origination costs reinforces these effects.

Thus, growth in subprime lending continues to be a consequence of a shift in future house-

price expectations, a relaxation of the payment-to-income constraint or a decline in mortgage-

origination costs. In addition, all three changes feed back onto current prices, making houses

more expensive.

2.5. Eventual default

The actual default decisions of borrowers occur in the subsequent period, and they depend

on the house price that emerges in that period. To analyze default, the realized value of P

must be inserted into the default condition (2) along with the balance due B owed by a given

borrower, which is shown by the curve in Figure 1. To write the balance-due as a function of

the relevant variables, let (3) be rewritten to include the shift parameter δ. Then, setting (3)

equal to zero, the condition determines B as a function of C and the other variables P0 and

δ, written as B = φ(C, P0, δ). This function is decreasing in C , as seen above, and it is also

increasing in P0 and decreasing in δ.12

Let C̃ denote the critical value of C that makes a borrower indifferent in the subsequent

period between defaulting and not doing so. Referring to (2), C̃ satisfies

P = φ(C̃, P0, δ) − C̃. (17)

Since φ is decreasing in C , it follows that φ(C, P0, δ)−C is also decreasing in C , which means

that P < φ(C, P0, δ) − C holds for C < C̃. Thus, after taking account of B’s dependence on

C , actual defaulters are those borrowers with the lowest default costs.

For future reference, note that (17) determines the critical value C̃ as function of the

remaining variables in the equation. This function, which is written C̃(P, P0, δ), is decreasing

in P given that a larger realized house value makes a borrower less prone to default, requiring

C to fall below a lower critical value to make default desirable. In addition, since a larger P0
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raises B, higher default costs are required to forestall default, so that C̃ is increasing in P0.

Finally, since a higher δ reduces the required B, lower default costs are required to induce

default, making C̃ a decreasing function of δ.13

While this discussion is silent about how the realized P value is determined, this omission

is remedied below when the model is embedded in a dynamic setting.

3. Making the Model Dynamic: An Example

While the paper’s empirical work relies only on Proposition 2, further insight can be gained

by using the model to carry out a dynamic analysis. In a dynamic setting, a one-time shift in

house-price expectations leads to an intemporal adjustment process. Analysis of this process

can give insight into the evolution of housing and mortgage markets in the presence of a housing

bubble.

The first step is to attach a time index t to P0 and Ĉ , which are now written P t
0 and Ĉt.

The realized house price in the period following t then equals the P0 value for that period, or

P t+1
0 . The next step is to specify exactly how the lender’s house-price expectations are formed,

a question that could be skirted in the analysis up to this point. While the expectations density

f will depend on the entire past history of house prices, as mentioned above, this dependence

is assumed to take a very simple form in order to permit a tractable analysis. Given this

limitation, the ensuing discussion should be viewed as only providing an example of how the

model might behave in a dynamic setting.

The simplifying assumption is that the position of the density of anticipated prices depends

on the previous period’s house price, with a change in that price shifting the density without

changing its shape. Thus, the time-t density for the next period’s anticipated price is written

f(P − P t−1
0 ), so that a given increase in P t−1

0 shifts the density to the right by the amount

of the increase.14 This assumption could correspond, for example, to a situation where f is

symmetric and centered at P t−1
0 , so that a change in P t−1

0 alters the mean of the distribution

while its variance is independent of the past history. In addition, a change in expectations, as

reflected in an increase in δ, is assumed to shift the density in the same way as the past price,

so that when δ is nonzero, the density is written as f(P − P t−1
0 − δ).
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Incorporating these changes, the zero-profit condition (14) at time t is rewritten as

− k − P t
0 + η

∫ B̂(P t

0
)−Ĉt

0
Pf(P −P t−1

0 −δ)dP + η

∫ ∞

B̂(P t

0
)−Ĉt

B̂(P t
0)f(P −P t−1

0 −δ)dP = 0.

(18)

To adapt the supply-demand condition in (13) to a dynamic setting, recall that H in (13)

is the number of housing units inherited from the previous period. Assuming that housing is

perfectly durable (unless intentionally removed from the stock), H simply equals the number

of mortgage borrowers in the previous period. Therefore, (13) at time t becomes

N − G(Ĉt−1) + S(P t
0) − [N − G(Ĉt)] = 0. (19)

Finally, the dynamic setup involves a particular assumption on the fate of borrowers who

default on their mortgages.15

Since P t−1
0 enters (18), the position of the π locus relating P t

0 and Ĉt depends on P t−1
0 . An

increase in P t−1
0 shifts that locus to the left, just like the increase in δ analyzed above. Similarly,

the position of the s-d locus depends on Ĉt−1, with an increase in Ĉt−1 shifting the locus to

the right.16 Note that, with a higher Ĉt−1, a smaller housing stock is handed forward from

time t− 1, so that supply-demand equilibrium at t requires fewer current mortgage borrowers

(a higher Ĉt) for any given P t
0.

Conditions (18) and (19) constitute a system of difference equations that governs the

evolution of the Ĉ and P0 variables over time. Suppose the economy is in a steady state up

to time τ − 1. The steady-state price equals the zero-supply price P ∗, and the steady-state

Ĉ is denoted Ĉ∗.17 Then, suppose that the equilibrium is perturbed at time τ by a shift in

house-price expectations, with δ becoming positive. The π locus shifts as in Figure 2, with P

rising and Ĉ falling at time τ , as shown again in Figure 3. The equilibrium moves from the

steady-state values P ∗ and Ĉ∗, which lie at the intersection of the steady-state π∗ and s-d∗

locii, to the values at the intersection of πτ and s-d∗ locii.

At time τ + 1, the expectations shock is passed, with δ returning to zero. But the time-τ

changes in P and Ĉ affect the positions of the π and s-d locii at τ + 1, following the above
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discussion. Since Ĉτ+1 < Ĉ∗, the s-d locus at time τ + 1 lies to the left of the steady-state

locus, as seen in Figure 3. To locate the πτ+1 locus, it can be shown that the house price at

time τ does not rise by the full amount of the expectations shift, so that P τ
0 < P ∗ + δ.18 As

a result, the π locus at τ + 1 (whose position depends on P τ
0 ) is not as far to the left as the

πτ locus (whose position depends on P ∗ + δ), as shown in Figure 3. Given these two shifts, it

follows that the house price at τ + 1 must be lower than at τ , with P τ+1
0 < P τ

0 . Depending on

the exact positions of the curves, Ĉ could either rise or fall between times τ and τ + 1, with

Figure 3 showing the latter case.19

This information can be used to investigate the time path of defaults. Letting C̃t denote,

for time t, the critical C̃ value below which default occurs, the default rate at t is given by

Dt =
G(C̃t) − G(Ĉt−1)

N − G(Ĉt−1)
. (20)

The denominator equals the number of consumers getting mortgages at t− 1 (whose C values

lie above Ĉt−1) and the numerator equals the number of these individuals who default at t

(whose C values lies above Ĉt−1 and below C̃t). At time τ − 1, the G arguments in (20) equal

the starred, steady-state values, yielding the steady-state default rate D∗.

The increase in the house price at τ reduces the incentive for default, pushing the critical

C̃ value below the steady-state level, so that C̃τ < C̃∗.20 Since Ĉτ−1 equals the steady value

Ĉ∗, it follows from (20) that the default rate declines at time τ , with Dτ < D∗.

In moving from time τ to τ + 1, the default rate is affected by changes in both C̃ and the

lagged Ĉ . Differentiation of (20) shows Dt rises when Ĉt−1 decreases, so that an expansion in

subprime lending raises the subsequent default rate, holding C̃ fixed.21 Thus, the decline in

the lagged Ĉ from Ĉτ−1 = Ĉ∗ to Ĉτ < Ĉ∗ tends to increase the default rate between times

τ and τ + 1. However, the change in C̃ between these periods is ambiguous.22 Although the

drop in P0 raises the incentive to default, which tends to increase C̃, the higher past price and

the previous period’s expectation shift have opposing effects on the balance-due owed at time

τ + 1, which makes the direction of change in C̃ unclear. However, if the Ĉ effect dominates,

the default rate will rise. Summarizing yields
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Proposition 3. Under the maintained assumptions, a house-price expectations shift
at time τ raises the current house price P0 above the steady-state level while reducing
the default rate D at τ relative to its own steady-state level. In the subsequent period
(τ + 1), the house price falls relative to the level at time τ . The change in the default
rate is ambiguous, but a large expansion in subprime lending at τ will tend to make it
positive.

The ambiguity regarding Dτ+1 as well as the evolution beyond time τ +1 can be explored

numerically. The calculations assume that the density f at time t is uniform, with height 1/2µ

over the interval [P, P ] = [P t−1
0 + δ −µ, P t−1

0 + δ +µ]. In addition, default costs are uniformly

distributed, and the supply function is linear.

Under the parameter values listed in the appendix, P ∗ = 5.0 and Ĉ∗ = 2.2. At time τ , P0

rises to 5.36 and Ĉ falls dramatically to 0.67, as seen in Figure 4. From a steady-state value of

1.7 percent, the default rate at time τ drops to zero, as seen in Figure 5. At time τ +1, P0 falls

almost all the way back to the steady-state value, dropping to 5.01, while Ĉ declines further

to 0.57 (matching Figure 3). The previous period’s expansion of subprime lending dominates

in determining the change in the default rate, which surges to 40 percent at time τ + 1, a

number that approximates actual experience.23 At time τ + 2, the house price drops below

the steady-state level while Ĉ rises almost back to Ĉ∗, indicating a drop in subprime lending.

The default rate declines only slightly.24

The subsequent evolution of P0 and Ĉ is depicted in Figure 4, which shows convergence

back to the steady state.25 Close inspection of the adjustment paths shows that they exhibit the

cyclical convergence seen in Figure 3, an outcome that is robust to variations in the underlying

parameter values. Figure 5 shows that the default rate also convergences cyclically back to its

steady-state value, spending several periods at zero before returning to D∗.

Given the analytical and simulation results, several observations can be made about the

intertemporal path generated by the shock to house-price expectations. In response to the

initial shock, subprime lending surges as Ĉ declines, and the resulting increase in demand

pushes up the current house price and enlarges the housing stock. While this price increase

partly sustains favorable price expectations for the subsequent period, the optimism is weaker

than under the initial shock. This fact (captured in the π locus’s rightward shift), together with
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the larger housing stock handed forward from time τ (reflected in the s-d locus’s leftward shift),

pushes down the housing price at time τ +1. This drop, along with the presence of new low-C

borrowers, leads to a spike in defaults. As the adjustment process continues, subprime lending

eventually abates, with P0, Ĉ and the default rate ultimately returning to their steady-state

values.26

4. Empirical Evidence

4.1. Data

The discussion now turns to a description of the empirical work designed to test the

predictions contained in Proposition 2. Credit risk scores, drawn from the New York Fed’s

Consumer Credit Panel database, are used to measure the extent of subprime lending in a state.

The database is a 5 percent sample of the entire US credit-bureau population (individuals with

credit information), taken as a panel. The same set of social security numbers is drawn each

quarter. The risk-score measures are scaled like the FICO scores that are also commonly used

as a criterion for mortgage lending, and they are similarly based on credit-bureau data (the

sample score range is from 280 to 850). In the data, the borrower’s risk score is tabulated when

a new mortgage is originated in a given quarter. Risk scores are then aggregated by state for

each quarter, with the state’s mean score, the 10th percentile score, and the 25th percentile

score computed. The sample covers the 32 quarters running from 2001Q1 to 2008Q4.

The sample of borrowers is split into repeat home buyers, refinancers, investors and first-

time buyers. A repeat buyer is a borrower who had a previously recorded mortgage and changed

address upon receiving the new mortgage. A refinancer is a borrower with a previously recorded

mortgage who did not change address in the quarter before or the two quarters after receiving

the new mortgage. An investor is a borrower who has two additional first-lien mortgages with

positive balances when the new mortgage was received.

Identification of first-time home buyers is less straightforward than for these other cate-

gories. A first-time buyer is a borrower who did not have a recorded mortgage in the prior four

quarters, who was 40 years old or younger, and whose oldest account still active (as recorded by

the credit bureau) was less than or equal to 240 months from its time of origination. Although
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some households could have paid off an unobserved previous mortgage well before borrowing

again, thus looking like first-time buyers, the restriction to households no older than 40 with

credit histories shorter than 20 years lessens the chance of such misidentification since few bor-

rowers with these characteristics could have paid off a previous mortgage. Another potential

problem is that some prior mortgages may not be recorded in credit-bureau records, although

in recent years this oversight is likely to be uncommon.

Additional variables include quarterly state house price indexes from Core Logic, quarterly

state unemployment rates from the Bureau of Labor Statistics, and the Conference Board’s

quarterly regional Consumer Confidence Index for the nine U.S. Census regions. Another

variable is real quarterly state personal income, constructed by Haver Analytics from state

personal income data deflated using the PCE chained price index, both from the Bureau of

Economic Analysis. These latter three variables, which were downloaded from Haver DLX

databases, control for demand-side effects, including the possibility that the risk composition

of borrowers varies with the economic cycle.27

4.2. Empirical model

The empirical model portrays lender expectations somewhat differently from the theoreti-

cal model of section 3. For tractability, that model assumed that the location of the density of

anticipated house prices depended on the level of the previous period’s price, with an expecta-

tion shock having the same effect on the density as an exogenous increase in the previous price.

A theoretically less tractable but more realistic approach for empirical purposes is to assume

that rapid past price appreciation, rather than a high past price level, produces favorable ex-

pectations for the future price. In this setting, an expectations shock would be equivalent to

an exogenous increase in the past appreciation rate. The empirical work does not provide an

internal test of this assumption that lenders extrapolate past appreciation forward in predict-

ing future house prices. But such behavior seems reasonable, and it is supported by indirect

evidence.28

Any empirical specification relating borrower risk scores to past price appreciation must,

however, confront a simultaneity problem. Past appreciation may encourage subprime lending,

but the feedback effect from this lending will raise current house prices and thus the rate of

19



appreciation through the current period. In other words, since housing demand at time t

will depend on the volume of new subprime mortgages originated at t, it follows that price

appreciation over the period ending at t will be affected by this lending volume and hence

by the borrower risk-score measure at time t. To isolate the reverse causal path, where fast

price appreciation signals high future prices and thus spurs subprime lending (depressing risk

scores), the appreciation rate must be lagged, unlinking it from the current price. Accordingly,

the empirical model relates the aggregate risk-score measure in state j in quarter t, denoted

RISKSCOREjt, to the one-year (4-quarter) lag of annual house-price appreciation, denoted

HPICHGjt−4. This variable is computed as (HPIjt−4 − HPIjt−8)/HPIjt−8, where HPI is

house-price index. A second version of the model instead uses the sixth-month lag of annual

house-price appreciation, HPICHGjt−2, computed as (HPIjt−2 − HPIjt−6)/HPIjt−6.

RISKSCOREjt is assumed to also depend on a vector of additional covariates, denoted

Xjt. These variables include the state unemployment rate for the given quarter (UNRjt), per

capita income (PCjt), and the regional consumer confidence index (CCjt). Also included in

Xjt are state fixed effects, captured by a vector S of state dummy variables that takes the

value Sj for state j, and quarterly fixed effects, captured by a vector T of quarter dummy

variables that takes the value Tt for quarter t.

By capturing economic well-being at the household level, UNRjt and PCjt help determine

borrower creditworthiness and thus individual risk scores, so that their presumed effects on

the aggregate measure are respectively negative and positive.29 The consumer-confidence

variable may help determine lender optimism about the future, while also capturing economic

well-being. Under the first interpretation, an increase in CCjt should lead to a reduction

in the aggregate risk-score measure as lenders serve riskier borrowers, but under the second

interpretation, the effect of CCjt could be positive. State and quarterly fixed effects are also

elements of Xjt. The equation determining RISKSCOREjt is thus written

RISKSCOREjt = β0 + β1HPICHGjt−4 + β2Xjt + εjt, (21)

where εjt is an error term. Under the maintained hypothesis, β1 is negative.
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Even though use of the lagged appreciation rate eliminates a main source of potential

simultaneity in the empirical model, a residual effect may remain as a consequence of serial

correlation in the error terms in (21). To understand this point, observe that the feedback

effect from subprime lending to prices can be captured by an equation relating HPICHGjt−4

to RISKSCOREjt−4 and additional covariates Zjt−4, which is written

HPICHGjt−4 = γ0 + γ1RISKSCOREjt−4 + γ2Zjt−4 + ηjt−4. (22)

Note that since an expansion of subprime lending (a lower RISKSCOREjt−4) raises price

appreciation, γ1 < 0 holds. The error term η in (22) is assumed to be uncorrelated with ε

from (21), with ηjr and εks being uncorrelated for any r, s, j and k. The Zjt−4 vector would

include the Xjt−4 variables UNRjt−4, PCIjt−4 and CCjt−4, all of which are shifters of housing

demand, as well as additional demand shifters such as the annual rate of population change

for the state.

To see that serial correlation in the ε’s poses a threat to consistent estimation, let (21)

be lagged four quarters to generate RISKSCOREjt−4, with the result substituted into (22).

After simplifying, the resulting equation can be written

HPICHGjt−4 = θ0 + θ1HPICHGjt−8 + θ2Zjt−4 + γ1εjt−4 + ηjt−4. (23)

Because HPICHGjt−4 depends on εjt−4 from (23), HPICHGjt−4 in (21) will be correlated

with the error term εjt if the ε’s are themselves serially correlated. This correlation will in turn

bias the ordinary least-squares estimates of (21).

This source of bias can be eliminated by applying an autoregressive transformation to the

model. Suppose that the ε follows an annual AR process, so that εjt = ρεjt−4 + vjt, where ρ is

the autoregressive parameter and the vjt are i.i.d. error terms.30 Then, lagging (21) by four

quarters, multiplying by ρ and subtracting the result from (21) yields

RISKSCOREjt = (1 − ρ)β0 + ρRISKSCOREjt−4 + β1HPICHGjt−4

− ρβ1HPICHGjt−8 + β2Xjt − ρβ2Xjt−4 + vjt (24)
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Since HPICHG depends on the contemporaneous ε from (23) and thus on the contempora-

neous v, it is independent of later v’s.31 As a result, both HPICHGjt−4 and HPICHGjt−8

in (24) are independent of vjt, eliminating the correlation between the right-hand variable and

the error term that prevents consistent estimation of (21).

To estimate the model, the usual approach would rely on the OLS residuals from (21)

to estimate ρ, with the result substituted in (24) and the β coefficients then estimated by

OLS. However, since OLS estimation of (21) is inconsistent given the correlation between

HPICHGjt−4 and the error term, the resulting estimate of ρ is inconsistent as well. A different

approach that circumvents this problem is to estimate (24) by nonlinear least squares.

The next section presents the results of this approach along with the inconsistent OLS

estimates for comparison purposes. Nonlinear squares estimates are also presented for the

alternative case of where (21) uses a two-quarter rather than four-quarter lag of annual house-

price appreciation (HPICHGjt−2 rather than HPICHGjt−4).
32 In order to give bigger states

(with their larger number of mortgage borrowers) more weight, (24) is estimated in weighted

fashion, with quarterly observations for each state weighted by the average annual borrower

count for the state. Significance tests are based on robust standard errors.33

Table 1 shows the summary statistics for the variables used in the model and gives their

definitions. One noteworthy comparison is that each of the three RISKSCORE measures for

first-time buyers is lower than the corresponding measure for the other borrower groups.

Before presenting the empirical results, it is important to recognize that borrower risk

scores and prior house-price appreciation may be linked for a reason different from the one

envisioned in the model. In particular, since rapid prior appreciation will raise the home

equity of repeat buyers and refinancers, a lower loan-to-value ratio becomes feasible on a new

mortgage. The resulting reduction in default risk may in turn make lenders more willing

to extend mortgages to borrowers with lower risk scores, generating an inverse relationship

between prior appreciation and risk scores like that predicted by the model. This linkage,

however, is not operative in the case of first-time buyers, for whom prior appreciation does not

generate a wealth gain. Therefore, the regression results for first-time buyers provide a crucial

way of distinguishing between these two sources of correlation between prior appreciation and
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borrower risk scores.34

4.3. Results

Table 2 shows the results for the subsample of repeat buyers. In the table’s first three-

column block, the aggregate risk score measure is the mean state risk score for this borrower

group. The two remaining three-column blocks show results when the aggregate measures are

the 10th and 25th percentile state risk scores, respectively. Within the first column block, the

first regression shows the results of estimating (21) by OLS using the mean RISKSCORE

as dependent variable along with a four-quarter HPICHG lag. The HPICHGt−4 coefficient

(β1 in (21)) is negative and statistically significant, suggesting that more rapid past price

appreciation lowers the mean risk score among current repeat buyers, reflecting an expansion

of subprime lending. The estimates are thus consistent with the empirical hypothesis that

subprime lending is spurred by favorable price expectations.

However, the OLS estimates are inconsistent, as explained above, and the next two regres-

sions show the results from consistent nonlinear estimation of the transformed model. The

second column, which is again based on a four-quarter lag, yields a significantly negative

HPICHGt−4 coefficient and a significant ρ estimate of about 0.2. The β1 coefficient is smaller

in absolute value than in the OLS regression, suggesting that the β1 estimate under OLS is

downward biased, a conclusion that also follows from the model. To see this point, note that

since HPICHGjt−4 is inversely related to εjt−4 by (24) (recall γ1 < 0), a negative correlation

exists between HPICHGjt−4 and the error term εjt in (21) when ρ > 0, leading to downward

bias in the OLS estimate of β1.

These more reliable estimates again support the hypothesis that subprime lending is spur-

red by favorable price expectations. But to see whether this conclusion is robust to the period

over which past price appreciation is measured, the last regression in the first column block

shows the nonlinear estimation results when the lag in (21) is two quarters rather than four,

with HPICHGjt−4 replaced by HPICHGjt−2. The β1 estimate is again significantly negative

and similar in size to the previous values, and the ρ estimate is now larger at 0.26, a difference

that makes sense given the shorter lag.

Among the other covariates, only the consumer confidence index has a significant effect on
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the mean risk score. The positive direction of the effect suggests that CCt is capturing current

economic well-being, which generates high borrower risk scores, rather than proxying favorable

lender expectations about the future, which would encourage lending to riskier borrowers.

The regressions shown in the remaining column blocks of Table 2 use the 10th and 25th

percentile state risk scores as dependent variables, and the estimates are similar to those based

on the mean risk score. The β1 coefficients are again signficantly negative, and an increase in

the consumer confidence index again leads to higher risk scores. Note also that the positive

expected effect of state per capita income emerges in the first two 25th-percentile regressions.

Since the model predicts that more-favorable price expectations should spur lending to

the riskiest borrowers, one might expect lagged HPICHG to have a stronger effect at lower

percentiles of the risk-score distribution. A comparison of the nonlinear four-quarter-lag results

for the 10th and 25th percentiles confirms this expectation. The elasticity of the 10th percentile

risk score with respect to the lagged HPICHG is more negative than the 25th percentile

elasticity, an outcome that can be seen by noting that the larger absolute value of the 25th

percentile β1 is more than offset by the larger 25th percentile riskscore in the ratio used to

compute the elasticity (see Table 1). In contrast, the nonlinear results with a two-quarter lag

yield elasticities that are about equal. This outcome suggests that the first elasticity pattern

may not be robust, a conclusion that is reinforced below in the case of first-time buyers. The

explanation could be that the 25th percentile risk score already embraces the bulk of subprime

borrowers, with impacts at the 10th percentile governed by other considerations.

To gauge the quantitative implications of the results, note that the mean regressions in

Table 2 imply that a 10 percentage-point increase in past annual house-price appreciation

reduces the mean risk score among repeat buyers by about 4 points. According to the model,

this reduction comes from a decrease in the minimum risk score (Ĉ) due to an expansion in

subprime lending. Further analysis shows this drop in the lowest risk score will equal some

multiple of the 4-point decrease in the mean score.35 Thus, the results are consistent with an

appreciable reduction in the risk score of the worst borrowers receiving mortgages in response

to higher past price appreciation price.

Table 3 shows the results for the case of refinancers. The main patterns established in the
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repeat-buyer case again emerge. All the β1 coefficients are significantly negative, with the OLS

estimates larger in absolute value than the nonlinear estimates for the four-quarter-lag case.

HPICHG elasticities are larger for the 10th percentile case than at the 25th percentile, now

for both the four and two-quarter-lag specifications. As for the other covariates, the positive

consumer confidence effect disappears in the nonlinear regressions, while the positive per capita

income effect now emerges more consistently.

Although the estimates in Tables 2 and 3 are consistent with the main hypothesis, they

could also reflect favorable wealth effects from past price appreciation, which would allow

riskier borrowers among the repeat-buyer and refinancer groups to secure mortgages. As

explained above, first-time buyers experience no such wealth effect, which means that they

offer a more stringent test of the main hypothesis. The first-time buyer results are shown in

Table 4, and they mostly conform to previous patterns. When the dependent variable is the

mean risk score or the 25th percentile score, the β1 coefficients are again significantly negative,

although the OLS and nonlinear 4-quarter-lag coefficients are now similar in size. In contrast,

the OLS and nonlinear β1 estimates are insignificant when the dependent variable is the 10th

percentile risk score. While this result is unexpected, the fact that the anticipated negative

effect of the lagged HPICHG still emerges for first-time buyers near the bottom of the risk

score distribution (at the 25th percentile), as well as emerging at the mean, supports the main

hypothesis. Among the other covariates, the positive per capita income effect is again present,

while the consumer confidence effect is more consistently positive than in the refinancer case,

mirroring the repeat-buyer results.

Table 5 shows the regression for the investor case, and the results once again show negative

β1 coefficients. As in the case of first-time borrowers, the OLS and nonlinear four-quarter-lag

estimates are similar in size. In contrast to previous results, the coefficients of the other

covariates are mostly insignificant, with the few significant cases showing negative rather than

positive signs.

Overall, the empirical results provide considerable support for the empirical hypothesis that

faster past price appreciation, by raising lender optimism about future prices, spurs lending

to riskier borrowers. Although a wealth effect could contribute to the observed association
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between past appreciation and borrower riskiness for previous homeowners, the evidence that

this association is also present for first-time buyers lends substantial credence to the maintained

hypothesis.

5. Conclusion

This paper has explored the link between the house-price expectations of mortgage lenders

and the extent of subprime lending. It argues that bubble conditions in the housing market are

likely to spur subprime lending, with favorable price expectations easing the default concerns

of lenders and thus increasing their willingness to extend loans to risky borrowers. Since the

demand created by this subprime lending feeds back onto house prices, the lending also helps

to fuel an emerging housing bubble. The paper, however, focuses mostly on the reverse causal

linkage, where subprime lending is a consequence rather than a cause of bubble conditions,

further exploring what Mian and Sufi (2009) call the “expectations hypothesis.”

The paper’s theoretical model portrays subprime lending as the extension of loans to

borrowers with low observable “default costs,” and the analysis shows that a favorable shift

in house-price expectations spurs such lending by encouraging loans to borrowers with even

lower default costs (and thus higher default risks). The empirical work shows that rapid past

appreciation, which is presumed to generate favorable expectations regarding future prices,

does indeed lead lenders to extend mortgages to riskier borrowers (those with worse credit

ratings).

By providing a deeper theoretical grounding for the “expectation hypothesis” than prior

work as well as a more-direct empirical test, the paper advances our understanding of the hous-

ing crisis. A better understanding of this watershed economic event is crucial in formulating

policies to prevent its repetition, and this paper may add some of the required insights.
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Appendix

Derivation of (12)
Integrating by parts, the profit expression in (9) can be rewritten as

− k − P0 + η

(
(B̂ − Ĉ)F (B̂ − Ĉ, δ) −

∫ B̂−Ĉ

0
F (P, δ)dP + B̂[1 − F (B̂ − Ĉ, δ)]

)
=

k − P0 − η

[
ĈF (B̂ − Ĉ, δ) +

∫ B̂−Ĉ

0
F (P, δ)dP − B̂

]
. (a1)

Differentiating (a1) with respect to δ yields (11).

Simulation assumptions
The height of the uniform default-cost density is 1/g, where g = C−C , and the cumulative

distribution function in (19) is then G(Ĉ) = (Ĉ − C)/g (the mass N of potential mortgage
borrowers is normalized to unity). Furthermore, with linear housing supply, S(P t

0) ≡ nP t
0 − k,

implying P ∗ = k/n. Given these latter assumptions, (19) reduces to

Ĉt − Ĉt−1 + g(nP t
0 − k) = 0. (a2)

Letting a ≡ αy, so that B(P t
0) = a + P t

0, and assuming η = 1, (18) reduces to

(Ĉt)2 − (a + P t
0)

2 + (P t−1
0 + δ − µ)[2(a + P t

0) − (P t−1
0 + δ − µ)] + 4aµ = 0. (a3)

To carry out the simulation, (a2) is used to eliminate Ĉt in (a3), so that P t
0 can be written

as a function of the prior values P t−1
0 and Ĉt−1. With P t

0 then known given these values,

substitution in (a2) determines Ĉt as a function of P t−1
0 and Ĉt−1. The time paths shown in

Figure 4 reflect the following additional parameter values: a = 2.28, µ = 4.5, k = 10, n = 2
and g = 4.

Under these parameter values, B < P holds at each point in time for all borrowers, so that
πB in (7) is positive as assumed (note that B−C < P then also holds). In addition, assuming
C = 0, the condition B − C > P is satisfied at each point in time for all borrowers.

To compute default rates, the uniformity assumption is imposed in (18) (lagged one period),
and the condition is solved for B to yield

B = P t−2
0 + µ + δ −

[
C2 + 4δµ − 4µP t−1

0 + 4µP t−2
0

]1/2
(a5)

This solution with C replaced by C̃ is then substituted into the condition P t
0 = B − C̃ to yield

C̃ as a function of P t
0, P t−1

0 , P t−2
0 and δ.
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Figure 1: The relationship between B and C 
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Figure 2: The effect of a shift in house-price expectations 
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Figure 3: Adjustment to a house-price-expectation shock 
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Figure 4: Simulation Results
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Figure 5: Default rate
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Table 1. Summary statistics  
  First time buyers Repeat buyers Refinancers Investors 
 N  Mean  SD  Mean  SD  Mean  SD  Mean  SD  
Risk score – mean  
RISKSCOREM 

1600  689.0 15.47 722.62 12.96 715.6 16.36 735.3 17.44 

Risk score – 10th percentile  
RISKSCORE10 

1600 585.4 20.52 627.66 20.89 610.4 25.61 649.0 29.39 

Risk score – 25th percentile  
RISKSCORE25 

1600 636.4 20.26 683.70 18.21 669.8 23.90 698.9 25.52 

Unemployment rate  
UNR 

1600 4.92 1.17 4.92 1.17 4.92 1.17 4.92 1.17 

Consumer confidence ind. 
CC 

1600 95.52 21.90 95.52 21.90 95.52 21.90 95.52 21.90 

State house price inflation  
HPICHG 

1600 5.23 8.07 5.23 8.07 5.23 8.07 5.23 8.07 

Per capita income 
PCI 

1600 35.25 11.54 35.25 11.54 35.25 11.54 35.25 11.54 
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Table 2. RISKSCORE regressions for repeat buyers – 2001Q1 – 2008Q4  
 Mean 10th Percentile 25th Percentile 
 OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag 
Constant  467.779** 

(4.822) 
714.933** 

(7.551) 
716.652** 

(8.067) 
407.462** 
(10.211) 

611.468** 
(14.959) 

610.444** 
(15.635) 

437.864 
(8.029) 

660.194** 
(12.205) 

662.026** 
(13.036) 

       ρ  0.186** 
(0.033) 

0.264** 
(0.033)  0.104** 

(0.029) 
0.142** 
(0.032)  0.139** 

(0.032) 
0.211** 
(0.034) 

HPICHGt-4   (β1) 
 

-0.469** 
(0.047) 

-0.436** 
(0.046)  -0.647** 

(0.087) 
-0.625** 
(0.086)  -0.682** 

(0.072) 
-0.637** 
(0.071)  

HPICHGt-2  (β1) 
   -0.395** 

(0.048)   -0.501** 
(0.086)   -0.553** 

(0.074) 
CCt      (β2) 
 

0.109** 
(0.018) 

0.082** 
(0.020) 

0.073** 
(0.021) 

0.238** 
(0.035) 

0.219** 
(0.037) 

0.196** 
(0.038) 

0.176** 
(0.028) 

0.145** 
(0.030) 

0.129** 
(0.033) 

UNRt   (β2) 
 

0.002 
(0.332) 

0.246 
(0.346) 

0.143 
(0.377) 

-0.910 
(0.657) 

-0.724 
(0.672) 

-0.461 
(0.696) 

-0.345 
(0.523) 

-0.002 
(0.546) 

-0.004 
(0.585) 

PCIt    (β2) 
 

0.275 
(0.171) 

0.388 
(0.194) 

0.223 
(0.200) 

0.534 
(0.352) 

0.634 
(0.382) 

0.490 
(0.388) 

0.657* 
(0.283) 

0.822* 
(0.317) 

0.605 
(0.323) 

Standard errors in parentheses. 
Significance: **1%, *5% 
N=1600 for each regression. The regressions use robust standard errors, and coefficients of the quarter and state dummy variables are not reported. 
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Table 3. RISKSCORE regressions for refinancers – 2001Q1 – 2008Q4  
 Mean 10th Percentile 25th Percentile 
 OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag 
Constant  839.825** 

(13.426) 
696.735** 
(12.117) 

671.574** 
(16.270) 

654.739** 
(25.945) 

521.663** 
(24.433) 

498.200** 
(30.094) 

742.111** 
(22.600) 

620.935** 
(20.992) 

581.994** 
(27.638) 

       ρ  0.505** 
(0.056) 

0.612** 
(0.058)  0.412** 

(0.060) 
0.557** 
(0.079)  0.555** 

(0.068) 
0.663** 
(0.070) 

HPICHGt-4  (β1) 
 

-0.631** 
(0.084) 

-0.454** 
(0.051)  -0.891** 

(0.167) 
-0.687** 
(0.118)  -0.916** 

(0.146) 
-0.608** 
(0.082)  

HPICHGt-2  (β1) 
   -0.464** 

(0.064)   -0.679** 
(0.131)   -0.595** 

(0.102) 
CCt       (β2) 
 

0.151** 
(0.022) 

0.026 
(0.036) 

-0.017 
(0.034) 

0.300** 
(0.039) 

0.110 
(0.065) 

0.033 
(0.067) 

0.268** 
(0.037) 

0.049 
(0.064) 

-0.018 
(0.058) 

UNRt   (β2) 
 

0.089 
(0.468) 

0.991* 
(0.500) 

0.866 
(0.483) 

0.376 
(0.898) 

1.748 
(1.060) 

1.644 
(0.993) 

0.171 
(0.797) 

1.411 
(0.832) 

1.386 
(0.829) 

PCIt    (β2) 
 

0.413 
(0.256) 

0.847** 
(0.309) 

0.840* 
(0.354) 

1.646** 
(0.502) 

2.406** 
(0.632) 

2.227** 
(0.660) 

1.246** 
(0.433) 

1.741** 
(0.492) 

1.519** 
(0.566) 

Standard errors in parentheses. 
Significance: **1%, *5% 
N=1600 for each regression. The regressions use robust standard errors, and coefficients of the quarter and state dummy variables are not reported. 
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Table 4. RISKSCORE regressions for first-time buyers – 2001Q1 – 2008Q4  
 Mean 10th Percentile 25th Percentile 
 OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag 
Constant  685.443** 

(7.656) 
663.657** 

(8.140) 
658.563** 

(9.104) 
589.630** 
(10.872) 

564.056** 
(10.899) 

561.001** 
(12.103) 

613.835** 
(10.632) 

592.554** 
(11.176) 

583.233** 
(12.331) 

        ρ   0.264** 
(0.031) 

0.382** 
(0.036)  0.450** 

(0.030) 
0.277** 
(0.035)  0.266** 

(0.033) 
0.380** 
(0.037) 

HPICHGt-4    (β1) 
 

-0.152** 
(0.046) 

-0.149** 
(0.044)  -0.085 

(0.059) 
0.100 

(0.060)  -0.170* 
(0.067) 

-0.176** 
(0.065)  

HPICHGt-2   (β1) 
   -0.162** 

(0.044)   -0.082 
(0.057)   -0.153* 

(0.065) 
CCt       (β2) 
 
 

0.048* 
(0.020) 

0.041 
(0.022) 

0.034 
(0.023) 

0.0163** 
(0.025) 

0.159** 
(0.027) 

0.143** 
(0.028) 

0.122** 
(0.030) 

0.118** 
(0.032) 

0.101** 
(0.035) 

UNRt   (β2)  
 

-0.487 
(0.274) 

-0.315 
(0.279) 

-0.339 
(0.327) 

0.060 
(0.383) 

0.056 
(0.389) 

0.074 
(0.455) 

-0.611 
(0.366) 

-0.407 
(0.375) 

-0.175 
(0.431) 

PCIt     (β2) 
 

0.769** 
(0.163) 

0.790** 
(0.194) 

0.796** 
(0.221) 

0.508* 
(0.237) 

0.525* 
(0.263) 

0.533 
(0.292) 

1.245** 
(0.228) 

1.224** 
(0.269) 

1.283** 
(0.299) 

Standard errors in parentheses. 
Significance: **1%, *5% 
N=1600 for each regression. The regressions use robust standard errors, and coefficients of the quarter and state dummy variables are not reported. 
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Table 5. RISKSCORE regressions for investors – 2001Q1 – 2008Q4  
 Mean 10th Percentile 25th Percentile 
 OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag OLS: 4Q lag NL: 4Q lag NL: 2Q lag 
Constant  273.698** 

(3.495) 
765.342** 

(9.861) 
755.881** 
(10.987) 

241.608** 
(7.664) 

670.811** 
(20.458) 

657.788** 
(22.343) 

263.383** 
(5.292) 

734.584** 
(14.626) 

721.917** 
(16.191) 

       ρ  0.236** 
(0.028) 

0.309** 
(0.031) 

 0.073* 
(0.029) 

0.169** 
(0.031) 

 0.155** 
(0.029) 

0.255** 
(0.032) 

HPICHGt-4   (β1) 
 

-0.283** 
(0.042) 

-0.292** 
(0.040) 

 -0.556** 
(0.101) 

-0.555** 
(0.100) 

 -0.464** 
(0.065) 

-0.466** 
(0.064) 

 

HPICHGt-2  (β1) 
 

  -0.140** 
(0.047) 

  -0.315** 
(0.107) 

  -0.250** 
(0.073) 

CCt       (β2) 
 

0.031 
(0.028) 

0.003 
(0.030) 

-0.019 
(0.031) 

0.095 
(0.052) 

0.089 
(0.053) 

0.044 
(0.057) 

0.067 
(0.042) 

0.042 
(0.044) 

-0.001 
(0.046) 

UNRt   (β2) 
 

-0.669 
(0.399) 

-0.637 
(0.422) 

-0.078 
(0.466) 

-2.754** 
(0.923) 

-2.649** 
(0.949) 

-1.571 
(1.023) 

-0.781 
(0.630) 

-0.769 
(0.657) 

0.075 
(0.726) 

PCIt     (β2) 
 

-0.516* 
(0.222) 

-0.382 
(0.247) 

-0.297 
(0.270) 

0.033 
(0.492) 

0.094 
(0.509) 

0.232 
(0.547) 

-0.465 
(0.333) 

-0.409 
(0.362) 

-0.262 
(0.397) 

Standard errors in parentheses. 
Significance: **1%, *5% 
N=1600 for each regression. The regressions use robust standard errors, and coefficients of the quarter and state dummy variables are not reported. 
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Footnotes

∗We thank Rainald Borck, Bill Branch, Kangoh Lee, and Pierre Picard for helpful comments,
and we are especially grateful to David Brownstone for econometric advice. Errors or short-
comings, however, are our responsibility.

1Wheaton and Nechayev (2008), by contrast, show a connection between subprime lending
and house-price escalation. They start by estimating a regression relating prices to economic
fundamentals through 1998 and then show that the regression underpredicts prices during the
subsequent 1998-2005 period. The authors then demonstrate that the forecast errors from
this regression are larger in MSAs with substantial subprime lending activity, establishing a
connection between such lending and price growth.

2Himmelberg, Mayer and Sinai (2005) argue against the presence of bubble conditions as of
2004 by showing that the user-cost of owner-occupied housing (based on historical appre-
ciation rates) was similar to rent levels across different MSAs. Under bubble conditions,
user-cost would be far below current rents.

3Coleman et al. (2010) acknowledge the existence of this channel, and they test for it by
regressing subprime lending on prior price growth (reversing their main regression). However,
despite the possible existence of two-way causation, they do not use simultaneous-equations
methods.

4The term “bubble” in this paper is used in its popular sense, not in the technical fashion
seen in the theoretical macro literature.

5Recent papers in macroeconomics explore the factors that generate price volatility and bub-
bles in the housing market. Lambertini, Mendicino and Punzi (2010) present an empirical
analysis showing a link between expectations and boom-bust housing cycles. Arce and
López-Salido (2011) view a housing bubble as an equilibrium where houses are held only
for resale (not generating rent or utility) and show that a low downpayment requirement is
required to sustain such an equilibrium. Iacoveillo and Neri (2010) use a calibrated DSGE
model to explore the sources of volatility in house prices. All this work draws on the classic
paper of Kiyotaki and Moore (1997), which demonstrated the effect of collateral constraints
on the dynamic behavior of the economy.

6For example, moving costs may be an element of C in the absence of a trigger event, while
disappearing from C when a trigger event is present, as follows. Without a trigger event
that requires a move, moving costs will be zero in the absence of default (in which case the
borrower stays in the house), but the cost will be positive with default, in which case a move
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is required. In this case, moving cost is an element of C . Suppose instead that a trigger
event such as unemployment occurs. Then, assuming the house becomes unaffordable, the
borrower must move regardless of whether default occurs, so that moving costs no longer
represent part of default costs. Thus, the trigger event depresses C , making default more
likely, as seen in the ensuing discussion.

7The density f(P ) is presumably positive only over a subinterval within [0,∞], which can be
denoted [P, P ]. For (3) to be relevant, B − C must lie within this interval. Otherwise, the
probability of default is either zero or one.

8The curve is drawn as linear even though other shapes are possible. The same point applies
to Figure 2 below.

9Given that α and y are multiplied in (8), the effect of an increase in income y is identical to
the impact of a higher α.

10The reason is that, since P0 is a component of B, with the remainder equal to the interest

payment, a larger P0 would shrink that payment if B̂ were held fixed, pushing it below αy.
For the interest payment to remain at its maximal level, B̂ must then increase with P0.

11Negativity follows because ∂B̂/∂P0 = 1 and πB < 1. Referring to (6), this latter inequality
follows because η ≤ 1 and the integral in (6) is less than unity.

12These conclusions follow because the modified version of (3) is increasing in B, decreasing
in P0, and increasing in δ.

13These properties follow from differentiation of (17) and use of the properties of the φ function.

14This property follows because, if P t−1
0 is increased by an amount ε, then P must also be

increased by ε to keep the height of the density at its original value.

15These borrowers are assumed to reenter the pool of potential mortgage borrowers without
penalty. The potential-borrower pool thus consists of the same individuals from period to
period, who need a mortgage to repurchase the housing they just relinquished either through
sale or default. In reality, borrowers who default enter the rental market for housing, which
is suppressed under the current setup. This suppression is not completely unrealistic given
that renter status for defaulters is typical temporary, with new mortgages available to them
after a few years. Another point is that any capital gains earned upon sale of a house do
not affect a borrower’s ability to secure another mortgage. By affecting wealth, not income,
these gains do not loosen the payment-to-income constraint, and they cannot be used for a
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downpayment given the assumption of 100 percent loans.

16When Ĉt−1 increases, Ĉt must increase holding P t
0 fixed to maintain the equality in (19).

17Ĉt−1 = Ĉt must hold in the steady state, so that the number of borrowers 1 − G(Ĉ) and
thus the number of houses is constant over time. From (19), this requirement implies P t

0 =
P ∗, ensuring that housing supply equals zero and that the stock is thus constant. Then,
substituting P t

0 = P t−1
0 = P ∗ into (18) (along with δ = 0), the condition yields a steady-state

value for Ĉ , denoted Ĉ∗.

18This conclusion follows from computing ∂P0/∂δ = −πδ/πP0
from (18) and showing that it

is less than unity. Since the upward shift in the π locus is thus less than δ, it follows from
Figure 2 that the increase in P0 must also be less than δ. In other words, given the negative
slope of the s-d locus, the increase in P0 must be smaller than the vertical shift of the π
locus, which is itself less than δ.

19The relation between Ĉτ+1 and Ĉτ depends on whether P τ+1
0 is above or below P ∗. If

P τ+1
0 > P ∗ holds, then the housing stock is growing, and the number of mortgage borrowers

must be rising, implying Ĉτ+1 < Ĉτ , as in Figure 3. If P τ+1
0 < P ∗, then the housing stock

is shrinking, implying Ĉτ+1 > Ĉτ .

20To see this point, recall that the function C̃(P, P0, δ) from above indicates that the critical
C value below which default occurs depends on the realized price (P ), last period’s price
(P0), and the position of last period’s anticipated house-price density, as captured by δ. In

the dynamic setting, the critical value C̃τ at time τ is found by replacing P in this function
by P τ

0 , P0 by P ∗ (the price at τ − 1), and δ by P ∗, recognizing that the density position in

the previous period is now represented by the lagged price (in this case P τ−2
0 = P ∗) plus the

expectations shift, which is zero at time τ − 1. Thus, C̃τ = C̃(P τ
0 , P ∗, P ∗). By contrast, the

steady-state value C̃ is given by C̃∗ = C̃(P ∗, P ∗, P ∗). Since, from above, C̃ is decreasing in

its first argument, it follows that C̃τ < C̃∗, so that the critical value declines at τ .

21The derivative of Dt with respect to Ĉt−1 has the sign of G′(Ĉt−1)[G(C̃t) − N ] < 0.

22The critical C̃ value at time τ + 1 is given by C̃τ+1 = C̃(P τ+1
0 , P τ

0 , P ∗ + δ), recognizing that

the position of the density at τ is captured by the lagged price P τ−1
0 = P ∗ plus the time-τ

expectations shift. Relative to C̃τ = C̃(P τ
0 , P ∗, P ∗), the first argument of C̃(P τ+1

0 , P τ
0 , P ∗ +

δ) = C̃τ+1 is smaller while the second and third are larger. Since C̃ is increasing in the

second argument and decreasing in the others, it follows that the relationship between C̃τ+1

and C̃τ is ambiguous.
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23C̃ declines slightly between τ and τ + 1, tending to reduce the default rate, but the much-

larger change in Ĉ dominates.

24A further slight decline in C̃ is offset by a continuing decline in Ĉ.

25If the lender’s price expectations are myopic, with f independent of the past price history, it
can be shown analytically that convergence back to the steady state is guaranteed. We are
indebted to Pierre Picard for this demonstration, which holds in the general version of the
model.

26A relaxation of the payment-to-income constraint (an increase in α) or a decline in origination
costs k leads to a similar adjustment process. But if either of these changes is permanent, the
steady-state is altered, in contrast to the case of a one-time expectations shock. Either change
shifts the π locus upward in Figure 3, leading to an initial expansion of subprime lending
and an increase in the house price. With the steady state altered in each case, however,
convergence to new equilibrium values occurs. The steady-state house price remains at P ∗

given that neither change affects the supply-demand condition (19), but the steady-state

value of Ĉ falls when α increases or k declines. Therefore, the new steady-state equilibrium
reflects a permanent increase in subprime lending and a larger housing stock. Note that since
the adjustment process generated by either of these changes involves falling house prices, it
will exhibit a temporary surge in defaults like that in Figure 5.

27All these quarterly numbers are averages of monthly values.

28This evidence comes from regressions of building permits on past price appreciation. Pre-
sumably, a large volume of building permits signals optimism about future prices. In a
regression of the permit volume in state j and quarter t on past annual price appreciation
along with state and quarter fixed effects, the appreciation coefficient is significantly positive.
This outcome emerges regardless of whether appreciation is measured through the current
quarter or whether the annual appreciation rate is lagged by two or four quarters (being
measured through quarter t − 2 or quarter t − 4). Thus, optimism about future prices, as
reflected in building permits, appears to be linked to past appreciation.

29This presumption could be reversed by other subtler effects. For example, high unemploy-
ment could keep riskier borrowers from even entering the housing market, leading to a
positive association between risk scores and this variable. As will be seen below, the unem-
ployment coefficient is almost always insignificant in the regressions, suggesting that such
offsetting effects may be at work.

30This AR structure can be derived from an underlying process where the autoregressive lag
is a single quarter, with εjt = λεjt−1 + ujt, where the ujt are i.i.d. error terms with variance
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σ2. Successive substitution yields εjt = ρεjt−4 + vjt, where ρ = λ4 and vjt = ujt + λujt−1 +
λ2ujt−2 +λ3ujt−3. In this case, the vjt’s are correlated, with E(vjt, vjt−1) = (λ+λ3 +λ5)σ2,
E(vjt, vjt−2) = (λ2 + λ4)σ2, E(vjt, vjt−3) = λ3σ2, and E(vjt, vjt−k) = 0 for k > 3. In the
case where the HPICHG lag in (21) is two quarters rather than four, εjt = ρεjt−2 + vjt,
where vjt = ujt + λujt−1, E(vjt, vjt−1) = λσ2, and E(vjt, vjt−k) = 0 for k > 1.

31Another way to see this point is by successive substitution for the HPICHGj ’s and εj ’s on
the right-hand side of (23), which shows that HPICHGjt−4 depends on vjt−4 and all the
previous vj values.

32The state and quarter dummies are introduced directly into the nonlinear model rather than
relying on the usual de-meaning of the data used to produce fixed effects estimates in OLS.
Although ρ will be embedded in the dummy coefficients in (24), the fact that the estimation
of the underlying fixed effects is not a goal means that this presence can be ignored in
the nonlinear procedure. In contrast, ρ and the remaining β coefficients in (24) must be
disentangled in order to measure the effects of interest.

33Since the main sources of within-state error correlation are removed by the inclusion of
state dummies and the use of an autoregressive transformation, the alternative approach of
clustering at the state level does not appear necessary. Note that when the autoregressive
structure is generated by an underlying process with a one-quarter lag, then the error terms
vjt in (24) are correlated within each state but in a complex fashion. As seen in footnote
28, when the HPICHG lag in (21) is four quarters, the error correlation is positive when
the time index differs by three or less and equals zero otherwise. When the HPICHG lag is
two quarters, the error correlation is positive when the time index differs by one and equals
zero otherwise. As a result, the error structure does not have the constant error correlation
within states that justifies clustering, making robust standard errors more appropriate.

34Note that reduced affordability from faster house-price appreciation could actually mask an
expectations-driven relationship between the risk score and prior appreciation for first-time
borrowers. The reason is that rapid prior appreciation would prompt households to seek
loans with higher LTVs, which would require a better risk score to gain approval.

35Letting g(c) denote the density of default costs, the mean C among borrowers getting mort-

gages is Cm ≡
∫∞

Ĉ
[Cg(C)/(N − G(Ĉ))]dC . In the case of a uniform g with support [0, C],

Cm = (Ĉ + C)/2, so that the mean drops at half the rate at which Ĉ declines, with Ĉ

conversely dropping at double the rate of the mean. Generally, ∂Cm/∂Ĉ equals (Cm − Ĉ)

times the hazard-rate expression g(Ĉ)/[N − G(Ĉ)]. This hazard rate equals 1/(C − Ĉ) in

the uniform case, yielding ∂Cm/∂Ĉ < 1, a result that will be strengthened when the hazard

rate at Ĉ is smaller, as will happen with a unimodal density where Ĉ lies below the mode.
In such cases, ∂Cm/∂Ĉ will be well below one, implying that Ĉ drops by a multiple of any
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measured decline in Cm.
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