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Abstract

This paper presents an analysis of general time preferences in the canonical Ru-
binstein (1982) model of bilateral alternating-offers bargaining. I derive a simple suf-
ficient structure for optimal punishments and thereby fully characterize (i) the set of
equilibrium outcomes for any given preference profile, and (ii) the set of preference
profiles for which equilibrium is unique. When both players have a present bias—
empirically, a property of most time preferences regarding consumption, and implied,
e.g., by any hyperbolic or quasi-hyperbolic discounting—equilibrium is unique, station-
ary and efficient. When, instead, one player finds a near-future delay more costly than
delay from the present—empirically common for time preferences over money—non-
stationary equilibria arise that explain inefficiently delayed agreement with gradually
increasing offers.
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1 Introduction

As a mechanism for sharing economic surplus, bargaining is pervasive in decentralized ex-
change. Understanding this mechanism’s functioning, in particular its efficiency properties,
is of fundamental importance for any applied work investigating search frictions; e.g., see
Browning and Chiappori (1998) on household behavior, or Hall and Milgrom (2008) on wages
and unemployment. The same is true for the optimal design of institutions, when a central
authority might impose an allocation instead of leaving it up to decentralized bargaining;
e.g., a manager allocating tasks to a team of employees, or a government regulating industry
standards.

In the absence of irrevocable commitments, time is the prime variable of bargaining
agreements: the parties may agree not only now or never, but also sooner or later. The
question of how the parties’ attitudes to delay govern their bargaining lies at the heart
of modern bargaining theory (Ståhl, 1972; Rubinstein, 1982). This paper is the first to
provide a general answer to this question, covering also various attitudes to delay other
than exponential discounting (ED), while allowing the parties’ bargaining strategies to be
arbitrarily history-dependent.

Specifically, I fully characterize bilateral alternating-offers bargaining (without a dead-
line) when each party i evaluates delayed agreements with a continuous utility function
Ui (xi, t), assuming only that she always prefers a greater share xi of the surplus, holding
delay t constant, and a shorter delay t, holding her share xi > 0 constant. With the sole
exception of ED, all such preferences are dynamically inconsistent. Hence this paper demon-
strates how various forms of dynamic inconsistency are analytically tractable, it sheds light
on the robustness of the celebrated conclusions obtained under ED, and it brings the vast
body of empirical research on time preferences to bear directly on the study of bargaining.

Dynamically inconsistent preferences require a new analytical approach to this game. As
I show, the standard technique of characterizing equilibrium via recursions on the players’
equilibrium payoff/utility extrema (see Shaked and Sutton, 1984) generally fails in face of
the possibility of multiple and delayed equilibrium agreements because a player may not
rank these consistently across different points in time.

I circumvent this problem by directly analyzing the off-path punishments (continuation
equilibria, upon rejection) that support all equilibrium play, i.e. optimal penal codes (cf.
Abreu, 1988). I show that it is sufficient to consider simple penal codes described by four
outcomes.1 These define four punishments such that the exact same punishment is used to

1Mailath, Nocke, and White (2015) present related examples of repeated sequential games where no
simple penal code is optimal due to incentive trade-offs between within-round and continuation punishment.
By contrast, here a single round’s play determines all payoffs.
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deter any deviation by a given player in a given role (hence four), entirely independent of the
deviation’s history; e.g., any deviation by player 1 as the proposer triggers the exact same
continuation equilibrium (upon rejection), on as well as off the path. Loosely speaking, the
strategic complexity doubles when we allow for dynamic inconsistency: while in general four
punishment outcomes are also necessary to characterize optimal penal codes, under ED two of
them are redundant. This fundamental insight renders the history-dependence of strategies
analytically tractable, under minimal preference assumptions, and thus enables me to obtain
the paper’s core results: a full characterization of both (i) equilibrium outcomes for any given
preference profile, and (ii) those preference profiles that imply a unique equilibrium.

Viewed through the lens of the existing evidence on time preferences, this characterization
yields the novel prediction that the bargaining mechanism’s functioning depends on whether
parties share consumption (e.g., a literal cake, effort provision, social esteem) or money. The
reason is that people’s time preferences differ systematically across these domains, in ways
that imply different bargaining equilibria.2

Regarding consumption, a rather general present bias, where delay is most costly when
it takes consumption away from the immediate present, is well-established (e.g., McClure,
Ericson, Laibson, Loewenstein, and Cohen, 2007; Brown, Chua, and Camerer, 2009; Ned Au-
genblick and Sprenger, 2015). I show that when both parties’ preferences exhibit this type
of bias, bargaining equilibrium is unique, stationary and efficient. This result proves the
sharp conclusions under ED robust to various forms of present bias—in particular any hy-
perbolic (Chung and Herrnstein, 1967; Ainslie, 1975) or quasi-hyperbolic (Phelps and Pollak,
1968; Laibson, 1997) discounting—and finally opens the door to the use of non-cooperative
bargaining in applied economic modeling that studies such preferences.

Regarding money, a careful examination of the existing experimental evidence (see ap-
pendix B.1) reveals that, across studies, at least around a third of individuals’ time prefer-
ences exhibit a (near-) future bias.3 This means that they are most impatient about delay
beyond some time in the near future rather than the immediate present; near-future bias
would for instance be implied by a discounting function that is initially concave (e.g., Ebert
and Prelec, 2007). When (at least) one of the parties has a sufficiently strong bias of this
type, bargaining has multiple non-stationary equilibria that necessarily involve inefficiently

2This introductory discussion focuses on preference profiles implying a unique stationary equilibrium, as
is true under standard concavity assumptions concerning the surplus share.

3This finding has also been called “reverse time-inconsistency” (Sayman and Öncüler, 2009), “increasing
impatience” (Attema, Bleichrodt, Rohde, and Wakker, 2010), “hypobolic discounting” (Eil, 2012) and “pa-
tient shifts” (Read, Frederick, and Airoldi, 2012). Due to the focus on (quasi-) hyperbolic discounting in
the literature, it is often not made explicit: e.g., Andreoni and Sprenger (2012) estimate a median “beta”
greater than one, i.e. the majority exhibits a near-future bias; however, they concentrate on the absence of
present bias.
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delayed, gradual agreement. Moreover, as the frequency of offers increases, an arbitrarily
small bias becomes sufficient, rendering the conclusions from ED fragile overall.

Intuitively, a near-future biased individual does not mind bargaining for a few periods;
further, future delay is, however, costly. In contrast to present bias, she therefore does not
exert control over the delay she finds most painful. Indeed, after having bargained for a
few periods, she will again be very willing to bargain for a few more, in return for only a
slightly larger share. Given there would subsequently be further delay, her opponent is able
to extract a premium for immediate agreement, because that avoids handing over control to
her “excessively” patient future selves, and this premium in turn supports their delay. Thus
delay is self-enforcing.4 Although the familiar proposer advantage exerts a countervailing
force, it merely reduces the “inconsistency premium” that the opponent might credibly ask
for and becomes negligible when offers are made frequently.

The non-stationary delay equilibria capture elementary strategic considerations. A party
does not propose a Pareto-improving division early based on the belief that she would thus
lead her opponent to expect an even superior—but not itself Pareto-improving—outcome
and, consequently, reject it. To the extent that the set of Pareto-improving divisions shrinks
as the parties approach the time of agreement, due to their impatience, those equilibria
naturally permit gradualism (see Compte and Jehiel, 2004): the parties’ offers increase
gradually towards those of the eventually agreed division. Moreover, when the two parties’
preferences are not too “asymmetric”, the set of non-stationary equilibrium outcomes also
includes the focal point of an immediate equal split. Thus near-future bias offers a unified
explanation of two prominent, yet seemingly incompatible tendencies in bargaining.5

More generally, the multiplicity of (non-stationary) equilibrium outcomes in this case
yields an interval prediction. As a function of the agreement’s delay, the interval for a party’s
share is monotonically shrinking (in terms of set inclusion). The basic multiplicity is roughly
in line with experimental studies of bargaining (over money), which have observed that
parties indeed reach different agreements—with and without delay—in objectively identical
bargaining situations (see Roth, 1995). Given its explanation of two prominent behavioral
tendencies, the interval prediction therefore opens new avenues for econometric analyses of
bargaining data (see Tamer, 2010; De Paula, 2013).

Multiplicity also arises, a fortiori, within the hitherto most successful explanation of
inefficient delay through incomplete information (assuming ED), which creates a trade-off

4This nature of delay is novel. It means there exist “truly” non-stationary delay equilibria that are non-
stationary in every subgame; prior constructions in related work have instead relied on stationary equilibrium
off-path (see Avery and Zemsky, 1994).

5For evidence from experiments implementing an indefinite horizon see Weg, Rapoport, and Felsenthal
1990; Zwick, Rapoport, and Howard 1992.
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between information and time (see, e.g., the survey by Kennan and Wilson, 1993). The
model assumptions are certainly complementary, with both approaches being able to capture
bargaining as we tend to observe it.6 A main difference is, however, that the explanation
based on time preferences proposed here is more fundamental (there is no theory of delay
without time preferences) and directly builds on independent empirical research. Moreover,
the discipline on beliefs under perfect information makes it more readily applicable, in both
theoretical and empirical work: equilibrium is fully characterized for a very general class
of time preferences, and experimental researchers are likely to have better control over the
participants’ induced preferences than their beliefs about others.7

Related Literature. There exists little prior work on bargaining that analyzes dynami-
cally inconsistent time preferences: Burgos, Grant, and Kajii (2002a); Akin (2007); Ok and
Masatlioglu (2007); Noor (2011).8 All of these papers restrict attention to stationary strate-
gies, however, thus severely limiting the potential for dynamic inconsistency to matter.9 This
paper studies a general class of preferences that covers all of those studied previously and at
the same time generalizes the analysis to arbitrarily history-dependent strategies.

Other closely related work investigates non-stationary time preferences that are, however,
dynamically consistent (Binmore, 1987; Rusinowska, 2004; Pan, Webb, and Zank, 2015);
e.g., a player may apply different discount rates to June 30, 2016, and July 1, 2016, but
independent of the delay to these dates.10 I abstract from such exogenous effects of time on
the players’ preferences, which would also appear negligible under frequent offers; instead,
the discount rate for any given period may depend only on the delay to this period, not
on its absolute time. Moreover, I maintain that preferences are history-independent; i.e.,
unlike in Fershtman and Seidmann (1993), and Li (2007), where the best past offer acts as

6This comparison is valid only for bargaining without a strict deadline. Given a finite horizon and perfect
information, any form of impatience results in a unique backwards induction solution, with immediate
agreement in any round, that is fully determined by the parties’ attitudes to a single period of delay only.

7These arguments apply as well to recent related approaches in which players may hold incorrect beliefs
about their opponent: under “optimism” (see the survey by Yildiz, 2011) they may incorrectly believe that
they have better knowledge of their proposer advantage, and under “strategic uncertainty” (Friedenberg,
2014) they may incorrectly interpret opponent deviations as irrationality. These two approaches appear
well-suited, however, to explain the effects introduced by deadlines (optimism for “loose” protocols, and
strategic uncertainty for “strict” ones where backwards induction rationality is very sensibly at stake).

8Burgos et al. (2002a) study bargaining with breakdown risk for certain non-expected-utility preferences;
Akin (2007) also investigates naïveté and learning by quasi-hyperbolic discounters.

9The sole exception is Lu (2015) who studies bargaining by sophisticated quasi-hyperbolic discounters.
In his model bargaining is over an infinite stream of cakes rather than a single one, however, so agreements
are infinite consumption commitments.

10This is similar to time-varying surplus as in Coles and Muthoo (2003); see also Merlo and Wilson (1995)
and Cripps (1998), who investigate Markovian surplus processes. All of these models maintain dynamic
consistency of preferences; indeed, delay typically occurs only when efficient.
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a “reference point”, the parties are consequentialist, caring only about the eventual surplus
division and its delay, not how agreement is reached.

Regarding the power of history-dependent strategies in generating delay, also the work
that endogenizes the timing of offers, starting with Perry and Reny (1993) and Sákovics
(1993), as well as that on “negotiation” by Busch andWen (1995) where, as long as parties fail
to agree, they repeatedly play a disagreement game, share similarities. The underlying reason
for why history-dependent strategies are powerful here—namely, dynamic inconsistency—is
fundamentally different, however.

Finally, this paper contributes to the wider literature that explores the bargaining im-
plications of relaxing certain hitherto standard but “unrealistic” (or extreme) assumptions
about the players. Whereas this model’s only non-standard feature is dynamically inconsis-
tent preferences, relaxing ED, most of the recent literature has been concerned with non-
standard beliefs, relaxing common knowledge of the bargaining protocol or of players’ ratio-
nality (e.g., Yildiz, 2011; Friedenberg, 2014).

Outline. After introducing the formal model in section 2, section 3 already describes the
main results of this paper for the special case where players maximize their discounted share
of the surplus for arbitrary discounting; this generalizes the most widely used version of the
Rubinstein (1982) model. Section 4 then contains the full-fledged equilibrium characteriza-
tion, and I further investigate equilibrium uniqueness and multiplicity/delay in section 5.
Finally, I offer some concluding remarks in section 6. All formal proofs (as well as additional
notation) are found in appendix A; appendix B contains supplementary material.

2 Bargaining and Time Preferences

2.1 Bargaining Protocol, Histories and Strategies

I follow Rubinstein (1982) exactly with regards to the bargaining protocol of (possibly in-
definitely) alternating offers. There are two players {1, 2} ≡ I, who bargain over a perfectly
divisible surplus of (normalized) size one. Throughout the paper, whenever i ∈ I denotes
one player, j ≡ 3 − i denotes the other. In round n ∈ N, player P (n) proposes a surplus
division x ∈

{
(x1, x2) ∈ R2

+|x1 + x2 = 1
}
≡ X to her opponent R (n) (equivalently, P (n)

offers R (n) share xR(n)), who then responds by either accepting or rejecting the proposal.
If it is accepted, the game ends with agreement on x; otherwise, one period of time elapses
until the subsequent round n + 1, where the roles of proposer and respondent are reversed,
so P (n+ 1) = R (n). This process of alternating offers begins with player 1’s proposal, i.e.
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P (1) = 1, and continues until there is agreement, possibly without ever terminating.
A history of play to the beginning of round n ∈ N is a sequence of n−1 rejected proposals

hn−1 ∈ Xn−1, where X0 ≡ {∅}; throughout, “history” always refers to such a beginning-of-
round history. A strategy σi of a player i assigns to every possible such history hn−1 an
available action: if i = P (n), then σi (hn−1) specifies a proposal x ∈ X, and if i = R (n),
then it specifies for every possible proposal whether she accepts or rejects it; without loss
of generality, I identify this response rule σR(n) (hn−1) with the set of accepted proposals
Y ∈ P (X). If i’s response rule Y has x ∈ Y ⇔ xi ≥ q, I say that i accepts with threshold q.
A strategy σi is stationary if it specifies the same proposal x and response rule Y , irrespective
of history. Finally, a strategy profile σ is a pair of strategies

(
σP (1), σR(1)

)
, and its prescribed

play after history hn−1 is σ (hn−1) ≡
(
σP (n) (hn−1) , σR(n) (hn−1)

)
.

2.2 Outcomes and (Time) Preferences

If the players agree on division x with a delay of t periods, I call the outcome (x, t), and if
they perpetually fail to agree, I call it ((0, 0) ,∞). Thus defined in terms of relative time
(delay), the set of possible outcomes is the same after any history. A player i’s preferences
are formulated over the set Ai ≡ [0, 1]× T , for T ≡ N0 ∪ {∞}, of i’s personal outcomes that
are her own share and the delay of agreement.

Assumption 1. In any round n, a player i’s preferences over personal outcomes are repre-
sented by the same utility function Ui : Ai → R, satisfying the following properties:

1. Continuity: {a ∈ Ai|Ui (a) ≥ k} and {a ∈ Ai|Ui (a) ≤ k} are closed for all k ∈ R;11

2. Desirability: q < q′ implies Ui (q, t) < Ui (q′, t) for all t;12

3. Impatience:

(a) t > t′ implies Ui (q, t) ≤ Ui (q, t′) for all q,

(b) q > 0 implies Ui (q, 0) > Ui (q, 1), and

(c) limt→∞ Ui (1, t) ≤ Ui (0, 0) or there exists a finite t̂ such that Ui (q, t) = Ui
(
q, t̂
)

for all q and all t ≥ t̂.
11Closedness refers to the product topology on Ai, where [0, 1] and T are endowed with the relative

standard and discrete topologies, respectively.
12Absent separability, desirability cannot be formulated independent of the time dimension; specifically,

(2.) rules out that a player be entirely indifferent regarding her share once delay gets “too long”. A
slight generalization can accommodate such preferences as well, however, without requiring a single change
in the results or proofs presented: replace property (2.) with “for any t ∈ T , either Ui is constant on
[0, 1]× {t′ ∈ T |t′ ≥ t} or q < q′ implies Ui (q, t) < Ui (q′, t).”
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Continuity (1.) is a standard technical assumption, and desirability (2.) defines the con-
flict of interest in the bargaining problem. Property (3.) corresponds to a general notion
of impatience regarding agreement: for any given division of the surplus, players do not
prefer later over sooner agreement (3.a), if a division yields them a positive share they pre-
fer immediate agreement over delayed agreement (3.b), and whenever they do not become
“overwhelmingly” impatient for delay approaching infinity (the standard case guaranteeing
“continuity at infinity”), they must be impatient only regarding a finite horizon (3.c). In
what follows, by “impatience” I refer only to the two properties (3.ab). The role of property
(3.c) is technical: together with continuity, it guarantees existence of a “worst” equilibrium,
and I point out explicitly where it is used.

Assumption 1 covers all models of time preferences with impatience put forward in the
literature (see Manzini and Mariotti, 2009).13 It generalizes the most widely studied class of
separable time preferences (i.e., discounted utility) axiomatized by Fishburn and Rubinstein
(1982, thm. 1), where Ui (q, t) = d (t) ·u (q) with d (·) a decreasing “discounting” function, to
also cover various non-separable time preferences such as those proposed by Benhabib, Bisin,
and Schotter (2010) or Noor (2011).14 An instantaneous utility function can nonetheless be
defined by ui (q) ≡ Ui (q, 0), and it is continuous and increasing.

Halevy (2015, prop. 4) shows that a player’s preferences satisfying assumption 1 are
dynamically consistent if and only if they satisfy the stationarity axiom. The latter requires
that the preference over two outcomes (q, t) and (q′, t′) depend only on their relative delay:
Ui (q, t) ≥ Ui (q′, t′) if and only if Ui (q, t+ τ) ≥ Ui (q′, t′ + τ) for any τ ∈ T ; this would here
yield ED, where Ui (q, t) = δt · u (q) (Fishburn and Rubinstein, 1982, thm. 2). With the
exception of ED, all time preferences studied here are therefore dynamically inconsistent.

2.3 Equilibrium Concept

I abstract from informational frictions by assuming that the players’ preferences are common
knowledge. In the terminology coined by O’Donoghue and Rabin (1999), players are then
fully “sophisticated” about their own as well as their opponent’s dynamic inconsistency.

13The focus of this paper is on time preferences in the usual broad sense of preferences over delayed
rewards, which have been extensively researched empirically (see appendix B.1). However, assumption 1 can
also (alternatively or additionally) accommodate costs that are proper to the bargaining activity; e.g., with
Ui (q, t) = q − c (t) for c (·) increasing, party i would rather quit bargaining altogether if she expected it to
take some time but eventually result only in a very small payoff (e.g., consider q = 0).

14Ok and Masatlioglu (2007) propose a theory of relative discounting that relaxes transitivity for compar-
isons across three different delays, thus capturing also sub-additive discounting (Read, 2001) and similarity-
based choice (Rubinstein, 2003). Within the simplified structure of equilibria established below, these failures
of transitivity play no role, however. Hence, the characterizaton of equilibrium outcomes also covers these
“preferences” (formally, in their notation, let d (t) ≡ η (0, t)).
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The equilibrium concept has to incorporate how intertemporal conflict within a player’s own
preferences is resolved. In single-person decision problems, the standard solution concept for
such sophisticated decision makers is that of Strotz-Pollak equilibrium (Strotz, 1956; Pollak,
1968), also known as multiple-selves equilibrium (Piccione and Rubinstein, 1997); it is the
subgame-perfect Nash equilibrium (SPNE) of an auxiliary game in which the decision-maker
at any point in time is a distinct non-cooperative player. Technically, one then looks for
strategy profiles that are robust to one-stage deviations, and this formalizes the presumption
that a decision-maker cannot internally commit to future behavior.

The equilibrium notion employed here is the natural extension of this concept to strategic
interaction by multiple decision-makers (cf. Chade, Prokopovych, and Smith, 2008). To
facilitate its definition, let zhn−1

i (x, Y |σ) denote the personal outcome of player i, as of
round n, that obtains if, following history hn−1, P (n) proposes x, R (n) uses response rule
Y , and in case there is no agreement, i.e. x /∈ Y , both players subsequently adhere to strategy
profile σ; e.g., if σP (n+1) (hn−1, x) = x′ ∈ σR(n+1) (hn−1, x), then zhn−1

i (x, Y |σ) equals (xi, 0)
whenever x ∈ Y , and (x′i, 1) otherwise; accordingly, zh

n−1,x
i (σ (hn−1, x)|σ) = (x′i, 0).

Definition 1. A strategy profile σ is a multiple-selves equilibrium (“equilibrium”) if,
for any round n, history hn−1, division x and response rule Y ,

UP (n)
(
zh

n−1

P (n)

(
σ
(
hn−1

)∣∣∣σ)) ≥ UP (n)
(
zh

n−1

P (n)

(
x, σR(n)

(
hn−1

)∣∣∣σ)) ;

UR(n)
(
zh

n−1

R(n)

(
x, σR(n)

(
hn−1

)∣∣∣σ)) ≥ UR(n)
(
zh

n−1

R(n) (x, Y |σ)
)
.

Observe that this indeed defines the SPNE of the auxiliary game where the set of players
is taken to be I × N. The well-known one-stage deviation principle (e.g., Fudenberg and
Tirole, 1991, thm. 4.2) says that it coincides with SPNE of the actual game played by I
whenever both players’ preferences satisfy ED; hence this paper’s model contains that of
Rubinstein (1982) as a special case.15

2.4 Preliminaries

A central property for the analysis of this game is its stationarity: conditional on failure to
agree, the game repeats itself every two rounds. Hence, ignoring history, all subgames begin-
ning with the very same player i’s proposal are identical and, in particular, have the same

15As in Rubinstein (1982), I consider only pure strategies—a common restriction in this literature, even in
models with inherent risk (e.g., Merlo and Wilson, 1995; Cripps, 1998). Permitting randomization devices,
while unlikely to enlarge the set of equilibrium outcomes (cf. Binmore, 1987), would come at the cost of
augmenting the domain of preferences by risk, however, adding a layer of cardinality. Nonetheless, the
model has a straightforward interpretation in terms of bargaining under the shadow of a constant risk of
breakdown with non-expected-utility preferences; see appendix B.4.2.
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equilibria; denote this game by Gi. The above defines G1; the sole modification of specifying
player 2 as the initial proposer, P (1) = 2, defines game G2. To distinguish absolute and
relative time, throughout, I use n for rounds of a given bargaining game (absolute time) and
t for delays to a given agreement (relative time).

Let then A∗i ⊆ Ai be the set of player i’s personal outcomes that are equilibrium outcomes
in Gi. The equilibrium characterization will center on a player i’s minimal proposer value
v∗i and minimal rejection value w∗i , as well as the supremal delay t∗i in Gi, given by:

v∗i ≡ min {Ui (q, t) | (q, t) ∈ A∗i }

w∗i ≡ min {Ui (q, t+ 1) | (q, t) ∈ A∗i }

t∗i ≡ sup {t ∈ T |∃q ∈ [0, 1] , (q, t) ∈ A∗i } .

3 The Case of Discounted Shares

The most widely used version of the Rubinstein (1982) model has the bargainers maximize
their exponentionally discounted surplus share. To make the key results of this paper quickly
accessible, this section illustrates them for the generalization of this case only in terms of dis-
counting; in fact, under the following common strengthening of assumption 1 it summarizes
all information necessary to apply the results in either theoretical or empirical work.

Assumption 2. In any round n, a player i’s preferences over personal outcomes are repre-
sented by the same utility function Ui : Ai → R such that

Ui (q, t) =
(

t∏
s=1

δi (s)
)
· q,

where (i) 0 < δi (s) < 1 for any positive s, and (ii) limt→∞
∏t
s=1 δi (s) = 0.16

A player i’s total discount factor for a delay of t periods, denoted di (t), is the product∏t
s=1 δi (s) of the intermittent per-period discount factors. Indifference between two outcomes

(q, t− 1) and (q′, t) means that q = δi (t) · q′, so unless discounting is constant—δi (·) = δi,
i.e. ED—it is dynamically inconsistent.

The burden of deciding about delay in bargaining is ultimately on the player responding
to an offer. Regardless of its exact form, the respondent’s impatience bestows a strategic
advantage upon the proposing player, guaranteeing the latter a minimal rent. In particular,
perpetual disagreement can therefore not be an equilibrium outcome.

16I follow the convention that the empty product for t = 0 equals one.
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ROUND 1

P1 offers x2 ≤ δz2
P2 threshold δy2
→ disagree

ROUND 2

P1’s offer
≤ δz2

(Given) Continua-
tion Equilibrium:
→ agree on z

P1’s offer
> δz2

P2 offers y1 = γδ2z1
P1 threshold γδ2z1
→ agree on y

“Restart”: Round 3 = Round 1 (whatever P2’s offer)

Figure 1: Delay equilibrium in example 1 (assuming δy2 ≥ 1 − δz1). The equilibrium path
uses solid lines/borders, and dashed ones indicate supporting off-path behavior.

Given the bargainers eventually agree, it is straightforward to characterize stationary
equilibrium and establish equilibrium existence: starting from agreement on division x when
player i makes an offer, two rounds of backwards induction must lead to the same agree-
ment. Under assumption 2 there exists a unique such agreement, hence a unique stationary
equilibrium: i always proposes the same division x and accepts with the same threshold
yi—equal to j’s offer—such that

xi = 1− δj (1) · (1− yi) and yi = δi (1) · xi. (1)

Stationary equilibrium assumes that bargainers are unresponsive to their opponent’s past
behavior (as well as their own) and predicts immediate agreement after any history; both is
at odds with observed bargaining behavior. Consider then the following example.

Example 1. Od (player 1) and Eve (player 2) bargain over how to “split a dollar”. Their
preferences satisfy assumption 2, where it is only specified that both discount a first period
of delay with common factor δi (1) = δ, and that Od discounts a second period of delay with
factor δ1 (2) = γδ for γ < 1. (It is instructive to think first of δ ≈ 1 and γ ≈ 0.) Since
δ1 (2) < δ1 (1), Od is dynamically inconsistent with a “near-future bias”: e.g., facing the
prospect of agreement on x in two periods, he would prefer agreeing instead next period for
any share q with γδx1 < q, but in this next period reverse his preference if also q < δx1.
(ED would require γ = 1, hence δ1 (2) = δ1 (1).)

Figure 1 describes equilibrium strategies for (once) delayed agreement on a given contin-
uation equilibrium division z (filled green); for concreteness, take z =

(
δ

1+δ ,
1

1+δ

)
, as under
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continuation according to the unique stationary equilibrium. Delay requires a supporting
off-path threat that prevents Od from exploiting his proposer advantage. (If the second-
round had agreement on z regardless of first-round play, Od could simply offer Eve her (then
unique) rejection value δz2—which she had no reason to reject—and thus appropriate the
full efficiency gain from immediate rather than delayed agreement.) This threat is alterna-
tive second-round agreement y (shaded green), which is more favorable to Eve than z and
played in case Od initially offered Eve a share in excess of δz2. Hence, Eve initially accepts
with threshold δy2, and for 1− δy2 ≤ δz1 initial proposer Od prefers the delayed z over any
available immediate agreement; he therefore chooses his initial offer x2 so low (e.g., zero)
that Eve in turn prefers the delayed z over acceptance, x2 ≤ δz2.

Of course, threat y such that 1 − δy2 ≤ δz1 (implying y2 > z2) must be credible. It is
Od’s near-future bias that lends credibility to it: the strategies in figure 1 specify that any
failure to agree when Eve makes her offer off-path (shaded green) leads to continuation play
identical to that from round 1, with once delayed agreement on z. Od’s rejection would
therefore always entail two periods of delay and have value γδ2z1, enabling proposer Eve
to appropriate the full efficiency gain from immediate agreement, with her share equal to
y2 = 1 − γδ2z1. For a sufficiently strong bias of Od (sufficiently low γ), y satisfies the
equilibrium condition 1 − δy2 ≤ δz1, and the delayed agreement on z produces its own
supporting threat. Such values of γ exist for any z with z1 ≥ 1−δ

δ
; as δ → 1, this means any

z (in particular the stationary continuation equilibrium). Moreover, regardless of how small
Od’s bias is (γ close to one), the strategies then form an equilibrium for sufficiently frequent
offers (δ large enough).

Two points are worth emphasizing about this example. (It is readily extended to exhibit
also longer delays; see example 3 below.) First, for delay to occur it suffices that the proposer
(Od) makes an unacceptably low offer. Though inefficient, he may well do so if he expects
any attempt at compromise (Pareto-improvement) to be rejected as well. The intuitive
difference between an “unambiguously” low and a compromise offer is, however, that the
latter’s rejection would allow the respondent (Eve) to credibly adopt an uncompromising
stance. It is this off-path belief that rationalizes the low offer that eschews the respondent’s
such opportunity.

Second, near-future bias provides a foundation for this belief, hence delay. In contrast
to prior explanations, which depended on multiple stationary equilibria (Avery and Zemsky,
1994), this dynamic inconsistency means delay can be “self-enforcing”: any delay at the
proposer stage comes with the threat of one additional (future) delay at the respondent stage
(see Od in round 2 off-path, shaded green); under near-future bias this additional delay can be
so costly (γ low enough) as to rationalize an agreement that in turn supports unacceptable

12



offers—hence delay—at the proposer stage. To outweigh the proposer advantage, which
ensures a minimal rent to the proposer over her worst threat, the bias needs to be sufficiently
strong. As offers become frequent, this rent vanishes, however, and delay equilibria arise for
arbitrarily small such biases.

Given the possibility of equilibrium delay, standard recursive arguments fail in character-
izing equilibrium. When preferences are dynamically inconsistent, knowledge of a player’s
continuation value is insufficient to determine her rejection value, which is the strategically
relevant one. In particular, the relationship w∗i = δi (1) · v∗i between i’s minimal (continua-
tion) value v∗i as proposer and i’s minimal (rejection) value w∗i as respondent generally holds
true only when no equilibrium of Gi has delay (cf. Shaked and Sutton, 1984).

To circumvent this problem, I directly investigate the structure of optimal punishments
delivering the minimal values v∗i and w∗i . The main insight towards characterizing equilibrium
is that, given any equilibrium delay t, a proposing player is indifferent between her least
preferred immediate equilibrium agreement and her least preferred equilibrium agreement
with that delay t; both yield proposer i her minimal value v∗i . This indifference property
allows to solve for player i’s minimal values (v∗i , w∗i ) given the maximal delay t∗i in game Gi:
letting ∆i (t) ≡ inf {δi (s) |s ∈ T, 0 < s ≤ t} denote player i’s minimal per-period discount
factor over horizon t,

v∗i = 1− δj (1) · (1− w∗i ) and w∗i = ∆i (t∗i + 1) · v∗i . (2)

Proposer i cannot do worse than by making the smallest offer that respondent j would never
refuse, j’s maximal rejection value. This value obtains when j would subsequently receive
her maximal share 1−w∗i with least delay—i.e., immediately following rejection—and equals
δj (1) · (1− w∗i ). For the second equation in (2) suppose an equilibrium of game Gi with
delay t. From the indifference property, initial proposer i’s worst such equilibrium has her
share equal to 1

di(t) · v
∗
i , and this implies rejection value di(t+1)

di(t) · v
∗
i ≡ δi (t+ 1) · v∗i for i as the

respondent prior to Gi. This rejection value is minimal whenever δi (t+ 1) is so, meaning
that the one additional delay—the t + 1-th period—that i’s rejection would entail is most
costly (over t ≤ t∗i ).

Conversely, the maximal delay t∗i in game Gi is uniquely determined by the minimal
proposer values v∗i and v∗j , as they capture the players’ incentives, as proposer, to make an
unacceptable offer rather than settle for the worst immediate agreement:

t∗i = sup
{
t ∈ T |κi

(
t, v∗i , v

∗
j

)
≤ 1

}
, for κi (t, vi, vj) ≡

0 t = 0
vi
di(t) + vj

dj(t−1) t > 0
. (3)

13



The function κi (t, vi, vj) measures the incentive cost of delay t in game Gi: if initial proposer
i could obtain up to value vi by making an accepted offer rather than incurring delay t, she
requires at least the share vi

di(t) with this delay in order not to do so; similarly, player j’s
share must be at least vj

dj(t−1) , since when she gets to propose the first time along the path,
the delay would be t−1. As the delay shrinks, these shares become smaller, so the above two
incentive constraints are not only necessary but sufficient. They can be satisfied under some
feasible division if and only if κi (t, vi, vj) ≤ 1. When the proposer values are minimal, so is
the incentive cost, and an equilibrium with delay t exists as long as this minimal incentive
cost does not exceed the total available surplus (3).

The values (v∗i , w∗i , t∗i )i∈I are jointly determined by the system of six equations in (2)
and (3), to which they are the unique extreme solution: if (vi, wi, ti)i∈I is any solution, then
v∗i ≤ vi, w∗i ≤ wi and t∗i ≥ ti for both i. They fully characterize equilibrium: agreement on
division x with delay t is an equilibrium outcome of game Gi if and only if

t ≤ t∗i and
v∗i
di (t)

≤ xi ≤

1− w∗j t = 0

1− v∗
j

dj(t−1) t > 0
.

The set of divisions that players might agree upon is monotonically shrinking with the
delay, where the bounds trace the players’ time preferences according to the aforementioned
indifference property.

The characterization yields several further insights. First, equilibrium is unique if and
only if there is a unique solution to the system of equations. Indeed, the unique stationary
equilibrium values in (1), together with t∗1 = t∗2 = 0, always form a solution. It is then
immediate from (2) that a weak manifestation of present bias, namely δi (1) ≤ δi (s) for
all s ≥ 1, is sufficient for uniqueness (then ∆i (∞) = δi (1), and hence w∗i = δi (1) · v∗i ):
if both parties find the first period of delay that rejection always entails most costly, then
the proposer advantage is only reinforced and delay cannot be self-enforcing. Thus the
uniqueness under ED extends to any form of present bias, in particular any quasi-hyperbolic
or hyperbolic discounting.

A future bias of at least one of the bargainers is therefore necessary for equilibrium
delay. When this bias concerns the relatively near future—relative referring to the players’
overall impatience that drives the incentive cost in (3)—then it is sufficient (e.g., under
frequent offers). The resulting set of equilibria then has two structural features that capture
prominent tendencies in real bargaining behavior: i) gradual agreement, and ii) immediate
equal division under symmetry (e.g., Zwick et al., 1992; Roth, 1995).

First, any delayed agreement is reached through gradual agreement, where as bargaining
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unfolds, each party’s “concessions” (offers as proposer, and maximum accepted/conceded
opponent shares as respondent) increase towards that of the eventual agreement (see section
5.3.1 for a formal definition). The closer in time is the agreement, the smaller is the set of
Pareto-improvements, hence ever higher concessions are consistent with delay. For instance,
in example 1’s delay equilibrium, Od’s concessions are x2 and z2, and Eve’s are 1− δy2 and
z1; both sequences are increasing.

Second, if both players’ preferences are symmetric, existence of a delay equilibrium always
implies a credible threat such that the minimal proposer value/share is less than one half;
κi (1, v∗, v∗) ≤ 1 implies v∗ < 1

2 . At the same time, due to the proposer advantage, there
is then also an equilibrium in which the proposer obtains a value/share greater than one
half (e.g., the symmetric stationary equilibrium), hence this threat supports an immediate
equal split.17 In example 1 (which permits symmetry) the equilibrium condition for delayed
agreement when z is the stationary equilibrium division implies 1− δy2 <

1
2 , and immediate

agreement on an equal division can be supported by only slightly modified threats: if round
2 is reached following an offer of less than one half, they agree on y, otherwise on z.

The rest of this paper formally establishes analogous results for the general time pref-
erences of assumption 1, paying special attention to the simplification of equilibria using
optimal punishments. Though hardly discussed here, all results build on this insight.

4 Equilibrium for General Time Preferences

This paper studies a highly stylized model, with the objective of capturing the fundamental
strategic considerations and explaining the main behavioral tendencies of parties engaged in
bargaining. To achieve this, I allow for arbitrary history-dependence of their strategies. The
common assumption of stationary strategies would conflict with this objective, because it
strongly restricts the parties’ beliefs a priori: however systematically player i has deviated
from a given stationary strategy in the past, it restricts the other to still believing that i
will comply with it (see Rubinstein, 1991, p. 912). This point is of special importance here
due to the additional presence of intra-personal conflict (dynamic inconsistency). First, a
player’s beliefs about her own future behavior are as central as those regarding the opponent,
as she may have reason to “doubt herself”. Second, the potential of stationary strategies for
creating/exploiting dynamic preference reversals is severely limited.

The combination of dynamically inconsistent preferences with the possibility of multiple
equilibria and delay (through history-dependent strategies) poses an analytical challenge,

17More generally, for any t < t∗, an equal division with t periods of delay is an equilibrium outcome; also,
whenever an equal split is an equilibrium agreement for some delay t, so is an immediate equal split.
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however.18 Standard recursive techniques (see Shaked and Sutton, 1984) fail to be applicable,
because a player’s continuation value alone provides insufficient information to pin down a
unique rejection value; yet, this is the strategically relevant value one round earlier, hence
required for recursion.

To illustrate, consider a (β, δ)-discounter with linear instantaneous utility, say player 1.
Immediate agreement on x and once delayed agreement on y with the same (continuation)
value U1 = x1 = βδy1 imply the different rejection values βδx1 = βδU1 and βδ2y1 = δU1,
respectively. Without further knowledge regarding the underlying equilibrium outcomes, a
player i’s minimal proposer value v∗i (which is i’s minimal continuation value when respond-
ing) is hence insufficient to determine her minimal rejection value w∗i .

The approach proposed in this paper directly analyzes the off-path “punishments” (con-
tinuation equilibria) that support all equilibrium play and underlie the minimal values
(v∗i , w∗i ). Its basic idea is that the game’s stationarity property will nonetheless entail a
tractable structure for such punishments, since only two types of round need to be dis-
tinguished in terms of deviations: any round in which the same party i ∈ {1, 2} gets to
make an offer has the same sets of both equilibrium plays and continuation equilibria. If
a particular “optimal” assignment of the latter as punishments deters deviations from any
equilibrium play, it achieves this at any such stage, also off-path, independent of history.
How much tractability is thus gained then depends on how “simple” this optimal assignment
can be made. In the next secion I show what optimality of punishment means, and how four
appropriately chosen equilibrium outcomes suffice to describe all off-path play.

The following two reservation shares of a player i (subject to feasibility) will feature
prominently in the analysis. (Under the stronger assumption 2 this extra notation could
easily be dispensed with.) First, her (immediate) reservation share for a given rejection
value U ∈ Ui (Ai) is

πi (U) ≡ min {q ∈ [0, 1] |ui (q) ≥ U} ;

player i then accepts any offer above πi (U) whose rejection would yield value U . Second,
her delayed reservation share for delay t and immediate value (instantaneous utility) u ∈
ui ([0, 1]) is

φi (u, t) ≡ max {q ∈ [0, 1] |u ≥ Ui (q, t)} ;

player i then rejects offer q with value u = u (q) for any promised agreement with delay t
that has her share greater than φi (u, t).19

18It is straightforward to show that stationary equilibrium implies immediate agreement after any history.
19Since T contains infinity, for completeness, set φi (u,∞) = 1 for any u ∈ ui ([0, 1]).

16



4.1 Optimal Simple Penal Codes and Simple Play

Due to the conceptual similarity, I adopt the terminology introduced by Abreu (1988) for
infinitely repeated games.20 The major difference as well as innovation is that, due to
the sequential nature of moves (see below), I base the analysis on sequences of play—for
short “plays”—rather than paths; such a play extends paths to include the entire response
rules used along the path rather than just the on-path responses.21 I then call an assign-
ment of punishments supporting all equilibrium play (of both G1 and G2) an optimal penal
code (OPC), and I call it an optimal simple penal code (OSPC) if punishment is history-
independent, with a single punishment per player per role (proposer or respondent) in which
this player may deviate.

The sequential nature of moves within a round complicates the analysis relative to re-
peated games because an OPC cannot simply assign a deviant player’s worst continuation
equilibrium. The proposer’s punishment for a deviant offer is constrained by the respondent’s
incentives after such a deviation, which affords the proposer a strategic advantage; e.g., a
worse continuation equilibrium for the proposer may at the same time weaken the respon-
dent’s current bargaining position and thus make deviant offers more attractive. Indeed,
Mailath et al. (2015) present related examples of infinitely repeated sequential-move games
in which the second mover’s “incentive constraint” forces any OPC to fine-tune punishment
to the first mover’s particular deviation, so that no OSPC exists.

Optimal Simple Punishment. The trade-off between providing incentives within-round
and under continuation is, however, less complicated here: the respondent’s acceptance ends
the game, and the agreement round’s actions determine all payoffs. Punishment therefore
takes place only after deviations that result in a rejection, and for a given punishment
the offer that led to it is inconsequential. Call then (i) any deviant rejection of an offer
a respondent deviation, and (ii) any deviant offer that the respondent may reject without
deviating herself a proposer deviation. These two types exhaust all (one-stage) deviations
that lead to punishment: e.g., given a strategy profile prescribes proposal x and response rule
Y , if a proposal x′ ∈ Y is rejected, this constitutes a respondent deviation, and if a proposal
x′ /∈ Y \{x} is rejected, this constitutes a proposer deviation. The following result shows that
optimality of punishments is a property of their rejection values and optimal punishments
can always be made simple. (Existence of an OPC will be established constructively, as part
of the equilibrium characterization in theorem 1.)

20I am deeply grateful to my former colleague Can Çeliktemur for pointing out this similarity to me at an
early stage of this project.

21Against the background of Abreu’s influential work, I define various concepts of this section only verbally;
the full-fledged formalism can be found in appendix A.
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Lemma 1. Any OPC’s punishments (i) minimize the respondent’s rejection value after
respondent deviations, and (ii) maximize the respondent’s rejection value after proposer de-
viations. Whenever an OPC exists, there exists an OSPC.

The first property, regarding a responding player’s deviant rejection, is straightforward: if
rejection of some offer cannot be deterred by her least preferred continuation equilibrium (i.e.,
one with minimal rejection value) then there cannot be an equilibrium in which she accepts
this offer; conversely, if it can be deterred by some continuation equilibrium then a fortiori
by her least preferred one. Hence any outcome

(
xR,i, tR,i

)
of a player i’s optimal respondent

punishment—an equilibrium outcome of game Gi—satisfies w∗i = Ui
(
xR,ii , tR,i + 1

)
.

The second property is driven by the proposer advantage. A proposer can always deviate
to an offer that the respondent will accept and thus evade punishment. In particular, a
responding player accepts any offer whose value exceeds her maximal rejection value, in any
equilibrium. This guarantees a minimal rent to the proposer, equal to the full efficiency gain
from immediate agreement over the respondent’s most preferred rejection outcome (which is
inefficient due to the delay). Given (ii), any deviant offer that the respondent compliantly
rejects would dissipate this rent, as the respondent obtains the same value—her maximal
rejection value—but in this case inefficiently. Hence, a proposer can never do better by
deviating than by making the lowest accepted offer. However, a play where at some stage
the proposing player would gain by deviating to an accepted offer could not be supported
by any specification of punishments.22

Note the following immediate consequence: letting
(
xP,i, tP,i

)
be any outcome of player i’s

optimal proposer punishment—i.e., an equilibrium outcome of game Gj such that respondent
j’s rejection value Uj

(
xP,ij , tP,i + 1

)
is maximal—it must be that i’s minimal proposer value

satisfies v∗i = ui
(
1− πj

(
Uj
(
xP,ij , tP,i + 1

)))
. Not only could proposer i always obtain at

least this value by making an accepted offer, but immediate agreement on the division x

with xj = πj
(
Uj
(
xP,ij , tP,i + 1

))
is itself clearly also an equilibrium outcome of game Gi

(take
(
xP,i, tP,i

)
as “unconditional” continuation outcome). Because she may always make

an offer that the respondent would never refuse, there cannot be a delay equilibrium that is
worse for the proposer than her least preferred immediate-agreement equilibrium.

The first part of lemma 1 shows that it is without loss of generality to restrict OPCs to four
optimal punishments, one per player per type of deviation, with the respective properties
(i) and (ii); these then support any equilibrium play, of both G1 and G2. Given how it
identifies the perpetrator, an OPC is then simple in the sense that punishment need not

22Recall that we are concerned with one-stage deviations only; hence, whether such a deviation exists can
be determined from play alone. Allowing for any punishments, there may also be a deviation to a rejected
offer that is even more attractive, but it would be a profitable deviation from prescribed play in any case.
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fit the crime. However, so far this simplicity concerns only first deviations from prescribed
play; the punishments themselves may still be rather complex.

The second part of lemma 1 extends the simplicity of an OPC to its own punishments,
thus creating an OSPC. It is based on the observation that any OPC supports, in partic-
ular, the play of its own constituent punishments. Intuitively, we can therefore iteratively
apply the same optimal punishments also to deviations from first punishment play (second
deviations), and then also to deviations from second punishment play (third deviations) etc.
Thus we create an OPC in which player i’s proposer and respondent deviations are followed
by the same respective punishment, entirely independent of their history, i.e. an OSPC; e.g.,
a proposer deviation by player 1 from its own punishment’s play then simply “restarts” this
very punishment play. It is therefore without loss of generality to restrict OPCs to OSPCs,
and these are fully described by four optimal punishment plays.

Simple Play. Consequentialist parties care only about outcomes of play, not play itself;
making an offer that is commonly known to be rejected is therefore tantamount to not
offering anything at all. The final simplification result removes such redundancy regarding
equivalent types of equilibrium play (in particular, optimal punishment play).

Call a play that ends in agreement on division x in round n (perpetual disagreement
means x = (0, 0) and n =∞) a simple play if (i) all rejected offers are minimal offers (i.e.,
zero offers), and (ii) all response rules specify maximal acceptance thresholds, equal to the
respective respondent’s reservation share for her maximal rejection value in a disagreement
round m < n, and to xR(n) in the terminal agreement round n. Note that, given the players’
maximal rejection values, simple play is fully determined by its ultimate outcome, here (x, t)
for t = n − 1.23 For the purpose of characterizing equilibrium outcomes, with optimal
punishments, this is indeed without loss of generality.

Lemma 2. Whenever an OPC exists and (x, t) is an equilibrium outcome of game Gi, the
simple play of this outcome is an equilibrium play of Gi.

In conclusion, all strategic complexity off the equilibrium path can be summarized by
merely four optimal punishment outcomes

((
xP,i, tP,i

)
,
(
xR,i, tR,i

))
i∈I

; these define four sim-
ple plays that form an OSPC supporting all equilibrium play, of both (sub-) games G1 and
G2. Moreover, to check whether an outcome is an equilibrium outcome it suffices to check
only for one-stage deviations from its simple play, which is straightforward. These insights
afford a greatly simplified structure for equilibrium analysis.

23As defined here, simple play exists for every equilibrium outcome, but not necessarily for every possible
outcome; e.g., if player 2’s maximal rejection value implies a zero reservation share, then there is no simple
play of G1 with delayed agreement.
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4.2 Equilibrium Characterization

The equilibrium characterization exploits a “fixed-point property” of any quadruple of op-
timal punishment outcomes: by means of their implied OSPC they support themselves as
the most extreme outcomes—in terms of their rejection values (lemma 1)—among all the
outcomes that they support. Since there may be multiple OSPCs, I first map this fixed-
point property into a system of equations that the unique associated punishment values
(v∗i , w∗i , t∗i )i∈I necessarily solve. These equations, in general, have multiple solutions, and the
values (v∗i , w∗i , t∗i )i∈I are found as their unique extreme solution, whose existence follows from
the continuity assumptions on preferences. These values then characterize the set of OSPCs,
and thus also the set of equilibrium outcomes. This is the central result of this paper.

Define first the function κi : T × Ui (Ai)× Uj (Aj)→ R+ such that

κi (t, vi, vj) ≡

0 t = 0

φi (vi, t) + max {φj (vj, t− 1) , φj (uj (0) , t)} t > 0
,

which measures the surplus-cost of delay t in Gi given proposer values vi and vj, and which is
non-decreasing in each of its arguments. Its significance derives from the fact that, given the
minimal proposer values v∗i and v∗j from optimal punishment, game Gi has an equilibrium
outcome with (positive) delay t if and only if κi

(
t, v∗i , v

∗
j

)
≤ 1. The restriction to simple

play allows to reduce the necessary and sufficient incentive constraints for agreement on x
with this delay to xi ≥ φi (v∗i , t) and 1 − xi ≡ xj ≥ max

{
φj
(
v∗j , t− 1

)
, φj (uj (0) , t)

}
; κi

therefore measures the incentive cost of delay t as the minimal amount of surplus, so that
both players can be promised a large enough share with this delay.

Let then E ⊆ ∏
i∈I (ui ([0, 1])× Ui (Ai)× T ) be the set of sextuples (vi, wi, ti)i∈I such

that, for each i ∈ I,

vi = ui (1− πj (Uj (1− πi (wi) , 1))) (4)

wi = inf {Ui (φi (vi, t) , t+ 1) |t ∈ T, t ≤ ti} (5)

ti = sup {t ∈ T |κi (t, vi, vj) ≤ 1} (6)

Lemma 6 in appendix A.3 shows how each element (vi, wi, ti)i∈I of E corresponds to a
quadruple of punishment outcomes that are “constrained” optimal in the following sense: by
means of a construction similar to an OSPC, they support a subset of equilibrium outcomes
that includes themselves (so they are indeed equilibrium outcomes), and on which they are
optimal; i.e., constrained to this subset, they yield the minimal punishment values (vi, wi)i∈I
and supremal delays (ti)i∈I .
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If optimal punishments, and thus an OSPC, exist, the associated values (v∗i , w∗i , t∗i )i∈I are
necessarily in E. However, in general, due to the interdependency of punishments—harsher
punishments permit longer delays, and longer delays permit harsher punishments—there may
be (other) constrained OSPCs. In fact, the set E always contains an element (vi, wi, ti)i∈I
with t1 = t2 = 0 that corresponds to a “trivial” constrained OSPC: irrespective of who
deviated in a given round, it specifies the same punishment; thus this OSPC reduces to a
single stationary equilibrium in which player i always offers 1−φi (vi, 0) = πj (wj) and always
accepts with threshold πi (wi) = πi (Ui (φi (vi, 0) , 1)), so there is immediate agreement after
any history.

In view of potential multiplicity in E, the actual values (v∗i , w∗i , t∗i )i∈I must then be its
unique extreme element; i.e., any other element (vi, wi, ti)i∈I satisfies v∗i ≤ vi, w∗i ≤ wi and
t∗i ≥ ti for both i.

Theorem 1. The values (v∗i , w∗i , t∗i )i∈I exist, and they are equal to the unique extreme element
of the set E. For each i ∈ I,

(
xP,i, tP,i

)
and

(
xR,i, tR,i

)
are outcomes of player i’s optimal

proposer and respondent punishment, respectively, if and only if tP,i = 0
xP,ii = πi (w∗i )

 and

 tR,i ∈ arg min {Ui (φi (v∗i , t) , t+ 1) |t ∈ T, t ≤ t∗i }
xR,ii = φi

(
v∗i , t

R,i
)

 ,
and the set A∗i of player i’s personal equilibrium outcomes in game Gi equals(q, t) ∈ Ai

∣∣∣∣∣∣∣φi (v∗i , t) ≤ q ≤

1− πj
(
w∗j
)

t = 0

1−max
{
φj
(
v∗j , t− 1

)
, φj (uj (0) , t)

}
t > 0

 .
A few features of optimal punishments are noteworthy in view of the strategic advantage

enjoyed by a proposing player. First, a player’s optimal proposer punishment is unique
and involves no delay: given her impatience, the respondent’s rejection value is maximized
by the maximal credible share with least delay following rejection (4). Second, an initially
proposing player i’s least preferred equilibrium outcomes for various delays are necessarily
indifferent, all yielding her the same minimal value v∗i , and this allows to pin down optimal
respondent punishment (5). Finally, whether and how long agreement may be delayed is
fully determined by the players’ incentives as proposer (6); this drives the aforementioned
indifference property (see also the characterization of A∗i in theorem 1).

Example 1 shows that the equilibrium characterization neither reduces to uniqueness nor
to stationarity of equilibrium, nor to stationarity of optimal punishments. It is never an
“anything goes”-type result, however, as the players’ impatience imposes a certain structure
on equilibrium through the proposer advantage: as a function of delay, the set of equilibrium
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divisions monotonically shrinks (since φi (u, ·) is increasing, the upper and lower bounds on
each player’s share converge), and perpetual disagreement is never an equilibrium outcome
(note that v∗i > ui (0) ≥ Ui (0,∞)). In section 5, I present further detail, examples and
discussion regarding the structure of equilibria for various preferences.

Theorem 1 is partly reminiscient of Merlo and Wilson (1995, thms 7 and 8), who assume
ED and analyze bargaining by multiple players under a Markovian process governing the
protocol as well as the size of the cake. They also characterize the set of equilibrium values
by means of an extremal fixed point, but its nature differs significantly. ED implies that there
is a stationary equilibrium outcome that maximizes one player’s value at the same time as it
minimizes all other players’ values. In the two-player case this simple relationship between
punishment and reward implies that optimal punishments are efficient and, without loss of
generality, also stationary. Only in the case of more than two players, one player’s optimal
punishment might necessitate some punishment of another player and some inefficiency, thus
complicating the incentive structure (cf. Burgos et al., 2002b).

By contrast, here such a complication arises already with two players, and from a very
different source: the dynamic inconsistency of a player’s time preferences. Optimal pun-
ishment might require delay, in which case it is both inefficient and non-stationary. The
extreme equilibria are then “truly” non-stationary in the sense that their continuation is
non-stationary after any history. Equilibrium delay does not necessitate multiple stationary
equilibria; indeed, it does not even depend on the existence of a stationary equilibrium.

This distinguishes the delay obtained here from that obtained in other extensions of the
original Rubinstein (1982) model that maintain a stationary game structure and ED, all
of which rely on multiple stationary equilibria to support delay (Haller and Holden, 1990;
Muthoo, 1990; van Damme, Selten, and Winter, 1990; Fernandez and Glazer, 1991; Myerson,
1991; Avery and Zemsky, 1994). The sole exception I am aware of is that of Busch and Wen
(1995).24 Their model of negotiation enriches bargaining by a disagreement game, which
is a fixed simultaneous-move game played after any rejected offer and determines a stream
of payoffs before agreement. The truly non-stationary equilibria they construct exploit the
resultingly richer preference domain through non-stationary play of the disagreement game
similar to folk theorems for repeated games, but constrained by the parties’ incentives to
reach agreement.

Existence of an OSPC is equivalent to the existence of minimum values v∗i and w∗i (as
argued, a “constrained” OSPC and hence an equilibrium always exist, however). This is
non-trivial here, as the set of equilibrium outcomes need not be closed.25 The generality of

24I am indebted to Paola Manzini for drawing my attention to these authors’ work.
25Although the equilibrium concept introduced in definition 1 is equivalent to a version of subgame-perfect
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assumption 1 means that the length of equilibrium delay might have no upper bound, despite
the fact that perpetual disagreement is never an equilibrium outcome due to the proposer
advantage (see appendix B.3 for an example). While existence of a minimal value v∗i follows
from standard continuity even with unbounded delay, the (only) role played by impatience
property (3.c) is to ensure that the minimal value w∗i also exists in this case, because the
delay of agreement that is required for optimal punishment is then bounded.

5 Uniqueness v. Multiplicity, and Delay

For economic applications, where bargaining arises naturally in various contexts (household
decision-making, wage setting, international trade agreements etc.), uniqueness of the bar-
gaining prediction is an important concern. Any uncertainty about this one aspect of a
model feeds through all of the conclusions drawn from it. The following characterization of
those preference profiles (within the general class defined by assumption 1) for which equi-
librium is indeed unique is immediate from theorem 1. It sets the stage for the remainder of
this section, which relates the paper’s theoretical results to the empirical evidence on time
preferences, as well as bargaining.

Corollary 1. Equilibrium is unique if and only if the set E is a singleton. Whenever
unique, equilibrium is stationary and has immediate agreement after any history: player
i always offers the share 1 − φi (v∗i , 0) = πj

(
w∗j
)
and always accepts with the threshold

πi (w∗i ) = πi (Ui (φi (v∗i , 0) , 1)), i ∈ I.

These necessary and sufficient conditions for uniqueness do not isolate preference prop-
erties at the individual level, however: fixing one party’s preferences, whether equilibrium
is unique or displays multiplicity and delay generally depends on those of the opponent. To
relate the theoretical results on bargaining to the empirical evidence on time preferences I
therefore investigate what broad qualitative properties of preferences at the individual level
imply uniqueness on the one hand, and multiplicity and delay on the other hand. For the lat-
ter case, I provide additional guidance to empirical bargaining research by showing how the
structure of equilibrium “naturally” captures what seem to be the most important observed
tendencies in real bargaining.

Nash equilibrium, existing results based on the upper hemi-continuity of its equilibrium correspondence (e.g.,
Börgers, 1991) cannot be applied here, because they assume finitely many players.
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5.1 Preliminary Remarks on Stationary Equilibrium

In general, already stationary equilibrium need not be unique, and this is so even under
ED (see Rubinstein, 1982). Multiplicity of stationary equilibrium is, however, hardly of
practical interest, as it requires empirically implausible degrees of convexity of the players’
utility functions in their surplus share. These curvature properties of time preferences in
the reward are essentially orthogonal to whether or how these preferences are dynamically
inconsistent. Indeed, the same axioms that have been postulated in order to guarantee
uniqueness of stationary equilibrium under ED (e.g., Binmore, Rubinstein, and Wolinsky,
1986; Hoel, 1986; Osborne and Rubinstein, 1990) also do so within the much more general
class of preferences analyzed here. For instance, consider the following property.26

Definition 2. Player i’s preferences exhibit immediacy if, for any two shares q and q′, and
any positive ε,

ui (q) = Ui (q′, 1)⇒ ui (q + ε) > Ui (q′ + ε, 1) .

Starting from indifference between an immediate and a once delayed agreement, imme-
diacy says that an increase in one’s surplus share is more valuable when immediate. With
impatience, indifference requires that the delayed share exceed the immediate one, so imme-
diacy extends a basic property of any discounted concave utility to non-separable preferences.
Because it is concerned with comparisons of only immediate and once delayed agreements,
it does not restrict whether or how preferences are dynamically inconsistent.

Lemma 3. If both players’ preferences exhibit immediacy, stationary equilibrium is unique.

For the purposes of applied work—the focus of this section—stationary equilibrium will
be unique.27 Immediacy ensures that the proposer’s surplus rent in immediate rather than
once delayed (history-independent) agreement is monotonically increasing in the share that
the respondent would obtain by rejecting; e.g., if any offer’s rejection would subsequently
result in immediate agreement on division x, then the proposing player i’s such surplus rent
equals (1− πj (Uj (xj, 1))) − (1− xj) = xj − πj (Uj (xj, 1)). Its increasingness ensures that
the backwards-induction dynamics are well behaved: starting from any (history-independent)
agreement, backwards induction produces a unique limit, i.e. a unique stationary point.28

26This is essentially a reformulation in utility terms of the “increasing loss to delay” axiom of Osborne
and Rubinstein, 1990, pp. 35-36.

27Appendix A.5 provides a full characterization of stationary equilibrium, for the general case.
28If the rent were non-monotonic, the limit may depend on the starting division, yielding multiple station-

ary points.

24



5.2 Present Bias and Uniqueness

A unique stationary equilibrium is the only equilibrium with immediate agreement after any
history. This equilibrium is unique overall whenever delay is not self-enforcing in the sense
that it enlarges the scope for punishment so much that it effectively supports itself. Consider
then the following preference property.

Definition 3. Player i’s preferences exhibit a weak present bias if, for any two shares q
and q′, and any delay t,

ui (q) = Ui (q′, t)⇒ Ui (q, 1) ≤ Ui (q′, t+ 1) . (7)

Present bias means that a party becomes more patient when an immediate and an indif-
ferent delayed reward are pushed into the future. Hence, if a present-biased individual, in a
period’s time, would be indifferent between receiving a reward q immediately and receiving
a reward q′ with t periods of delay, she currently prefers the larger later reward.

Recall now that, due to the proposer advantage, delay cannot hurt a proposing party
beyond her least preferred immediate agreement. Under weak present bias, delay cannot
hurt this party as the respondent either: rejection necessarily entails a minimal delay of one
period, but beyond this “critical” period she is more patient. Hence, subject to indifference as
the proposer, she cannot be made worse off as the respondent; delay cannot be self-enforcing.

Proposition 1. If, in addition to immediacy, both players’ preferences exhibit a weak present
bias, then equilibrium is unique.

Together with immediacy, weak present bias provides a simple set of sufficient conditions
for uniqueness. Both properties are readily checked for any given preferences, and both are
readily testable empirically.

The interpretation of property (7) as weak present bias is most straightforward for dis-
counted utility, where U (q, t) = d (t)·u (q). Letting d (t) ≡ ∏t

s=1 δ (s), weak present bias then
reduces to δ (1) ≤ δ (t), saying that no future period of delay is discounted more heavily than
the first one from the immediate present.29 Any hyperbolic or quasi-hyperbolic discounting
exhibits this property, with an actual bias: the (β, δ)-model of quasi-hyperbolic discounting
has δ (1) = βδ < δ = δ (t) for any t > 1, and hyperbolic discounting has δ (·) increasing.30

29Halevy (2008) introduces a strict version of this discounting property, which he calls “diminishing im-
patience”, and relates it to non-linear probability weighting of consumption risk (see also appendix B.4.2).
The weak formulation of property (7) means it also covers ED as the limiting case where δ (·) is constant.

30The non-separable models of Benhabib et al. (2010) and Noor (2011) were both designed to capture the
very same pattern of preference reversals that hyperbolic and quasi-hyperbolic discounting explain, and it
can easily be verified that they, too, exhibit a weak present bias.
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Proposition 1 establishes the robustness of the bargaining wisdom received from the study
of ED to various forms of present bias: equilibrium is unique as well as efficient, it is easily
computed on the basis of only the players’ attitudes to a single (the first) period of delay and
has familiar comparative statics. If one believes in the essence of present bias but finds the
evidence inconclusive as to what exact functional form it assumes, it is comforting to learn
that equilibrium is robust to any mis-specification of higher-order delay attitudes. Moreover,
the finding that the historically main mode of surplus sharing is efficient under present bias is
good news for its evolutionary explanations (e.g., Dasgupta and Maskin, 2005; Netzer, 2009):
otherwise, communities without a present bias would have had an evolutionary advantage,
making its survival hard to understand.

Most importantly, proposition 1 expands the scope of applied work, which shows strong
interest in the study of present-biased time preferences—in particular (β, δ)-discounting—but
has hitherto lacked a strategically founded bargaining solution. Its application requires some
caution, however, as the following example indicates—even after putting aside the empirical
issue of whether present bias is prevalent on the most commonly considered bargaining
domain of monetary rewards (see appendix B.1).

Example 2. Let the two parties’ preferences be given by Ui (q, t) = di (t) · q with di (0) =
1 > di (t) = βiδ

t
i for all t > 0, (βi, δi) ∈ (0, 1)2. The unique equilibrium of the game in which

player 1 makes the initial offer has immediate agreement on division x such that

x1 = 1− β2δ2

1− β1δ1β2δ2
.

For a given positive period-length, this prediction is indistinguishable from that under ED
where each player i has preferences Ui (q, t) = δ̃tiq with δ̃i ≡ βiδi (cf. Bernheim and Rangel,
2009, pp. 69-71).

Whichever continuous-time version of (β, δ)-discounting is adopted (cf. Harris and Laib-
son, 2013; Pan et al., 2015), the limiting case of very frequent offers that is commonly
focused on in applications becomes problematic. Either a player’s bias is taken to discon-
tinuously differentiate instantaneous from delayed gratification (let t ∈ R+ above), in which
case x1 → 1−β2

1−β1β2
as δi → 1 (regardless of relative speeds of convergence), and the bar-

gaining outcome is fully determined by the players’ very short-run impatience; the initial
proposer’s advantage then prevails for arbitrarily frequent offers, and—failing to generate an
equal split—the model is at odds with the Nash bargaining solution.31

Or an extended notion of the “present” of length τi > 0 is adopted, such as di (t) equal to
31Notice that any bias βi < 1, however small, means that in the limit this player obtains none of the

surplus in bargaining against an exponential discounter.
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δti whenever t ≤ τi and βiδti otherwise. Then, however, as the length of a bargaining period
falls below some player’s τi, the model exhibits multiple equilibria and delay, of the type
presented in example 1 (there 1 ≤ τ1 < 2 ).

A related conceptual issue arises concerning the possibly distinct times of agreement and
consumption feasibility. If there is an exogenous lag τ̂ between agreement and consumption
exceeding the length of time for which there is a “present bias”, the unique equilibrium has
immediate agreement with player 1’s share equal to x1 = 1−δτ̂+1

2
1−δτ̂+1

1 δτ̂+1
2

; only the “long-run”
discounting matters, because each player i discounts even immediate agreements with extra
factor βi.

Taking a broad perspective on what is being consumed, it could also be a bargainer’s
relevant others’ esteem, proportional to the surplus she fetches (e.g., when a union leader
negotiates on behalf of her union). The agreement reached might then differ drastically,
depending on whether the bargaining is done behind closed doors (there is a lag between
agreement and consumption, and only long-run discounting matters) or in the presence of
such relevant others (when the timing of agreement and consumption coincide, and the
degrees of present bias are the main determinant of the division).32

5.3 Near-Future Bias, Multiplicity and Delay

A major contribution of this paper is to establish (non-stationary) delay equilibria for em-
pirically plausible time preferences, satisfying the usual curvature assumptions. Before dis-
cussing the qualitative features of these preferences, I first argue for the relevance of such
equilibria by showing how they capture two prominent tendencies in real bargaining: gradual
agreement and equal surplus division.

5.3.1 Gradual Agreement and Equal Split

All delay equilibria share the same fundamental strategic reasoning. Although Pareto-
improvements are available, none of them gets proposed, because a proposing player believes
that, by doing so, she would induce the opponent to expect an even superior (non-Pareto-
improving) agreement and, accordingly, reject the proposal. This belief leads to offers that
are, in turn, unfavorable vis-à-vis the delayed outcome for the respondent. As the time of
agreement draws closer, the set of Pareto-improvements shrinks at the rate of the parties’ im-
patience, so they may reason and behave in this way while making ever greater concessions,

32I thank Erik Eyster and David Cooper for independently pointing out the following: any (common) lag
between time of agreement and time of consumption does not affect the unique bargaining outcome under ED
(this can be seen from the functions πi), but under (β, δ)-discounting would shift bargaining power toward
the player who is more patient in the long-run.
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thus agreeing gradually.
Formally, for any equilibrium play (xn, Y n)t+1

n=1, define party i’s concession in round n,
denoted bni , as her offer if i is the proposer, i.e. bni = xnj if i = P (n), and as the supremal
opponent share that she would accept if i is the respondent, i.e. bni = sup {xj ∈ [0, 1] |x ∈ Y n}
if i = R (n). Call an equilibrium with outcome (x, t) a gradual-agreement equilibrium if its
play has both players’ concessions bni increasing in n, i.e. bn+1

i > bni for both i and all
n ≤ t. Gradual agreement meaningfully applies only to equilibria with delay, of course;
then, however, its requirement is rather strong, as it treats a player’s offers and response
rules symmetrically in terms of concessions (it clearly implies increasing offers by each player).

Proposition 2. If both parties i ∈ I are uniformly impatient, so that for any positive share
q, t < t′ implies Ui (q, t) > Ui (q, t′), then every equilibrium outcome is the outcome of a
gradual-agreement equilibrium.33

Under gradual agreement, a player’s concession has the interpretation of the credible
promise that she will subsequently always be willing to give up at least this share, as long
as the other player keeps to her promise. The fact that this promise has no material coun-
terpart makes it distinct from the commitment mechanisms in related work explaining such
“gradualism” (Admati and Perry, 1991; Compte and Jehiel, 2004).34 These authors also
provide anecdotal evidence for such behavior; it is, however, evident in the laboratory as
well (e.g., Weg et al., 1990; Kahn and Murnighan, 1993).

Another prominent empirical finding is that, in payoff-symmetric bargaining problems,
the parties tend to share the surplus equally, typically without delay (e.g., Roth, 1995). This
coincides with the Nash bargaining solution, and it is also the limiting outcome of the unique
symmetric equilibrium under ED as offers become arbitrarily frequent (Binmore et al., 1986,
prop. 4). For the more general time preferences considered here, the following holds true.

Proposition 3. If the two bargaining parties’ preferences are symmetric, then an immediate
equal split is an equilibrium outcome whenever there exists an equilibrium with delayed agree-
ment. More generally, an equal split with delay t − 1 is an equilibrium outcome whenever
there exists an equilibrium in which agreement is delayed by t periods.

In reasonably symmetric bargaining situations, the possibility of delay implies that the
parties may instead quickly agree on an equal split. This holds true here without recourse

33If the requirement for gradual agreement were weakened to non-decreasing concessions, this proposition
would hold true for any preference profile.

34In these papers the value of a player’s outside option increases in the opponent’s past concessions. Li
(2007) obtains a similar effect with history-dependent preferences.
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to a limiting argument, hence even for non-negligible costs of disagreement; as offers become
more frequent, the required delay equilibria are, however, more likely to exist (see below).

The unified explanation for these seemingly incompatible tendencies via non-stationary
delay equilibria comes with equilibrium multiplicity. Yet, upon taking the perspective of a
bargainer facing such indeterminacy, one may reasonably expect behavior to become prone
to influence by commonly shared norms of behavior (promise-keeping) or focal points (sym-
metry) that coordinate beliefs. Such auxiliary assumptions can therefore serve to sharpen
predictions.

Importantly, this explanation does not require time preferences that would be peculiar
to the bargaining problem. Rather, the property of time preferences that implies delay
equilibria is commonly found in experimental studies of how people generally evaluate delayed
monetary rewards: near-future bias.

5.3.2 Near-Future Bias and Delay

In constrast to immediacy, there is significant evidence for violations of weak present bias,
for the domain of monetary rewards (see appendix B.1). Notably, these violations occur
almost exclusively within short horizons of less than a few weeks, where many people display
less patience for a given delay when it is placed into the slightly more distant future (holding
payoffs constant); hence, in contradiction to (7), an indifference ui (q) = Ui (q′, t) is then
broken in favor of the sooner agreement, Ui (q, 1) > Ui (q′, t+ 1), for t not too large. Given
immediacy, a violation of weak present bias is necessary for the emergence of delay equilibria;
when it concerns the relatively near future, it is sufficient.35

Under discounting, using decomposition di (t) ≡
∏t
s=1 δi (s), a near-future bias means

that δi (s) < δi (1) for s > 1 not too large; i.e., a near-future period of delay is discounted
more heavily than the first one. Whereas under weak present bias the minimal per-period
discount factor ∆i (t) ≡ inf {δi (s) |s ∈ T, 0 < s ≤ t} is independent of the horizon t and
constant at ∆i (∞) = δi (1), under near-future bias it initially decreases as the horizon is
extended: ∆i (s) < ∆i (1) for s > 1 not too large. Ebert and Prelec (2007), Bleichrodt,
Rohde, and Wakker (2009), Takeuchi (2011) and Pan et al. (2015) have advanced functional
forms for near-future-biased discounting; in graphical terms, all of these discounting functions
are initially concave, so their decline is steepest at some positive delay rather than at zero.

For a near-future biased bargainer a further period of delay in the near future is more
critical than the first, initial period of delay. To avoid a costly future delay, she has to rely

35Of course, offers must not take too much time for the “bias horizon” to be relevant; e.g., if a counter-offer
would take forever, the first offer is an ultimatum, and there is a unique equilibrium in which the initial
proposer obtains the entire surplus without delay.
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on her future self. However, to her future self the same delay, in absolute time, will not be as
critical any more, in relative time. Put succinctly, a given future delay is more painful now
than it will be later—she will subsequently become more patient and, accordingly, tougher
in bargaining than she would initially want herself to be.36

This type of dynamic inconsistency makes delay self-enforcing, because any delay on path
automatically implies the threat of an additional delay off-path, in the event of a rejection:
assuming the additional delay would be particularly costly to her, such a bargainer may
accept so bad a deal as the respondent now, that—in terms of a threat—this supports
her unacceptable offers as the proposer later, when she will be more patient. Although
her proposer advantage limits the power of this threat, as offers become frequent and this
advantage vanishes, delay equilibria emerge for an arbitrarily small such bias.

The following simple parametric example of a near-future bias extends example 1 to
concludingly illustrate various points made in this section.

Example 3. Let the two parties’ preferences be symmetrically given by Ui (q, t) = d (t) · q
with

d (t) =

δ
t t ≤ τ

γδt t > τ
, for (δ, γ) ∈ (0, 1)2 and τ > 0.

First, note that the τ + 1-th period of delay is discounted most heavily: whereas the per-
period discount factors are δ (t) = δ for all t 6= τ+1, for that period it is δ (τ + 1) = γδ. Since
τ > 0, weak present bias is violated, and there is instead a bias toward not experiencing more
than τ periods of delay. (Immediacy is clearly satisfied.) Hence ∆ (t) equals δ for all t ≤ τ

and γδ for all t > τ ; given ∆ determines whether non-stationary delay equilibria emerge, this
minimal deviation from ED is made only for convenience, to keep the number of parameters
down to a mere three, {δ, γ, τ}. Due to preference symmetry, the player subscript is omitted
throughout this example.

Suppose there is an equilibrium in which agreement is delayed by τ periods: then v∗ =
1−δ

1−γδ2 and w∗ = γδv∗ (see (2) in section 3); delay τ > 0 is then “self-enforcing” if and only if
1 ≥ κ (τ, v∗, v∗) = v∗

δτ
+ v∗

δτ−1 , which reduces to

δτ ≥ (1 + δ) · 1− δ
1− γδ2 (8)

after substituting for v∗. The left-hand side is the present value of the surplus, and the right-
36As an extreme but instructive example imagine someone who—at any point in time—does not mind

bargaining for, say, 5 rounds, but is extremely averse to bargaining any longer; such a shifting personal
“deadline” (in relative time) is dynamically inconsistent, since as soon as the first round is over this player
will already not mind delaying agreement until round 6.
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Figure 2: Graphs regarding equilibrium delay in example 3. The panel on the left shows the
parametric regions (δ, γ) such that delay equilibria exist for three given values of τ , which
are 1 (blue, orange and green), 25 (brown and green) and 1000 (green). The panel on the
right plots τ̂ (δ, γ) as a function of δ for three given values of γ, which are 0.5 (blue), 0.75
(orange) and 0.99 (green).

hand side is the present value of the incentive cost of a delay of τ periods: each proposer
requires v∗ = 1−δ

1−γδ2 , and the factor (1 + δ) is due to the fact that the initial proposer does so
immediately whereas the other player does so only next round. Observe that, for any given
τ > 0 and γ < 1, there exist large enough values of δ such that inequality (8) is satisfied (the
left-hand side limits to one whereas the right-hand side limits to zero as δ → 1); generally,
as δ increases, the set of parameters γ and τ for which delay equilibria exist expands, as the
left-hand-side panel of figure 2 illustrates. Whenever such delay equilibria exist, the minimal
proposer and rejection values are obtained only by means of a “truly” non-stationary delay
equilibrium, using optimal punishments.

Notice also that inequality (8) implies w∗ < v∗ < v∗

δτ−1 ≤ 1
2 , and an equal split with any

delay up to τ − 1 periods is then an equilibrium outcome (in particular under immediate
agreement). It may also be reached gradually, say with delay t̂, 0 < t̂ < τ : define a sequence
(bn)t̂+1

n=1 of concessions such that b1 ≡ 0 and bn ≡ 1
2

(
bn−1 + δt̂+1−n · 1

2

)
, noting that the

sequence is increasing, and that bn falls short of a player’s present value of agreeing on an
equal split with the delay t̂ + 1 − n that remains as of the n-th round, which is δt̂+1−n · 1

2 .
It is straightforward to verify that the following describes equilibrium play with gradual
agreement: in any (disagreement) round n < t̂ + 1 the proposing player P (n) offers the
share bn, and the responding player R (n) accepts with threshold 1 − bn+1 (bn < 1 − bn+1
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follows from bn < bn+1 < 1
2); in the (agreement) round n = t̂ + 1 the proposing player

P
(
t̂+ 1

)
offers the share 1

2 , and the responding player R
(
t̂+ 1

)
accepts with threshold 1

2 .
Solving for τ , inequality (8) becomes

τ ≤ ln (1− δ2)− ln (1− γδ2)
ln (δ) ≡ τ̂ (δ, γ) ,

and if it is satisfied, the maximal delay t∗ equals bτ̂ (δ, γ)c, i.e. the greatest integer not
exceeding τ̂ (δ, γ). For any γ < 1, this maximal delay approaches infinity as δ → 1, showing
how small deviations from ED result in the emergence of delay equilibria as offers become
very frequent; e.g., bτ̂ (δ, γ)c = 404 in case δ = γ = 0.999. The right-hand-side panel of
figure 2 illustrates this numerically.

The resulting delays can be very costly. The present value of the surplus in an equilibrium
where agreement is maximally delayed equals γδt∗ whenever τ ≤ τ̂ (δ, γ). As δ → 1, for any
given γ < 1, not only is τ ≤ τ̂ (δ, γ) going to be satisfied, but the entire surplus vanishes.
For instance, while in the case of δ = γ = 0.99 the maximal surplus loss amounts to roughly
one third of the total, for values of γ that fall short of δ, the loss can be dramatic: up to
99.8% of the surplus can be lost through delay when δ = 0.99999 and γ = 0.99.

When players discount the future only up to a finite number of delays, equilibrium delay
can even be unbounded. Example 5 in appendix B.3 demonstrates this point, by only slightly
modifying the example given here.

6 Concluding Remarks

This paper has revisited a central question in bargaining theory: how do bargaining out-
comes, in particular the incidence of inefficient delay, depend on the parties’ attitudes to
delay? Previous research either assumed that these attitudes conform to ED or that the par-
ties’ bargaining behavior is unresponsive to how and why they fail to reach agreement; both
assumptions are at odds with the empirical evidence. Here, I have provided the first general
answer to this question, fully characterizing equilibrium in the canonical Rubinstein (1982)
model of alternating-offers bargaining under minimal assumptions on the parties’ attitudes
to delay, and for arbitrarily history-dependent behavior.

This generality of both preferences and strategies required a novel analytical approach. I
derived a simple, yet sufficiently general structure for off-path punishments that makes non-
stationary equilibria analytically tractable even under dynamic inconsistency. To the best
of my knowledge, this is the first stationary sequential-move game for which such optimal
simple penal codes are generally established. Future research should clarify how useful this
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approach is in other, related games, especially regarding analyses of dynamically inconsistent
preferences.

When at least one of the parties finds a delay beyond some time in the near future
more costly than initial delay from the present, this basic and otherwise disciplined model
provides a rich descriptive theory of bargaining. Although there is no material reason for
why consequentialist bargainers should ever care about how they have failed to agree in the
past—they can therefore always ignore history and stick to a stationary equilibrium—such
dynamic inconsistency provides a motive for treating observed past behavior as indicative of
future behavior. Thus the model captures important tendencies in real bargaining.

Preferences of this type could be peculiar to bargaining situations, but the recent empir-
ical research on time preferences shows that this is not the case. It suggests that near-future
bias may be a more general phenomenon in how many people evaluate delayed monetary
rewards (appendix B.1). It is a recent “discovery” mainly because this empirical research is
only beginning to move on from disproving the universal nature of present bias, especially
of the quasi-hyperbolic type, towards investigating what forms time preferences over money
actually take.

Adopting a hedonic notion of utility, a present bias (as a bias toward instantaneous
gratification) is compelling intuitively, and the quasi-hyperbolic model of discounted utility
has proven enormously useful in explaining many important behaviors (e.g., Laibson, 1997;
O’Donoghue and Rabin, 1999; Bénabou and Tirole, 2002). Yet, money would seem to be
only a means to pleasure, in which case only people’s borrowing and lending rates could
be elicited using monetary rewards. What drives the observation that the vast majority
of participants nonetheless reveal significant biases—either present or near-future bias—is
currently not understood and awaits further investigation. Whatever the conclusions of this
research, it seems fair to assume that any useful model of time preferences will be covered
by this paper’s minimal assumptions, hence its basic bargaining implications will have been
laid out here.

In fact, for many settings—certainly those in which intertemporal trade-offs involve suf-
ficiently long delays (beyond a week, say; cf. Sayman and Öncüler, 2009, p. 470)—a genuine
present bias is indistinguishable from a near-future bias. Bargaining is somewhat special in
that the parties may interact at very high frequency, so this distinction becomes behaviorally
relevant. Since present bias implies immediate agreement, this observation suggests an in-
tervention to restore bargaining efficiency under near-future bias: limiting the frequency of
offers. Conditional on failing to agree, parties would thus be committed to not agreeing for
a sufficiently long period of time so that the first period of delay would be most costly; thus
a present bias is induced, which leads to immediate agreement.

33



I have conducted the analysis under the assumption that each party has perfect knowledge
of her own preferences as well as those of her opponent (more precisely, preferences are
common knowledge). A near-future biased bargainer suffers from her dynamic inconsistency
because it is understood she will take a tougher stance in the future than she currently
would like to; present bias is here a force toward immediate agreement because it is also
correctly anticipated. The question arises how much sophistication is required for these
results, especially in view of potential pitfalls of the intervention just suggested. For the case
of quasi-hyperbolic discounting, Akin (2007) has already shown that when the parties are
persistently naïve about their own present bias but sophisticated about that of the opponent,
there can be severe delays.

Although this paper has emphasized time preferences in a strict sense, there certainly
exist sources other than pure time that induce various dynamically inconsistent time prefer-
ences (of both the present- and future-biased type) in bargaining. In appendix B.4 I outline
bargaining models for two such alternative (or additional) sources, where the results of this
paper directly apply: imperfect altruism regarding future generations’ bargaining outcomes
(cf. Phelps and Pollak, 1968), and nonlinear probability weighting when bargaining takes
place under the shadow of breakdown risk (cf. Barberis, 2012). In conclusion, both the
analytical approach and the mechanisms discovered in this paper for reduced-form time
preferences should therefore serve as a useful guide for further analyses of psychologically
enriched preferences in strategic bargaining, and—plausibly—even beyond.
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Appendix

A Proofs

A.1 Additional Notation

The set A ≡ X × P (X) defines the possible pairs of proposals and response rules. The
stationary strategy σi that specifies “always propose x” and “always respond using rule Y ”
is identified with the pair (x, Y ) ∈ A. The particular division that has player i’s share equal
to one (player j’s share is zero) is denoted by e(i), and a player i’s response rule “accept if
and only if your share is at least q” is denoted by Xi,q.

Take any strategy profile σ, and suppose that if both players act according to σ the
outcome is division x in round m (hence with delay m − 1), where x = (0, 0) and m = ∞
in case of perpetual disagreement. For any n ≤ m, let then hn−1 (σ) ∈ Xn−1 be the round-n
history σ induces, and let (hm−1 (σ) , x) ∈ Xm be its induced (terminal) path. I formally
define σ’s play to be the sequence 〈σ〉 ≡ (〈σ〉n)mn=1 ∈ A

m of offers and response rules it
prescribes along its induced path, i.e. 〈σ〉n ≡ σ (hn−1 (σ)) for any n ≤ m.

To isolate plays from strategy profiles, call any sequence (xn, Y n)mn=1 ∈ Am, for m ∈ N, a
play of game Gi if there exists a strategy profile σ in this game such that 〈σ〉 = (xn, Y n)mn=1;
this holds true if and only if xn ∈ Y n ⇔ n = m (the condition is identical for both games
G1 and G2), and for a given game, a play defines an equivalence class of strategy profiles.

Next, consider the following mapping that produces “simple” strategy profiles. Given
any quadruple of plays S ≡

(〈
σP,i

〉
,
〈
σR,i

〉)
i∈I

, define, for each i ∈ I, a mapping σS,i (·)
that assigns to any play 〈σ̂〉 a strategy profile in game Gi as follows: interpreting any play
〈σ〉 ∈ {〈σ̂〉}∪

{〈
σP,i

〉
,
〈
σR,i

〉}
i∈I

as a sequence of “states”, say a strategy profile is in “state”
〈σ〉n if it prescribes play 〈σ〉n after a given history, and then define σS,i (〈σ̂〉) by the rule that

(1) in round 1 σS,i (〈σ̂〉) is in state 〈σ̂〉1, and
(2) if in round m it is in state 〈σ〉n = (x, Y ), and proposal x′ is rejected, then in round

m+ 1 it is in state

τ (〈σ〉n , x
′) =


〈σ〉n+1 x′ = x /∈ Y〈
σP,P (n)

〉
1

x′ 6= x /∈ Y〈
σR,R(n)

〉
1

x′ 6= x ∈ Y

.

This is a well-defined strategy profile with the property that it distinguishes only four types
of deviations from a given prescribed play—one per player per role—and always specifies the
same continuation play after the same type of deviation. It is thus simple in the sense of
minimal history-dependence.
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Finally, given any pair of reservation shares Q ≡ (q1, q2), define, for each i ∈ I, the
mapping αQ,i (·) that assigns to any outcome

(
x̂, t̂

)
the sequence (xn, Y n)t̂+1

n=1 ∈ At̂+1 such
that

(xn, Y n) =


(
e(P (n)), XR(n),qR(n)

)
n < t̂+ 1(

x̂, XR(n),x̂R(n)

)
n = t̂+ 1

for (P (n) , R (n)) ≡

(i, j) n odd

(j, i) n even
.

Note that αQ,i
(
x̂, t̂

)
is a play of game Gi if and only if

 t̂ = 1 ⇒ qj > 0
t̂ > 1 ⇒ q1 · q2 > 0

 .
A.2 Lemmas 1 and 2

Take any strategy profile σ and any round-n history hn−1: first, let σ|hn−1 denote the re-
striction of σ to continuation histories of hn−1, i.e. histories of the form (hn−1, hm−1) where
hm−1 ∈ Xm−1 for m ∈ N, and second, let σ|hn−1 denote the strategy profile in game GP (n)

that is obtained from σ|hn−1 upon replacing hn−1 by the initial history h0. (Observe that,
given hn−1, σ|hn−1 completely characterizes σ|hn−1 .) Fixing any quadruple of strategy profiles(
σP,i, σR,i

)
i∈I

such that, for each i ∈ I, σP,i is a strategy profile in game Gj and σR,i is a

strategy profile in game Gi, define, for each i ∈ I, the mapping σ∗,i
(
·
∣∣∣∣(σP,i, σR,i)i∈I

)
as

follows: for any strategy profile σ in game Gi, it is the unique strategy profile σ∗,i in this
game such that 〈σ∗,i〉 = 〈σ〉 and

σ∗,i|(hn−1(σ),x) =

σ
P,P (n) x /∈ σR(n) (hn−1 (σ)) \

{
σP (n) (hn−1 (σ))

}
σR,R(n) x ∈ σR(n) (hn−1 (σ))

.

Using this definition, lemmas 1 and 2 are formally summarized in the proposition below;
part (i) establishes the defining property of optimal punishment, part (ii) shows that it is
without loss of generality for optimality to restrict attention to simple punishment, and part
(iii) shows it is without loss of generality for equilibrium to restrict attention to simple play.

Proposition 4. Let the quadruple of outcomes
((
xP,i, tP,i

)
,
(
xR,i, tR,i

))
i∈I

be such that, for
each i ∈ I,

(
xP,ij , tP,i

)
∈ arg max

(q,t)∈A∗
j

Uj (q, t+ 1) and
(
xR,ii , tR,i

)
∈ arg min

(q,t)∈A∗
i

Ui (q, t+ 1) . (9)
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(i) Fix a quadruple of equilibria
(
σP,i, σR,i

)
i∈I

such that, for each i ∈ I, σP,i is an equi-
librium of game Gj supporting outcome

(
xP,i, tP,i

)
and σR,i is an equilibrium of game Gi

supporting outcome
(
xR,i, tR,i

)
. Then, for any k ∈ I and strategy profile σ̂ in game Gk, 〈σ̂〉

is an equilibrium play of Gk if and only if σ∗,k
(
σ̂

∣∣∣∣(σP,i, σR,i)i∈I
)
is an equilibrium of Gk.

(ii) The quadruple of equilibria
(
σP,i, σR,i

)
i∈I

in (i) can be chosen such that

σP,i = σ∗,j
(
σP,i

∣∣∣∣(σP,i, σR,i)i∈I
)

and σR,i = σ∗,i
(
σR,i

∣∣∣∣(σP,i, σR,i)i∈I
)
. (10)

(iii) For any k ∈ I,
(
x̂, t̂

)
is an equilibrium outcome of game Gk if and only if αQ∗,k

(
x̂, t̂

)
,

with Q∗ =
(
π1
(
U1
(
xP,21 , tP,2 + 1

))
, π2

(
U2
(
xP,12 , tP,1 + 1

)))
, is an equilibrium play of Gk.

Proof. Part (i). Sufficiency is immediate, since
〈
σ∗,k

〉
= 〈σ̂〉.

For necessity, let 〈σ̂〉 be an equilibrium play of Gk with outcome
(
x̂, t̂

)
, where it is

without loss of generality to assume σ̂ is itself an equilibrium of Gk, and also let σ∗ =
σ∗
(
σ̂
∣∣∣∣(σP,i, σR,i)i∈I

)
. By construction, 〈σ∗〉 = 〈σ̂〉, and continuation play under σ∗ following

any deviation from its path is an equilibrium of the resulting subgame. In order to verify
that σ∗ is an equilibrium it therefore suffices to verify that there are no profitable one-stage
deviations at the histories hn−1 (σ∗) along its path.

Take then any such history h = hn−1 (σ∗), where player P makes an offer to player R,
and σ∗ (h) = σ̂ (h) =

(
x̃, Ỹ

)
. Consider any proposal x′ ∈ Ỹ ; σ̂’s being an equilibrium and

the construction of σ∗ imply that

uR (x′R) ≥ UR
(
zhR (x′, ∅| σ̂)

)
≥ min {UR (xR, t+ 1) |(xR, t) ∈ A∗R} = UR

(
zhR (x′, ∅|σ∗)

)
,

whereby acceptance is optimal for R under σ∗.
Next, consider any proposal x′ /∈ Ỹ \ {x̃}; σ̂’s being an equilibrium and the construction

of σ∗ imply that

uR (x′R) ≤ UR
(
zhR (x′, ∅| σ̂)

)
≤ max {UR (xR, t+ 1) |(xR, t) ∈ A∗R} = UR

(
zhR (x′, ∅|σ∗)

)
,

whereby rejection is optimal for R under σ∗.
The only remaining case at the responding stage is that of proposal x̃ such that x̃ /∈ Ỹ ;

this implies that n < t̂ + 1, and then σ̂’s being an equilibrium play and the construction of
σ∗ imply that

uR (x̃R) ≤ UR
(
zhR ( x̃, ∅| σ̂)

)
= UR

(
x̂R, t̂+ 1− n

)
= UR

(
zhR ( x̃, ∅|σ∗)

)
,
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whereby rejection is optimal for R under σ∗.
Finally, consider the proposing player P ’s incentive to propose x′ 6= x̃: if x′ ∈ Ỹ , then

uP (x′P ) ≤ UP
(
zhP
(
x̃, Ỹ

∣∣∣ σ̂)) by σ̂’s being an equilibrium, and because of zhP
(
x̃, Ỹ

∣∣∣σ∗) =
zhP
(
x̃, Ỹ

∣∣∣ σ̂) =
(
x̂P , t̂+ 1− n

)
such deviations are not profitable to P under σ∗.

Letting q∗R = πR
(
UR

(
xP,PR , tP,P + 1

))
, it follows from σ̂’s being an equilibrium that

{x ∈ X |xR > q∗R} ⊆ Ỹ and uP (1− q∗R) ≤ UP
(
x̂P , t̂+ 1− n

)
: R must accept any offer which

exceeds her maximal credible reservation share, and if uP (1− q∗R) > UP
(
x̂P , t̂+ 1− n

)
were

true, then, because uP (·) is continuously increasing and q∗R < 1 due to R’s impatience, there
would exist ε > 0 such that P ’s offering the accepted share q∗R + ε would be a profitable
deviation under σ̂. Under σ∗ any deviant proposal x′ /∈ Ỹ yields utility UP

(
xP,PP , tP,P + 1

)
;

using the fact that πP
(
UP

(
xP,PP , tP,P + 1

))
+ πR

(
UR

(
xP,PR , tP,P + 1

))
< 1 by impatience,

UP
(
xP,PP , tP,P + 1

)
≤ uP

(
πP
(
UP

(
xP,PP , tP,P + 1

)))
< uP

(
1− πR

(
UR

(
xP,PR , tP,P + 1

)))
;

hence no such deviation is profitable for P , concluding the proof.
Part (ii). If

(
σP,i, σR,i

)
i∈I

is a quadruple of equilibria as in part (i), then S =
(〈
σP,i

〉
,
〈
σR,i

〉)
i∈I

is a quadruple of plays, so the quadruple of strategy profiles
(
σS,j

(〈
σP,i

〉)
, σS,i

(〈
σR,i

〉))
i∈I

is well-defined. When used as punishments in mapping σ∗,i this quadruple supports the same
set of plays in game Gi, i ∈ I, as does

(
σP,i, σR,i

)
i∈I

, since the punishments for various devia-
tions from initial play are outcome equivalent. In particular,

(
σS,j

(〈
σP,i

〉)
, σS,i

(〈
σR,i

〉))
i∈I

therefore supports its own constituent (equilibrium) plays in S, so at no point is there a prof-
itable deviation from any of these strategy profiles; it is therefore a quadruple of equilibria
as in part (i).

Finally, by construction, any of them specifies the same punishment after any deviation
by the same player in the same role, irrespective of history: if proposing player i makes a
deviant offer that is compliantly rejected, this is σS,j

(〈
σP,i

〉)
, and if responding player i

deviantly rejects an offer, this is σS,i
(〈
σR,i

〉)
. Hence it satisfies (10).

Part (iii). Sufficiency is immediate. Suppose then that agreement on x̂ with de-
lay t̂ is an equilibrium outcome of Gk, and let

(
σP,i, σR,i

)
i∈I

be a quadruple of equilibria
as in part (i). Define also each player i’s shares q∗i ≡ πi

(
Ui
(
xP,ji , tP,j + 1

))
and q∗∗i ≡

πi
(
Ui
(
xR,ii , tR,i + 1

))
.

The first step is to show that αQ∗,k
(
x̂, t̂

)
is a play. This is immediate only for t̂ = 0; for

t̂ = 1, it is necessary and sufficient that q∗3−k > 0, and for t̂ > 1, it is necessary and sufficient
that both q∗2 > 0 and q∗1 > 0. Suppose then that q∗i = 0 and note that any equilibrium
must then have respondent i accept any offer. While immediate for any positive offer, there
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cannot be an equilibrium in which respondent i rejects a zero offer by proposer j, because
uj (1− ε) > Uj (1, 1) for small enough positive and hence accepted offers ε; i’s rejecting a
zero offer would therefore imply that such offers constitute profitable deviations by proposer
j. Hence, t̂ = 1 implies q∗3−k > 0, and t̂ > 1 implies both q∗2 > 0 and q∗1 > 0.

The second step is to show that, whenever σ′ is a strategy profile in game Gk whose play
equals αQ∗,k

(
x̂, t̂

)
, then σ ≡ σ∗,k

(
σ′
∣∣∣∣(σP,i, σR,i)i∈I

)
is an equilibrium of Gk. It suffices to

verify that there are no profitable one-stage deviations at the histories hn−1 (σ) for n ≤ t̂+1,
since the continuation strategy profiles

(
σP,i, σR,i

)
i∈I

are all equilibria of their respective
subgames. Consider then any such history h = hn−1 (σ), where player P makes an offer to
player R and σ (h) = (x̃, XR,q̃). Observe the following inequalities:

q∗∗R ≤ q̃ ≤ q∗R. (11)

While (11) holds by construction if n < t̂ + 1, in the case of n = t̂ + 1 it means that
q∗∗R ≤ x̂R ≤ q∗R; however, x̂R < q∗∗R would imply that there could not be an equilibrium in
which R accepts an offer as low as x̂R, and x̂R > q∗R would imply that there could not be an
equilibrium in which P offers as much as x̂R.

R’s rejection of any deviant offer q 6= x̃R such that q < q̃ is optimal: by (11), such offers
exist only if q∗R > 0, in which case their rejection value UR

(
xP,PR , tP,P + 1

)
equals uR (q∗R), and

this exceeds that of acceptance, u (q), since q∗R ≥ q̃ > q. Moreover, R’s impatience implies
that xP,PR > q∗R, and combined with (11) this yields UP

(
xP,PP , tP,P + 1

)
< uP (1− q∗R) ≤

uP (1− q̃), showing that P has no profitable deviation to rejected offers q < q̃.
Also, R’s acceptance of any offer q ≥ q̃ is optimal, because it yields a value of at least

uR (q̃), whereas rejection yields no more than uR (q∗∗R ), where uR (q̃) ≥ uR (q∗∗R ) by (11).
Among these offers, q̃ is clearly the best accepted offer for P .

For n = t̂ + 1, we can already conclude that there is no profitable deviation for either
player, since all offers q < q̃ are deviant. Consider then the remaining case of deviations
in a round n < t̂ + 1: if R’s rejection of the minimal possible, i.e. the zero offer failed to
be optimal, then uR (0) > UR

(
x̂R, t̂+ 1− n

)
, so there is no offer that R could optimally

reject in favor of agreement on x̂ after t̂ + 1 − n more rounds—in contradiction to this
outcome’s equilibrium property; to a similar effect, if P ’s compliant zero offer were worse
than the lowest accepted offer q̃ = q∗R, then uP (1− q∗R) > UP

(
x̂P , t̂− n+ 1

)
, so there is no

rejected offer that P could optimally make in return for agreement on x̂ after t̂+ 1−n more
rounds.

A-5



A.3 Theorem 1

In what follows, let

ṽi ≡ inf {Ui (q, t) | (q, t) ∈ A∗i }

w̃i ≡ inf {Ui (q, t+ 1) | (q, t) ∈ A∗i }

denote each player i’s infimal punishment values. The theorem is proven via a series of
lemmas. The first one, lemma 4, shows that the set E is non-empty. Lemma 5 then shows
that for every element (vi, wi, ti)i∈I of E there exists a quadruple of outcomes that deliver
the values (vi, wi)i∈I when used as punishment outcomes. (This is the only result that uses
impatience property (3.c), and it will imply that optimal punishments exist.) Lemma 6 goes
on to establish that any such quadruple of outcomes in fact defines a “constrained” OSPC:
as punishment outcomes they support a subset of equilibrium outcomes that includes them,
and constrained to which they are optimal (see equation (9)). This means, in particular,
that for any element (vi, wi, ti)i∈I of E, ṽi ≤ vi and w̃i ≤ wi for each i. The final two lemmas
show that E also contains an element (vi, wi, ti)i∈I such that vi ≤ ṽi and wi ≤ w̃i for each i.
Thus we conclude that E has an extreme element, which is (v∗i , w∗i , t∗i )i∈I . (Lemma 6 then
implies the characterization of equilibrium outcomes based on the associated OSPC from
lemma 5.)

Lemma 4. The set E is non-empty.

Proof. Consider the following functions fi : [0, 1]→ [0, 1] for each i:

fi (q) ≡ 1− πj (Uj (1− πi (Ui (q, 1)) , 1)) . (12)

fi is continuous, and it is non-decreasing, with 0 < fi (0) ≤ fi (1) ≤ 1. Hence it possesses
a fixed point that is positive. Take any q̂1 = f1 (q̂1) and define q̂2 ≡ 1− π1 (U1 (q̂1, 1)); note
that then also q̂1 = 1− π2 (U2 (q̂2, 1)) and

q̂2 = 1− π1 (U1 (1− π2 (U2 (q̂2, 1)) , 1))

≡ f2 (q̂2) .

I will prove that E contains the values (vi, wi, ti)i∈I = (ui (q̂i) , Ui (q̂i, 1) , 0)i∈I .
Given ti = 0, the identity φi (ui (q̂i) , 0) ≡ q̂i immediately yields that the chosen values

satisfy equations (4) and (5), for each i. At the same time, again for each i, whenever t is
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positive,

κi (t, ui (q̂i) , uj (q̂j)) ≥ κi (1, ui (q̂i) , uj (q̂j))

≥ q̂i + q̂j

= q̂i + 1− πi (Ui (q̂i, 1))

> 1,

where the last inequality uses that q̂i > 0 implies q̂i > πi (Ui (q̂i, 1)). This shows that the
chosen values also satisfy equation (6), for each i.

Lemma 5. For every element (vi, wi, ti)i∈I of the set E, there exists a quadruple of outcomes((
y(i), 0

)
,
(
x(i), t(i)

))
i∈I

such that, for each i ∈ I,

vi = ui
(
1− πj

(
Uj
(
1− y(i)

i , 1
)))

(13)

wi = Ui
(
x

(i)
i , t

(i) + 1
)
. (14)

Proof. Let (vi, wi, ti)i∈I ∈ E and define a quadruple of outcomes
((
y(i), 0

)
,
(
x(i), t(i)

))
i∈I

such that, for each i ∈ I,

y
(i)
i = πi (wi) and

 t(i) ∈ arg min {Ui (φi (vi, t) , t+ 1) |t ∈ T, t ≤ ti}
x

(i)
i = φi

(
vi, t

(i)
)

 . (15)

Recalling equations (4) and (5), it only remains to show that such values t(i) exist, so that
the quadruple is well-defined. This is clearly true when each ti is finite, and the following
three steps prove it also for the case that ti =∞ (for some i).

Step 1: For any t, φi (vi, t) > 0. From equation (4) it follows that vi ≥ ui (1− πj (Uj (1, 1))) >
ui (0), since πj (Uj (q, t+ 1)) ≤ πj (Uj (1, 1)) < 1 for all (q, t) ∈ Aj due to j’s impatience.
Using identity vi ≡ ui (φi (vi, 0)), vi > ui (0) is equivalent to φi (vi, 0) > 0, and the claim
follows from the non-decreasingness of φi (u, ·) for any u ∈ ui ([0, 1]).

Step 2: For any t ≤ ti, Ui (φi (vi, t) , t) = vi. Since this holds true for t = 0 by definition,
consider it for 0 < t ≤ ti and note that it suffices to show that φi (vi, t) < 1 (recall the
definiton of φi): from equation (6), κi (t, vi, vj) ≤ 1, and using that φj (vj, t− 1) > 0 from
step 1, this implies φi (vi, t) < 1.

Step 3: There exists a finite t̄i such that wi = min
{
Ui (φi (vi, t) , t+ 1) |t ∈ T, t ≤ t̄i

}
.

Since we can simply set t̄i = ti if ti is finite, consider the case of ti = ∞ and distinguish
the two possible cases according to impatience property (3.c). Suppose first that player i’s
preferences satisfy limt→∞ Ui (1, t) ≤ ui (0). Since vi > ui (0) from step 1, there then exists
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a finite delay t̂ such that t ≥ t̂ implies Ui (1, t) < vi, and hence Ui (φi (vi, t) , t) < vi, which
contradicts step 2. The alternative case is that there exists a finite delay t̂ such that t ≥ t̂

implies Ui (q, t) = Ui
(
q, t̂
)
for all q; hence U1 (φ1 (v1, t) , t+ 1) = U1

(
φ1
(
v1, t̂

)
, t̂+ 1

)
for all

such t, which proves the claim upon setting t̄1 = t̂.

Statement and proof of the next lemma use the following definition: for any values
(vk, wk)k∈I ∈ ×k∈I (uk ([0, 1])× Uk (Ak)) and any player i, Ai (v1, w1, v2, w2) is the set

(q, t) ∈ Ai

∣∣∣∣∣∣∣φi (vi, t) ≤ q ≤

1− πj (wj) t = 0

1−max {φj (vj, t− 1) , φj (uj (0) , t)} t > 0

 .
Lemma 6. Take any element (vi, wi, ti)i∈I of the set E and associated quadruple of outcomes((
y(i), 0

)
,
(
x(i), t(i)

))
i∈I

satisfying (15). Then, for each i ∈ I,

{(
1− y(j)

j , 0
)
,
(
x

(i)
i , t

(i)
)}
⊆ Ai (v1, w1, v2, w2) ⊆ A∗i ,

and the following equalities hold true:

vi = min {Ui (q, t) | (q, t) ∈ Ai (v1, w1, v2, w2)}

wi = min {Ui (q, t+ 1) | (q, t) ∈ Ai (v1, w1, v2, w2)}

ti = sup {t ∈ T |∃q ∈ [0, 1] , (q, t) ∈ Ai (v1, w1, v2, w2)} .

Proof. The following observation, for each i, will be helpful:

vi > max {ui (0) , wi} . (16)

Since vi > ui (0) was established in step 1 of lemma 5, it only remains to prove that vi > wi:
this follows from equation (5), implying wi ≤ Ui (φi (vi, 0) , 1), because φi (vi, 0) > 0 and i is
impatient.

Let then, for each i, q̂i ≡ πi
(
Ui
(
1− y(j)

j , 1
))

and note that equation (13) implies that

q̂i = 1− φj (vj, 0) . (17)

First, I will show that, given Q = (q̂1, q̂2), αQ,i
(
x(i), t(i)

)
is a play of game Gi, for each i. To

simplify notation, let i = 1, which is without loss of generality. There is nothing to check if
t(1) = 0, so consider the case of t(1) > 0. This implies that t1 > 0 and hence κ1 (1, v1, v2) ≤ 1;
using that φ2 (v2, 0) > 0 by (16), we obtain φ1 (v1, 1) < 1, which implies φ1 (v1, 0) < 1,
and hence, via equation (4) (for i = 1), q̂2 > 0. While necessary for any t(1) > 0, this is
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sufficient to prove the claim for t(1) = 1. Suppose then t(1) > 1; this implies t1 > 1 and hence
κ1 (2, v1, v2) ≤ 1. Using φ1 (v1, 2) > 0 from combining (16) with the non-decreasingness of
φ1 (u, ·), this in turn implies that φ2 (v2, 0) < 1, from which q̂1 > 0 follows via equation (4)
(for i = 2).

Since any immediate-agreement outcome defines a play, it immediately follows from the
previous argument that S ≡

(
αQ,j

(
y(i), 0

)
, αQ,i

(
x(i), t(i)

))
i∈I

is a quadruple of plays. I
will now show that, for any outcome

(
x̂, t̂

)
and each i, αQ,i

(
x̂, t̂

)
is a play of Gi such

that σS,i
(
αQ,i

(
x̂, t̂

))
is an equilibrium of Gi if and only if

(
x̂i, t̂

)
∈ Ai (v1, w1, v2, w2). Since{(

1− y(j)
j , 0

)
,
(
x

(i)
i , t

(i)
)}
⊆ Ai (v1, w1, v2, w2), it is sufficient to prove that αQ,i

(
x̂, t̂

)
is a play

of Gi such that there are no profitable deviations from this play under the strategy profile
σS,i

(
αQ,i

(
x̂, t̂

))
if and only if

(
x̂i, t̂

)
∈ Ai (v1, w1, v2, w2). Again, only to simplify notation,

I prove this claim for i = 1; also, I let σ̂ ≡ σS,1
(
αQ,1

(
x̂, t̂

))
and Â1 ≡ A1 (v1, w1, v2, w2).

First, consider immediate-agreement outcomes (x̂, 0); αQ,1 (x̂, 0) is a play for any
division x̂, and it remains to show that there is no profitable deviation from this play under
σ̂ if and only if (x̂1, 0) ∈ Â1. Player 2’s accepting all offers q ≥ x̂2 is optimal if and
only if x̂2 ≥ π2 (w2), because deviantly rejecting such an offer would trigger her respondent
punishment, which has continuation outcome

(
x(2), t(2)

)
and associated rejection value w2;

her rejecting all other offers is optimal if and only if x̂2 ≤ q̂2 because non-deviantly rejecting
such a deviant offer would trigger player 1’s proposer punishment, which has continuation
outcome

(
y(1), 0

)
and associated rejection value U2 (1− π1 (w1) , 1); using equation (17),

x̂2 ≤ q̂2 is equivalent to φ1 (v1, 0) ≤ x̂1. To summarize, in terms of player 1’s share in x̂,
player 2’s response rule is optimal if and only if φ1 (v1, 0) ≤ x̂1 ≤ 1−π2 (w2); this is equivalent
to (x̂1, 0) ∈ Â1.

Given player 2 optimally accepts with threshold x̂2, this is the lowest immediately ac-
cepted offer, and there is no profitable deviation for player 1 if and only if u1 (x̂1) ≥
U1 (π1 (w1) , 1), because any deviation to a rejected offer triggers her proposer punishment
which has continuation outcome

(
y(1), 0

)
and associated rejection value U1 (π1 (w1) , 1); in-

equality (16) implies φ1 (v1, 0) > π1 (w1), whereby v1 ≥ U1 (π1 (w1) , 1) from player 1’s im-
patience, and there is no profitable deviation for proposing player 1 whenever there is none
for responding player 2. Hence, there is no profitable deviation from αQ,1 (x̂, 0) if and only
if (x̂1, 0) ∈ Â1.

Next, consider once delayed agreement outcomes (x̂, 1); αQ,1 (x̂, 1) is a play if and
only if q̂2 > 0. Observe that q̂2 = 0 is equivalent to φ1 (v1, 0) = 1, by equation (17), and
jointly with inequality (16) (for i = 2), this would indeed mean that Â1 contains no delayed
agreements at all. Hence it remains to establish the claim for this case under the assumption
that q̂2 > 0.
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Regarding the second round on the path, the above finding for the case of immediate-
agreement outcomes—by mere relabeling—shows that there are then no profitable one-stage
deviations if and only if φ2 (v2, 0) ≤ x̂2 ≤ 1 − π1 (w1). In terms of player 1’s share this is
equivalent to

π1 (w1) ≤ x̂1 ≤ 1− φ2 (v2, 0) .

In the first round σ̂ specifies that player 2 respond to offers by accepting with threshold
q̂2. Accepting offers q ≥ q̂2 is optimal if and only if accepting offer q̂2 is optimal, i.e. if
u2 (q̂2) ≥ U2

(
x

(2)
2 , t(2) + 1

)
, since the (deviant) rejection of any such offer is followed by

continuation outcome
(
x(2), t(2)

)
. Note that U2

(
x

(2)
2 , t(2) + 1

)
= w2 from equation (14),

and w2 ≤ U2 (φ2 (v2, 0) , 1) from equation (5); recalling equation (17), if acceptance were
not optimal, then u2 (1− φ1 (v1, 0)) < U2 (φ2 (v2, 0) , 1), which would imply that φ2 (v2, 0) +
φ1 (v1, 0) > 1 and there would be no delayed agreement in Â1.

Rejection of all (deviant) offers q such that 0 < q < q̂2 is followed by continuation outcome(
y(1), 0

)
and is optimal by construction, since q̂2 > 0 implies that u2 (q̂2) = U2 (1− π1 (w1) , 1)

is the associated rejection value. Rejecting the zero offer specified for the proposer in this
round is optimal if and only if u2 (0) ≤ U2 (x̂2, 1); either u2 (0) ≤ U2 (1, 1), in which case
u2 (0) ≤ U2 (x̂2, 1) is equivalent to x̂1 ≤ 1 − φ2 (u2 (0) , 1), or u2 (0) > U2 (1, 1), in which
case φ2 (u2 (0) , 1) = 1 together with inequality (16) (for i = 1) implies that Â1 contains no
delayed agreements.

By equation (17), the initial proposer 1 can obtain at most the value v1 from making a de-
viant accepted offer q ≥ q̂2; making a deviant rejected offer q < q̂2 yields value U1 (π1 (w1) , 1),
which is no greater than v1 due to inequality (16); hence making her supposed (rejected) offer
of a zero share is optimal if and only if v1 ≤ U1 (x̂1, 1). This is equivalent to x̂1 ≥ φ1 (v1, 1)
unless v1 > U1 (φ1 (v1, 1) , 1); however, the latter would imply φ1 (v1, 1) = 1 and together with
inequality (16) (for i = 2) would yield that Â1 contains no delayed-agreement outcomes. In
summary of this case for q̂2 > 0, using that π1 (w1) < φ1 (v1, 1) from inequality (16), and
noting that min {1− φ2 (v2, 0) , 1− φ2 (u2 (0) , 1)} equals 1 −max {φ2 (v2, 0) , φ2 (u2 (0) , 1)},
we obtain there is no profitable deviation if and only if (x̂1, 1) ∈ Â1.

Finally, consider further delayed agreement outcomes
(
x̂, t̂

)
such that t̂ > 1;

αQ,1
(
x̂, t̂

)
is a play if and only if q̂1 · q̂2 > 0. From the previous case we know that if

q̂2 = 0 then Â1 would not contain any delayed agreement; now note that q̂1 = 0 is equivalent
to φ2 (v2, 0) = 1, by equation (17), and in combination with inequality (16) (for i = 1) would
imply that Â1 contains no agreements delayed by more than one period. Hence it remains
to establish the claim for this case under the assumption that q̂1 · q̂2 > 0.

In the last round of play αQ,1
(
x̂, t̂

)
, which is round t̂+1, we can use the previous findings
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to conclude that there is no profitable deviation if and only if
π1 (w1) ≤ x̂1 ≤ 1− φ2 (v2, 0) t̂ odd

φ1 (v1, 0) ≤ x̂1 ≤ 1− π2 (w2) t̂ even
.

Consider then play αQ,1
(
x̂, t̂

)
for any round n < t̂ + 1, in which player P makes an of-

fer to player R. Optimality of R’s response rule is characterized in a manner similar to
optimality of initial respondent 2’s response rule when we considered agreement-outcomes
with one round of delay; it is therefore characterized by uR (0) ≤ UR

(
x̂R, t̂+ 1− n

)
. Since

UR
(
x̂R, t̂+ 1− n

)
is non-decreasing in n, this yields only two restrictions, namely those

for the first two rounds’ respondent stages, which are u2 (0) ≤ U2
(
x̂2, t̂

)
and u1 (0) ≤

U1
(
x̂1, t̂− 1

)
, respectively. These two inequalities are equivalent to

φ1
(
u1 (0) , t̂− 1

)
≤ x̂1 ≤ 1− φ2

(
u2 (0) , t̂

)
whenever both u2 (0) ≤ U2

(
1, t̂
)
and u1 (0) ≤ U1

(
1, t̂− 1

)
hold true; otherwise, however,

Â1 contains no outcome that has agreement delayed by t̂ periods.
Again, similar to optimality for initial proposer 1 when we considered one round of

delay, proposer P ’s zero offer is here optimal if and only if vP ≤ UP
(
x̂P , t̂+ 1− n

)
. Since

UP
(
x̂P , t̂+ 1− n

)
is non-decreasing in n, this yields only two restrictions, namely those for

the first two rounds’ proposer stages, which are v1 ≤ U1
(
x̂1, t̂

)
and v2 ≤ U2

(
x̂2, t̂− 1

)
,

respectively. These two inequalities are equivalent to

φ1
(
v1, t̂

)
≤ x̂1 ≤ 1− φ2

(
v2, t̂− 1

)
whenever both v1 ≤ U1

(
1, t̂
)
and v2 ≤ U2

(
1, t̂− 1

)
hold true; otherwise, however, Â1

contains no outcome that has agreement delayed by t̂ periods. Now observe that φ1
(
v1, t̂

)
is

at least as large as any of π1 (w1), φ1 (v1, 0) or φ1
(
u1 (0) , t̂− 1

)
, due to 1’s impatience and

inequality (16); moreover, also φ2
(
v2, t̂− 1

)
is at least as large as both φ2 (v2, 0) and π2 (w2)

due to 2’s impatience and inequality (16). Hence we can summarize this case for q̂1 · q̂2 > 0
by the condition that

(
x̂, t̂

)
is such that

φ1
(
v1, t̂

)
≤ x̂1 ≤ 1−max

{
φ2
(
v2, t̂− 1

)
, φ2

(
u2 (0) , t̂

)}
,

which is again equivalent to
(
x̂1, t̂

)
∈ Â1.

A similar proof applies to the case of i = 2, hence
{(

1− y(j)
j , 0

)
,
(
x

(i)
i , t

(i)
)}
⊆ Ai (v1, w1, v2, w2) ⊆
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A∗i , and the lemma’s claimed equations are easily verified.

Lemma 7. The following relationships hold true for each i ∈ I:

ṽi = ui (1− πj (Uj (1− πi (w̃i) , 1))) (18)

w̃i ≥ inf {Ui (φi (ṽi, t) , t+ 1) |t ∈ T, t ≤ t∗i } (19)

t∗i ≤ sup {t ∈ T |κi (t, ṽi, ṽj) ≤ 1} (20)

Proof. First, observe that, for each i,

(q, t) ∈ A∗i ⇒ (1− πi (Ui (q, t+ 1)) , 0) ∈ A∗j . (21)

Let σ be an equilibrium of game Gi which supports i’s personal outcome (q, t), denote the
share 1−πi (Ui (q, t+ 1)) by q̂ and the division such that j’s share equals q̂ by x̂. The strategy
profile σ̂ in game Gj such that σ̂ (h0) = (x̂, Xi,q̂) and σ̂ (x, h) = σ (h) for any division x and
history h, is an equilibrium supporting j’s personal outcome (1− q̂, 0): following any initial
rejection, σ̂ specifies equilibrium σ, which induces personal outcome (q, t) for player i and
thus implies that the initial response rule of accepting with threshold q̂ is optimal for i; the
initial proposer j best-responds by offering this share, because this is the lowest accepted
offer and, moreover, satisfies uj (1− q̂) ≥ Uj (1− q, t+ 1), due to q̂ ≤ q, which follows from
i’s impatience, together with the desirability and impatience properties of j’s preferences.

Using this observation, I will now prove all three conditions (18)-(20) for the case of
i = 1; mere relabeling yields them for i = 2.

To show that the pair (ṽ1, w̃1) satisfies equation (18), combine (21) (for i = 2) with the
fact that any equilibrium of game G1 must have the initial respondent 2 accept all offers
greater than sup {π2 (U2 (q, t+ 1)) | (q, t) ∈ A∗2}, to obtain

ṽ1 = u1 (1− sup {π2 (U2 (q, t+ 1)) | (q, t) ∈ A∗2}) .

It then remains to prove that π2 (U2 (1− π1 (w̃1) , 1)) = sup {π2 (U2 (q, t+ 1)) | (q, t) ∈ A∗2}.
For this, also combine (21) (now for i = 1) with the fact that any equilibrium of G2 must
have the initial respondent 1 reject all offers less than π1 (w̃1), which yields that

1− π1 (w̃1) = sup {q ∈ [0, 1] | (q, 0) ∈ A∗2} .

Now observe that any (q, t) ∈ A∗2 with t > 0 satisfies U1 (1− q, t) ≥ w̃1, which implies
1− q ≥ π1 (U1 (1− q, t)) ≥ π1 (w̃1) by 1’s impatience and the non-decreasingness of π1, and
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therefore

π2 (U2 (q, t+ 1)) ≤ π2 (U2 (1− π1 (w̃1) , t+ 1)) ≤ π2 (U2 (1− π1 (w̃1) , 1))

by the desirability and impatience properties of 2’s preferences, together with the non-
decreasingness of π2.

Regarding the proof that (ṽ1, w̃1, t
∗
1) satisfies inequality (19), simply note that (q, t) ∈ A∗1

implies U1 (q, t) ≥ ṽ1 by the definition of ṽ1, and thus q ≥ φ1 (ṽ1, t); the claim then follows
from the desirability property of 1’s preferences.37

Inequality (20) certainly holds true if t∗1 = 0; for the case of t∗1 > 0, note that (q, t) ∈
A∗1 implies both U1 (q, t) ≥ ṽ1 and U2 (1− q, t) ≥ u2 (0). These two inequalities imply,
respectively, that q ≥ φ1 (ṽ1, t) and 1− q ≥ φ2 (u2 (0) , t). Moreover, if (q, t) ∈ A∗1 with t > 0
also implies that (q, t− 1) ∈ A∗2, hence U2 (1− q, t− 1) ≥ ṽ2, and thus 1− q ≥ φ2 (ṽ2, t− 1).
Altogether, for any t > 0 there exists a share q such that (q, t) ∈ A∗1 only if κ1 (t, ṽ1, ṽ2) ≤ 1,
concluding the proof.

Lemma 8. There exist values (vi, wi, ti)i∈I ∈ E such that vi ≤ ṽi, wi ≤ w̃i and ti ≥ t∗i for
both i ∈ I.

Proof. Consider the following sequence (vni , wni , tni )i∈I : (w1
1, w

1
2) ≡ (w̃1, w̃2) and, for any

n ∈ N and each i,

vni ≡ ui (1− πj (Uj (1− πi (wni ) , 1)))

tni ≡ sup
{
t ∈ T |κi

(
t, vni , v

n
j

)
≤ 1

}
wn+1
i ≡ inf {Ui (φi (vni , t) , t+ 1) |t ∈ T, t ≤ tni } .

Note that v1
i = ṽi and t1i ≥ t∗i , by lemma 7. It is straightforward that wn+1

i ≤ wni , vn+1
i ≤ vni

and tn+1
i ≥ tni . I will establish the claim by proving that the sequence (vni , wni , tni )i∈I possesses

a limit in E.
The first step is to prove that the sequence (wn1 , wn2 ) converges: since each component

sequence wni is non-increasing and bounded from below by Ui (0,∞) ∈ R, it converges.
Denoting this limit by (ŵ1, ŵ2), the continuity properties of the functions involved imply the

37Under the weakening of desirability suggested in fn. 12, the observation ṽ1 > u1 (0) from (16) means that
no equilibrium delay t can be such that player 1 does not care about her share: otherwise, there would exist
(q, t) ∈ A∗1 with U1 (q, t) = U1 (0, t), but U1 (0, t) ≤ u1 (0) by impatience; hence U1 (q, t) < ṽ1, a contradiction.
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following convergence properties of the sequences vni and tni , for each i:

vni → ui (1− πj (Uj (1− πi (ŵi) , 1))) ≡ v̂i

tni → sup {t ∈ T |κi (t, v̂i, v̂j) ≤ 1} ≡ t̂i;

i.e.,
(
v̂i, ŵi, t̂i

)
i∈I
∈ E.

A.4 Corollary 1

Proof. Lemma 6 implies that E’s being a singleton is necessary for equilibrium uniqueness.
Concerning its sufficiency, the proof of lemma 4 shows that whenever E is a singleton,

its unique element (v∗i , w∗i , t∗i )i∈I equals (ui (q̂i) , Ui (q̂i, 1) , 0)i∈I , for q̂1 the unique fixed point
of f1 and q̂2 ≡ 1 − π1 (U1 (q̂1, 1)). Characterization theorem 1 then implies that each A∗i

equals the singleton {(q̂i, 0)}. Consider then any round in which player P makes an offer to
responding player R: since any equilibrium has the outcome that offer q̂P is accepted, it must
be that P indeed offers q̂P , and that R accepts this offer. Since any equilibrium has the same
continuation outcome with R’s associated rejection value equal to UR (q̂R, 1), any optimal
response rule must have R accept any offer q > πR (UR (q̂R, 1)) as well as reject any offer
q < πR (UR (q̂R, 1)). This pins down a unique equilibrium that is, moreover, stationary.

A.5 Lemma 3

This lemma will be proven based on the following characterization of stationary equilibrium,
which establishes a one-to-one relationship between stationary equilibria and fixed points of
f1 (defined by equation (12) to prove lemma 4, as part of theorem 1). Note that in terms
of the players’ impatience (3.) the characterization of stationary equilibrium relies only on
property (3.b), players’ attitudes to delay beyond a single (first) period are irrelevant.

Lemma 9. The profile of stationary strategies
(
x(i), Y (i)

)
i∈I

is an equilibrium if and only if

 x
(1)
1 = f1

(
x

(1)
1

)
x

(2)
2 = 1− π1

(
U1
(
x

(1)
1 , 1

))
 , and for each i ∈ I, Y (i) = X

i,x
(j)
i
.

A stationary equilibrium exists, and it is unique if and only if f1has a unique fixed point.

Proof. First, note that any equilibrium, hence any stationary equilibrium, has agreement,
since v∗i > ui (0) ≥ Ui (0,∞) from inequality (16). Consider then a stationary equilibrium(
x(i), Y (i)

)
i∈I

. If x(1) /∈ Y (2) then its outcome in G1 must be
(
x(2), 1

)
. Because this outcome
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obtains irrespective of play in the initial round of G1, responding player 2 must accept any
proposal x with x2 > π2

(
U2
(
x

(2)
2 , 1

))
. Player 2’s impatience property (3.b) implies that

either (i) π2
(
U2
(
x

(2)
2 , 1

))
< x

(2)
2 or (ii) π2

(
U2
(
x

(2)
2 , 1

))
= x

(2)
2 = 0. In case of (i) there exist

values ε > 0 such that ε < x
(2)
2 − π2

(
U2
(
x

(2)
2 , 1

))
, and any of them satisfy

u1
(
1− π2

(
U2
(
x

(2)
2 , 1

))
− ε

)
> U1

(
1− π2

(
U2
(
x

(2)
2 , 1

))
− ε, 1

)
≥ U1

(
1− x(2)

2 , 1
)

by impatience property (3.b) and desirability of player 1’s preferences, applied in this se-
quence. In case of (ii), impatience property (3.b) together with continuity of player 1’s
preferences imply existence of ε > 0 such that u1 (1− ε) > U1 (1, 1). In any case player 1 can
therefore propose immediately accepted divisions that yield a value greater than that from
proposing x(1), contradicting equilibrium. After a symmetric argument, it is then proven
that x(i) ∈ Y (j) for both i ∈ I.

Given this immediate-agreement property of stationary equilibrium, by desirability, (i)
a responding player j must accept any offered share xj > πj

(
Uj
(
x

(j)
j , 1

))
as well as reject

any xj < πj
(
Uj
(
x

(j)
j , 1

))
, and (ii) there cannot exist a proposal x by player i with xi > x

(i)
i

such that x ∈ Y (j), whereby

x
(i)
i = 1− πj

(
Uj
(
x

(j)
j , 1

))
and Y (i) = X

i,x
(j)
i
,

and substituting the expression for x(2)
2 into that for x(1)

1 yields x(1)
1 = f1

(
x

(1)
1

)
, establishing

necessity. Sufficiency is easily verified, and its proof omitted here.
Existence of a fixed point of f1 and hence stationary equilibrium is established by the

proof of lemma 4, and the characterization shows that there are as many distinct stationary
equilibria as there are fixed points of f1.

Lemma 3 follows from combining the above characterization with the next result.

Lemma 10. If both players’ preferences exhibit immediacy, then f1 has a unique fixed point.

Proof. Suppose that player i’s preferences exhibit immediacy, take any share q and any
ε > 0 such that q + ε ≤ 1, and consider various possible cases to establish that li (q) ≡
q − πi (Ui (q, 1)) is increasing. First, if Ui (q + ε, 1) ≤ ui (0), then also Ui (q, 1) ≤ ui (0) and
li (q) = q < q + ε = li (q + ε). Second, if Ui (q, 1) ≤ ui (0) < Ui (q + ε, 1), then continuity
and impatience imply existence of a share q′ ∈ [q, q + ε) such that Ui (q′, 1) = ui (0); letting
ε′ ≡ q+ε−q′, immediacy implies ui (ε′) > Ui (q′ + ε′, 1) ≡ Ui (q + ε, 1), and hence li (q + ε) >
q + ε − ε′ ≥ q = li (q). Finally, if ui (0) < Ui (q, 1), then continuity and impatience imply
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existence of a share q′ ∈ (0, q) such that ui (q′) = Ui (q, 1); immediacy implies ui (q′ + ε) >
Ui (q + ε, 1), and hence li (q + ε) > q + ε− (q′ + ε) = li (q).

Consider then the following difference:

q − f1 (q) = q − 1 + π2 (U2 (1− π1 (U1 (q, 1)) , 1))

= [q − π1 (U1 (q, 1))]− [(1− π1 (U1 (q, 1)))− π2 (U2 (1− π1 (U1 (q, 1)) , 1))] .

≡ l1 (q)− l2 (1− π1 (U1 (q, 1))) .

If li is increasing for both i, then l1 is increasing in q and l2 is increasing in 1−π1 (U1 (q, 1)).
Since 1 − π1 (U1 (q, 1)) is non-increasing in q, overall the two terms’ difference is increasing
in q, and q− f1 (q) has at most one root; by existence of a fixed point, established earlier, it
has exactly one.

A.6 Proposition 1

Proof. As a first step, I will show the following: if w∗i = Ui (φi (v∗i , 0) , 1) for both i ∈ I,
then equilibrium is unique if and only if stationary equilibrium is unique. Theorem 1 implies
that the outcome

(
xR,i, 0

)
such that xR,ii = φi (v∗i , 0) is an optimal respondent punishment

outcome for player i, and that her optimal proposer punishment therefore has outcome(
xP,i, 0

)
such that xP,ii = πi (Ui (φi (v∗i , 0) , 1)). Using equation (4),

φi (v∗i , 0) = 1− πj (Uj (1− πi (Ui (φi (v∗i , 0) , 1)) , 1))

= fi (φi (v∗i , 0)) ,

which, by lemma 9, reveals that xR,ii = fi
(
xR,ii

)
as well as xP,ij ≡ 1−xP,ii = 1−πi

(
Ui
(
xR,ii , 1

))
are the two players’ respective proposer shares in one particular stationary equilibrium. If
there is a unique stationary equilibrium, then

(
xR,1, 0

)
=
(
xP,2, 0

)
and

(
xP,1, 0

)
=
(
xR,2, 0

)
such that xR,11 = xP,21 = q̂1 and xP,12 = xR,22 = 1− π1 (U1 (q̂1, 1)) for q̂1 = φ1 (v∗1, 0) the unique
fixed point of f1. Letting q̂2 ≡ 1 − π1 (U1 (q̂1, 1)), theorem 1 then says that (v∗i , w∗i , t∗i )i∈I =
(ui (q̂i) , Ui (q̂i, 1) , 0)i∈I , and A∗i = {(q̂i, 0)}, so uniqueness of equilibrium follows from the
argument in the proof of corollary 1. This proves sufficiency. Necessity holds trivially.

The second step shows that w∗i = Ui (φi (v∗i , 0) , 1) follows whenever a player i’s preferences
exhibit a weak present bias. This establishes the proposition, because under immediacy
stationary equilibrium is indeed unique. The proof of lemma 5 and theorem 1 imply a finite
delay t̄i such that

w∗i = min
{
Ui (φi (v∗i , t) , t+ 1) |t ∈ T, t ≤ t̄i

}
,
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where Ui (φi (v∗i , t) , t) = v∗i holds true for any t ≤ t̄i. A weak present bias then implies
that Ui (φi (v∗i , 0) , 1) ≤ Ui (φi (v∗i , t) , t+ 1) for all such t, and hence w∗i = Ui (φi (v∗i , 0) , 1),
proving the claim.

A.7 Proposition 2

Proof. The proposition holds trivially for immediate-agreement equilibria. Suppose therefore
that

(
x̂, t̂

)
with t̂ > 0 is an equilibrium outcome of game G1; the case of game G2 follows

from mere relabeling. Theorem 1 implies that x̂ is an interior division, since

0 < φ1
(
v∗1, t̂

)
≤ x̂1 ≤ max

{
φ2
(
v∗2, t̂− 1

)
, φ2

(
u2 (0) , t̂

)}
< 1. (22)

For every round n ≤ t̂ + 1, define each player i’s reservation share for the rejection value
corresponding to agreement on x̂ with remaining delay t̂+1−n: πni ≡ πi

(
Ui
(
x̂i, t̂+ 1− n

))
.

The inequalities in (22) imply ui (πni ) = Ui
(
x̂i, t̂+ 1− n

)
because of Ui

(
x̂i, t̂+ 1− n

)
≥

ui (0), and the stronger impatience property assumed in the proposition yields that πni is
increasing, since x̂i > 0.

Define a play as follows: in round 1, player 1 offers a share of b1
1 = 0, and player 2 accepts

with threshold 1 − b1
2 such that b1

2 = φ1 (v∗1, 0); in round n such that 1 < n < t̂ + 1, player
P (n) offers a share of bnP (n) = 1

2

(
bn−1
P (n) + πnR(n)

)
and player R (n) accepts with threshold

1 − bnR(n) such that bnR(n) = 1
2

(
bn−1
R(n) + πnP (n)

)
, with the sole exception that b2

1 = φ2 (v∗2, 0);
in round n = t̂ + 1, player P (n) offers a share bnP (n) = x̂R(n) and player R (n) accepts with
threshold 1− bnR(n) such that bnR(n) = x̂P (n).

First, verify that each sequence (bni )t̂+1
n=1 is increasing since bn−1

i < πnj : this is true for
n− 1 = 1, because b1

i ≤ π1
j < π2

j , and if it is true for n− 1 ≥ 1 such that n < t̂+ 1, it is true
for n, because bni = 1

2

(
bn−1
i + πnj

)
< πnj < πn+1

j . Second, observe that bnP (n) < 1 − bnR(n) for
all n < t̂ + 1: since πn1 + πn2 < 1 for all such n, this follows from bni ≤ πnj ; hence this indeed
defines a play with outcome

(
x̂, t̂

)
.

The final step is to show that this defines equilibrium play. Taken then any strategy
profile σ of game G1 such that 〈σ〉 equals the above play (clearly, one exists) and define the
strategy profile σ̂ ≡ σ∗

(
σ

∣∣∣∣(σP,i, σR,i)i∈I
)
, where

(
σP,i, σR,i

)
i∈I

is an OPC, as in proposition
4, part (i). Hence 〈σ̂〉 = 〈σ〉 and σ̂ is an equilibrium if and only if there are no profitable
one-stage deviations from its play 〈σ̂〉.

Consider then any round n ≤ t̂ + 1 of play 〈σ̂〉. Rejecting an offer q ≥ 1 − bnR(n) is no
better than accepting it for R (n), since it yields the minimal credible rejection value w∗R(n)
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due to optimal punishment, but

w∗R(n) ≤ UR(n)
(
x̂R(n), t̂+ 1− n

)
= uR(n)

(
πnR(n)

)
≤ uR(n)

(
1− πnP (n)

)
≤ uR(n)

(
1− bnR(n)

)
,

using that
(
x̂, t̂− n

)
is a continuation equilibrium outcome (by assumption), that πn1 +πn2 ≤ 1

and that bnR(n) ≤ πnP (n); accepting an offer q < 1− bnR(n) such that q 6= bnP (n) is no better than
rejecting it, since

uR(n)
(
1− bnR(n)

)
≤ uR(n)

(
1− φP (n)

(
v∗P (n), 0

))
= UR(n)

(
1− πP (n)

(
w∗P (n)

)
, 1
)
,

using that any responding player i’s concession is at least φj
(
v∗j , 0

)
, by construction, and the-

orem 1, which shows that continuation with optimal punishment of a proposing player i has
rejection value Uj (1− πi (w∗i ) , 1) for respondent j, and that this is equal to uj (1− φi (v∗i , 0));
finally, accepting offer q = bnP (n) < 1− bnR(n), which can only be the case for n < t̂+ 1, is no
better than rejecting it, since

uR(n)
(
bnP (n)

)
≤ uR(n)

(
πnR(n)

)
= UR(n)

(
x̂R(n), t̂+ 1− n

)
.

Consider then the proposer’s incentives, given the respondent’s behavior and punishments
for deviations: the minimal offer which the respondent accepts equals bnR(n), which is no
greater than πnP (n), whereby

uP (n)
(
bnR(n)

)
≤ uP (n)

(
πnP (n)

)
= UP (n)

(
x̂P (n), t̂+ 1− n

)
,

so there is no profitable deviation to any (alternative) accepted offer; any other deviant offer
has (rejection) value UP (n)

(
πP (n)

(
w∗P (n)

)
, 1
)
which is no greater than v∗P (n) by theorem 1,

and since UP (n)
(
x̂P (n), t̂+ 1− n

)
≥ v∗P (n), because

(
x̂, t̂

)
is an equilibrium outcome, there is

no profitable deviation to a rejected offer either.

A.8 Proposition 3

Proof. Omitting player indices due to symmetry, by theorem 1, if there exists an equilibrium
with agreement delayed t > 0 periods, then κ (t, v∗, v∗) ≤ 1. This implies that φ (v∗, t′) ≤ 1

2
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for all t′ < t, since

κ (t, v∗, v∗) ≤ 1 ⇔ φ (v∗, t)︸ ︷︷ ︸
≥φ(v∗,t−1)

+ max {φ (v∗, t− 1) , φ (u (0) , t)}︸ ︷︷ ︸
≥φ(v∗,t−1)

≤ 1

⇒ φ (v∗, t− 1) ≤ 1
2 ,

and φ (v∗, ·) is non-decreasing. Using again theorem 1, recalling also that π (w∗) ≤ φ (v∗, 0),(
1
2 , t
′
)
∈ A∗ follows for all t′ < t.

B Supplementary Material

B.1 Empirical Evidence on Time Preferences

Early evidence on time preferences comes mainly from psychological research and is sum-
marized by Frederick, Loewenstein, and O’Donoghue (2002). They conclude that “virtually
every assumption underlying the [exponential-discounting] model has been tested and found
to be descriptively invalid in at least some situations” (p. 352). The most compelling refu-
tation of ED is a direct violation of its stationarity axiom. It requires that, holding amounts
constant, choice between two delayed rewards depends only on their relative delay; yet, a
typical experimental subject would, e.g., choose $45 now over $52 in 20 days but also $52 in
130 over $45 in 110 days (Kirby and Herrnstein, 1995).

Great effort has gone into uncovering what alternative forms of impatience humans dis-
play. For primary rewards (consumption, in a broad sense), a “present bias” towards in-
stantaneous gratification appears rather uncontested; more specifically, this seems to be the
consequence of some form of hyperbolic discounting (Chung and Herrnstein, 1967; Ainslie,
1975), and the present bias is well-captured by the (β, δ)-model of quasi-hyperbolic discount-
ing (Phelps and Pollak, 1968; Laibson, 1997). The large survey of mainly psychologists’ stud-
ies by Frederick et al. (2002) makes this point (for humans as well as other animals), and the
more recent evidence from experimental economics confirms it (McClure, Ericson, Laibson,
Loewenstein, and Cohen, 2007; Brown, Chua, and Camerer, 2009; Augenblick, Niederle, and
Sprenger, 2014). The implied dynamic preference reversal takes the following form: a person
may prefer a larger later reward (LL) over a smaller sooner one (SS) when both are in the
future, but once sooner becomes now, she will prefer SS; the rare longitudinal designs of
Ainslie and Haendel (1983), Read and van Leeuwen (1998) and Augenblick, Niederle, and
Sprenger (2014) indeed find such “impatient switches” for primary rewards.

Conclusion 1. Regarding primary rewards, most subjects exhibit present bias.
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By far, most of the empirical evidence on time preferences has been collected from the
study of inter-temporal trade-offs in monetary amounts, however. Cubitt and Read (2007)
theoretically explain why the link between revealed time preferences over such monetary
rewards and those over consumption is likely to be tenuous, given people have access to
external credit markets; indeed, they should only reveal the market interest rates which
individuals face, in an unbiased manner (cf., however, Harrison and Swarthout, 2011).38

Indeed, although the overall degree of impatience seems positively correlated across the
consumption and money domains (Reuben, Sapienza, and Zingales, 2010), the evidence
regarding present bias is much weaker for monetary rewards. Most remarkably, Augenblick
et al. (2014) compare time preferences over effort and money within a single experimental
paradigm and find much stronger evidence of present bias regarding effort than money.
However, neither is present bias entirely absent, nor is it the only significant bias on the
money domain.

Table 1 lists representative experimental studies of individual time preferences over mon-
etary rewards not included in Frederick et al. (2002).39 It reveals a striking amount of
individual heterogeneity in terms of basic qualitative preference properties, apparent in any
of the various experimental designs. In particular, all studies—employing very different
subject pools as well as methods—find a significant proportion of subjects who violate sta-
tionarity or dynamic inconsistency in the opposite direction of present bias, “future bias”.
Overall, we obtain the following conclusion.

Conclusion 2. Regarding monetary rewards, subjects split into three similarly sized groups:
a third exhibits no bias, a third exhibits present bias, and a third exhibits (near-) future
bias.

In longitudinal designs future bias also turns into actual dynamic preference reversals:
e.g., 19 out of the 38 participants in Sayman and Öncüler (2009, experiment 1) chose 7
euros the next day over 10 euros in three days, but reversed their choice the next day (when
it was 7 euros now v. 10 euros in two days). While the incidence of future bias fluctuates
across designs, it appears particularly strong when both the delay to SS and that between SS
and LL are relatively short (Sayman and Öncüler, 2009, suggest less than a week, p. 470);

38Relatedly, Chabris, Laibson, and Schuldt (2008) present a whole list of potential confounds in the
estimation of utility-discount rates when studying monetary rewards.

39The table is not exhaustive of the large number of recent studies. Rather, it is meant to be representative.
However, I exclude studies (e.g., Read, 2001; Meier and Sprenger, 2015) or parts of studies (e.g., Eil, 2012)
where qualitative results would be distorted by the failure to control for utility curvature (see Andersen,
Harrison, Lau, and Rutström, 2008). Moreover, I exclude studies which provide too little information on
qualitative individual heterogeneity; e.g., between-subjects designs (e.g., Rubinstein, 2003; Cohen, Tallon,
and Vergnaud, 2011) or fits of mixture models (e.g., Andersen, Harrison, Lau, and Rutström, 2014) as well
as models with individual random effects on parameters (e.g., Abdellaoui, Bleichrodt, and l’Haridon, 2013).
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such designs have been investigated only more recently but are most relevant for bargaining
applications. Salience of the time dimension seems to be another strongly promoting factor
(see Eil, 2012).

For the purpose of using this evidence in the present bargaining application, two diffi-
culties in qualitatively classifying participants’ choices should be mentioned. First, due to
the discreteness of the choice problems posed, small biases go undetected. A rather extreme
example is the longitudinal design of Read et al. (2012): all participants received only a
few identical binary choice problems, and 79% of the participants either always chose SS
or always chose LL. Second, future bias over a short horizon might very well be coded as
present bias when “immediate” (t = 0 in the table) does not refer to the delay in receiving
the payment, as is the case under designs with “front-end delay”. This is indeed very com-
mon to equalize the credibility of receiving “immediate” and later payments; e.g., in Meier
and Sprenger (2010) “no delay” (t = 0) means having a mail order sent off the same day,
not receiving cash immediately. As important as this procedure is for ruling out confounds
regarding present bias, it also makes it impossible to distinguish a bias for immediate gratifi-
cation from one regarding gratification within only a few days (cf. examples 1 and 2). Given
that small biases and very-short run attitudes matter for the present application under suf-
ficiently frequent offers, the above conclusion is very conservative regarding the incidence of
(near-) future bias.

Finally, a few authors have also investigated the separability into discounting and instan-
taneous utility functions (on the money domain). Benhabib et al. (2010) find that a fixed-cost
of delay in addition to discounting greatly improves their estimation results. Echenique et al.
(2014) analyze the data of Andreoni and Sprenger (2012) and reject separability for almost
one half of the participants on the basis of its revealed preference implications; using their
own method and data, Ericson and Noor (2015) reject separability for almost 70% of their
participants.

Conclusion 3. On the money domain, the separability of preferences into discounting and
instantaneous utilities tends to be violated when tested.

Why time preferences over monetary rewards reveal various biases when, theoretically,
they should not reveal any bias at all is not well understood. Current work in experimental
economics (e.g., Carvalho, Prina, and Sydnor, 2014; Ambrus, Ásgeirsdóttir, Noor, and Sán-
dor, 2015; Carvalho, Meier, and Wang, 2015) explores the role of fluctuations in liquidity
(present or anticipated), which has theoretically been shown to be potentially important
(Noor, 2009; Gerber and Rohde, 2010, 2015). The reason may also have to do with how
the human brain processes monetary rewards: e.g., the recent meta-analysis by Sescousse,
Caldú, Segura, and Dreher (2013) finds monetary rewards to engage areas of the brain which
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are active also for different primary rewards, but at the same time also a distinct, evolu-
tionarily more recent, one.40 Money may therefore act, at least partially, as a learned cue
for immediate or near-future consumption (cf. Fudenberg and Levine, 2006, pp. 1457-8);
in a similar vein, it may produce anticipatory utility, which can lead to initially concave
discounting (Loewenstein, 1987).

In any case, given the three conclusions of this section, I impose only minimal assumptions
on time preferences in the present study. Essentially, these are only that more is better for
any given delay, and sooner is better for any given (positive) amount. Thus I cover the entire
spectrum of suggested time preferences and can investigate differential implications of very
broad qualitative features, in particular present and (near-) future bias.41

B.2 Multiplicity under Exponential Discounting

The following example is one of ED that exhibits multiple stationary equilibria and, possibly,
delay, due to a violation of immediacy. It was presented already by Rubinstein (1982,
concl. I), but to the best of my knowledge, its set of equilibria has not yet been explicitly
characterized.

Example 4. Let the two parties’ preferences be given by Ui (q, t) = q − ct, for c ∈ (0, 1).
Due to preference symmetry, player indices are omitted in what follows. The preferences are
covered by assumption 1 once U (0,∞) ≡ −∞ is specified; in particular, impatience property
(3.c) is satisfied: U (1, t) tends to minus infinity, whereas u (0) = 0.42 In the assumed absence
of uncertainty, they actually satisfy ED, albeit with “strongly” convex instantaneous utility:
U (q, t) = ln (δtu (q)) for δ ≡ exp (−c) and u (q) ≡ exp (q). Hence they exhibit a weak present
bias but violate immediacy (increasing shares by the same amount leaves indifferent).43

This results in a multiplicity of stationary equilibrium: any q ∈ [c, 1] is a proposer’s
equilibrium share in some stationary equilibrium (with immediate agreement, of course).
Applying the characterization of theorem 1, v∗ = c and w∗ = 0, where both of these minimal
proposer and rejection values correspond to a player’s least preferred stationary equilibrium.

40In prior work Kable and Glimcher (2007) had demonstrated that individual time preferences over mon-
etary rewards have a neural correlate.

41Some findings (e.g., Read, 2001; Rubinstein, 2003; Dohmen et al., 2012) suggest that transitivity may
yet be violated in comparisons across different delays (cf. Manzini and Mariotti, 2007). Ok and Masatlioglu
(2007) propose a model of “relative” discounting, which maintains separability but accommodates those
violations. Fn. 14 explains why also these preferences are covered here.

42U violates the requirement of assumption 1 that U (0,∞) ∈ R, but the positive monotonic transformation
exp (U) represents the same preferences and satisfies also this property.

43One may interpret such preferences as there being a cost to bargaining. To justify the non-negativity
of each player’s share in any proposal, assume then that players have an “outside option” of leaving the
bargaining table forever, which is equivalent to obtaining a zero share immediately.
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Using these two least preferred stationary equilibria as optimal punishments, non-stationary
delay equilibria can be constructed, and equation 6 offers a formula to compute the maximal
such delay for any c ∈ (0, 1):

κ (t, c, c) = min {c+ ct, 1}+ min {ct, 1}

=


(2t+ 1) c t ≤ 1−c

c

1 + ct 1−c
c
≤ t ≤ 1

c

2 1
c
≤ t

⇒ t∗ = sup {t ∈ T |κ (t, c, c) ≤ 1}

= max
{
t ∈ T

∣∣∣∣t ≤ 1
2 ·

1− c
c

}
=

⌊1
2 ·

1− c
c

⌋
.

For instance, if c = 1
100 , so that the cost per bargaining round equals one percent of the

surplus per player, then the maximal equilibrium delay is 49 periods, with an associated
efficiency loss of 98 percent of the surplus. To determine the values of c for which de-
layed agreement is an equilibrium outcome, simply solve κ (1, c, c) ≤ 1 for c, yielding
c ≤ 1

3 . The set of equilibrium divisions with a given delay t ≤ t∗ in game G1 equals
{x ∈ X|c+ ct ≤ x1 ≤ 1− ct} and is monotonically shrinking in t.

B.3 Unbounded Equilibrium Delay

The following example slightly modifies example 3 to exhibit unbounded equilibrium delay.

Example 5. Let the two players’ preferences be symmetrically given by Ui (q, t) = d (t) · q
with

d (t) =

δ
t t ≤ τ

γδτ+1 t > τ
, (δ, γ) ∈ (0, 1)2 and τ > 0.

Due to preference symmetry, the player subscript is again omitted in what follows.
The difference to example 3 is that delays beyond horizon τ + 1 are not discounted.

Observe, however, that ∆ (t) equals δ for all t ≤ τ and γδ for all t > τ , exactly as in example
3. Hence, whenever there is an equilibrium in which agreement is delayed by τ periods,
v∗ = 1−δ

1−γδ2 and w∗ = γδv∗, as was found there.
The absence of discounting beyond a delay of τ+1 periods implies that equilibrium delay
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Figure 3: Graphs regarding unbounded equilibrium delay in example 3. The panel on the left
shows the parametric regions (δ, γ) such that equilibrium delay is unbounded for three given
values of τ , which are 1 (blue, brown and green), 25 (brown and green) and 1000 (green).
The panel on the right illustrates how the respective parametric regions for existence of
delay equilibria (superset, bounded by solid line) and unbounded equilibrium delay (subset,
bounded by dashed line) are related for the case of τ = 50.

is unbounded if and only if 1 ≥ κ (τ + 2, v∗, v∗) = 2 v∗

γδτ+1 , which reduces to

δτ ≥ 2
γδ
· 1− δ

1− γδ2 (23)

after substituting for v∗. Notice that this inequality is more stringent than example 3’s
inequality (8), which shows when delay equilibria exist; in particular, γ > 0 is here re-
quired. Indeed, γ might be too low: despite existence of an equilibrium with delay τ , which
fully determines the optimal punishments, proposing players would then require too large
a compensation for longer delays, as those would involve additional discounting through γ.
Nonetheless, for any given τ > 0 and γ < 1, there again exist large enough values of δ such
that also inequality (23) is satisfied, with the set of parameters γ and τ such that equilibrium
delay is unbounded expanding as δ increases. Figure 3 illustrates this.

B.4 Other Sources of Dynamic Inconsistency

B.4.1 Imperfect Altruism and Inter-generational Bargaining

Suppose there are two communities with access to a productive resource. They decide over
how to share it by means of bargaining over usage rights. As long as these have not been
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settled, each period some surplus, normalized to one, is forgone. Upon failure to agree, both
communities nominate a new delegate to engage in the bargaining on their behalf. Once they
agree, however, all future generations enjoy the agreed surplus every period. I now sketch
a simple version of this general problem with imperfect altruism of community members
towards future ones.

Denote the two communities by i ∈ I. Each has a population of two members in any
period n ∈ N: a young member (i, y) and an old member (i, o). Each such member lives for
two periods, where in the first half of her life she is called young, and in the second half she
is called old; reproduction is therefore such that the old member at time t is replaced by a
young one at time t+ 1. All young members of a community are identical, and so are all old
ones (though they live at different times).

Each community member discounts future payoffs exponentially (discount factor δi) and
is altruistic towards all future generations, but with an extra discount (factor γi) for payoffs
beyond her own lifetime: at any point in time, for any agreement with a delay of t ∈ T

periods, where community i’s share is equal to q,

Ui,o (q, t) =

q + γiδi
1

1−δi q t = 0

γiδ
t
i

1
1−δi q t > 0

, Ui,y (q, t) =

q + δiUi,o (q, 0) t = 0

δiUi,o (q, t− 1) t > 1
, (δi, γi) ∈ (0, 1)2 .

It is straightforward to show that these preferences can be represented as Ui,g (q, t) = di,g (t)·q,
g ∈ {y, o}, such that

di,o (q, t) =

1 t = 0

αiδ
t
i t > 0

, di,y (q, t) =


1 t = 0

βiδi t = 1,

αiβiδ
t
i t > 1


αi ≡ γi

(1−δi)+γiδi
βi ≡ (1−δi)+γiδi

(1−δ2
i )+γiδ2

i

 .

Notice that 0 < δi, γi < 1 implies 0 < αi < βi < 1. Since αi < 1, old members’ preferences
exhibit a weak present bias, discounting the first period of delay with factor αiδi and thus
more heavily than any other, which is discounted with constant factor δi. However, young
members discount the second period of delay more than the first, namely with a factor
αiδi less than that for the first one, which equals βiδi; all periods further in the future are
discounted less, with constant factor δi.

Suppose that at the beginning of each period n, a round of bargaining takes place, where if
n is odd, community 1’s delegate gets to propose, and otherwise it is community 2’s delegate.
Since this means alternating offers in terms of communities, any bargaining protocol where
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each community either sends only young or only old members as delegates to the bargaining
table results in a stationary game of the type analyzed in this paper, and the results of this
paper, in particular characterization theorem 1, apply in a straightforward manner.

B.4.2 Non-linear Probability Weighting and Bargaining Under the Shadow of
Breakdown Risk

One motive for impatience in the sense of discounting future payoffs is uncertainty, such as
mortality risk. Halevy (2008) and Saito (2015) show how dynamically inconsistent discount-
ing can be related to non-linear probability weighting.

Suppose that two parties bargain over a surplus of normalized size one, with alternating
offers, where, after each round without agreement, there is a constant probability1−p ∈ (0, 1)
that bargaining (exogenously) breaks down before the next round, leaving players without
any surplus. Applying the aforementioned authors’ results in this context, in any round n a
player i’s preferences over shares q that is agreed upon with delay t ∈ T have the following
representation, which—for the sake of simplicity—involves breakdown risk as the sole source
of impatience:

Ui (q, t) = gi
(
pt
)
ui (q) ,

where gi : [0, 1] → [0, 1] is a so-called probability-weighting function, assumed continuous
and increasing from gi (0) = 0 to gi (1) = 1, and ui : [0, 1] → R+ is an instantaneous
utility function, assumed continuous and increasing from ui (0) = 0. These preferences are
dynamically consistent if and only if gi is the identity, in which case i maximizes expected
utility.

Redefining, for a given “survival rate” p, gi (pt) ≡ di (t), all results of this paper can
be applied in a straightforward manner. Thus the players’ probability weighting, which
determines their dynamic inconsistency, can be related to the set of bargaining outcomes.
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