
Third-Party Sale of Information∗

Robert Evans
University of Cambridge

In-Uck Park
University of Bristol

September 2023

(Preliminary and Incomplete)

Abstract. We study design and pricing of information by a monopoly information
provider (A) for a buyer in a trading relationship with a seller. If A may only offer a
single information structure the profit-maximizing one has a simple, binary threshold
character. If A may offer a menu of priced information structures it is optimal to
offer a continuum of thresholds which induce a unit-elastic demand function for
the seller who sets the highest price with a positive demand. The equilibrium is
inefficient unless seller production cost exceeds the mean buyer valuation: in this
case, A enhances welfare if cost is high enough (yet below the mean buyer valuation)
but reduces it if cost is low enough. (JEL Codes: D42, D61, D82, D83, L12, L15)
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1 Introduction

Buyers intending to purchase a good or service may in some cases be able to ob-

tain information about the product freely themselves, for example by online search or

word of mouth. In other cases, however, they may need to buy the information from

a firm which specializes in providing information and advice. This is particularly

likely if estimating the value created by the transaction requires detailed knowledge

both about the buyer’s characteristics and needs and about the nature of the product

or service. For example, a firm may employ a headhunter to advise on the suitabil-

ity of a particular candidate for a senior role in the firm. It seems likely that the

prevalence of such paid-for advice will increase substantially in the future, as a result

of the development of data science and artificial intelligence. Increasingly it will be
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The usual disclaimer applies. Emails: rae1@cam.ac.uk; i.park@bristol.ac.uk

1



possible for information firms both to collect detailed personalized information about

a potential client and to acquire detailed specialized knowledge about the product,

hence to have precise knowledge about the value of the match between buyer and

seller involved in a potential transaction; knowledge which, moreover, is not available

either to the buyer or the seller.

There is a need, therefore, to develop economic analyses of the strategic informa-

tion design and pricing decisions faced by such information providers, for different

kinds of market structures. This paper is intended as a step in that direction. We

study the optimal design and pricing of information in situations characterized by the

following features: (i) the information firm has information about the match between

the seller’s good and its buyer which neither the buyer nor the seller knows, and (ii)

the information firm may only contract with, and be paid by, the buyer, not the seller,

for information provision, yet the buyer is free to buy the good directly from the seller,

without contracting with the information firm. We show firstly that equilibrium in-

formation provision takes a simple binary threshold form; and secondly that if the

information firm may offer a menu of priced information structures, in equilibrium it

designs a menu so as to induce a unit-elastic demand function for the seller (where the

menu may be composed of binary threshold forms only). We also characterize the in-

formation provider’s impact on welfare in relation to the seller’s production efficiency

and the manner of interaction among information provider, seller, and buyer.

There is a large and growing literature, discussed below, which studies the optimal

design (and pricing) of information, but the focus has been on two kinds of settings:

firstly, those in which either the buyer or the seller of the good designs the structure

of information to be provided to the buyer, and, secondly, online selling platforms,

such as Amazon or eBay, which charge for information supplied to the parties and

the buyer can only buy the good via the platform.

We assume that the information firm cannot contract with the seller to provide

information to the buyer because there are many situations in which that would give

rise to a credibility problem: the buyer may not trust the information supplied by

an agent of the other party. Furthermore, in some cases it is illegal for the buyer’s
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advisor to take payment from the seller. For example, since 2012 independent fi-

nancial advisors in the UK have been forbidden to take commissions from providers

of certain investment products.1 At present many firms which trade in information,

such as Google and Facebook, harvest data about individuals, i.e. potential buyers,

and monetize it by charging advertisers, i.e. potential sellers, for predictions about

whether the individuals will respond to advertisements. We have in mind, by con-

trast, a situation in which the information firm collects data about both sides of the

potential transaction and informs the buyer about the value of the match. Since the

buyer must trust the information provider’s advice, it is important that the advice is

seen to be unbiased, hence that the seller does not pay for it.2

We assume that the buyer and seller are symmetrically and imperfectly informed

about the value of the seller’s good to the buyer, while more precise information is

available to the information firm (who, for example, may have access to big data

unavailable to the individual seller or buyer). Our main model represents the inter-

action of the three players as follows. First, the information firm announces publicly

a menu of contracts, which are priced information disclosure rules; second, the seller

announces a price for her good.3 Subsequently, the buyer decides both whether to

accept one of the information firm’s contracts or not, and whether to buy the good

at the announced price or not. If he accepts one of the contracts in the menu, he

receives information according to the disclosure rule, pays the associated information

fee, and uses the disclosed information in the decision whether to purchase the good

or not. In addition to this menu game, we also analyze the single-structure game, in

which the information firm’s menu is restricted to a single priced information rule.

Two recent papers, Roesler and Szentes (2017) and Ravid, Roesler and Szentes

(2022), study situations in which the buyer may choose any signal of his valuation

before the seller sets her price. In Roesler and Szentes (2017) the seller sets her price

1See UK Financial Services Authority PS10/6.
2Luca, Wu, Couvidat and Frank (2015) provide evidence that Google’s practice of prominently

displaying Google content, for example local business reviews, in its search pages, at the expense
of independent third-party content, reduces consumer welfare. This suggests that, for important
purchase decisions, buyers should be willing to pay for unbiased, rather than self-interested, advice.

3Since we assume that the buyer has quasi-linear preferences there is no loss of generality in
assuming that the selling mechanism is a posted price.
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after observing the structure of the buyer’s signal, though not its actual realization;

in Ravid, Roesler and Szentes (2022), the seller does not observe this. We study a

different situation: the buyer may, after observing the seller’s price, acquire a signal

offered by an independent monopoly signal provider for a fee.

By selecting a menu of disclosure rules and fees, the information firm designs a

game between the buyer and seller and so there is a somewhat complex interaction

between the three agents, with features not present in standard models of information

design. The menu influences the seller’s price, and a given disclosure rule and price

jointly determine the value of information to the buyer—the latter being the difference

between his surpluses (gross of fee) with and without the information, which is also

the maximal fee extractible. On the one hand, a high consumer surplus for the buyer

seems to require a menu which induces a low price from the seller. At the same time,

maximizing the value of information to the buyer requires that this price is not too

low, for otherwise the aforementioned difference in surpluses would vanish. It is not

a priori clear what forms of disclosure rule best achieves these conflicting aims of the

information designer.

It might be thought that a relatively complex structure of information might be

needed to obtain the optimal degree of manipulation of the seller’s price. For example,

the optimal structure derived by Roesler and Szentes (2017) is rather delicate, which

raises the question of whether a similarly complex information form would arise in a

market in which information is designed by a profit-maximizing firm.

It turns out, however, that in the single-structure game the optimal signal struc-

ture is in fact a simple and coarse one—it consists of a binary partition. That is, the

information provider commits to revealing whether the buyer’s valuation is above or

below a particular threshold. Subsequently, the seller sets the highest price at which

the buyer would opt to buy the information and then buy the good if and only if his

valuation is above the threshold. This is because a threshold structure both increases

the total surplus achievable and reduces the seller’s incentive to price low and thereby

induce the buyer to bypass the information provider and buy directly. In the menu

game too the structure chosen in equilibrium must be a threshold one and the seller
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sets the highest price at which the buyer would buy information. The information

firm also offers other contracts which the buyer would purchase if the seller were to

set lower prices, in order to minimize the price she needs to set to bypass information

purchase. The optimal menu consists of a continuum of priced information structures

(which can be taken to be thresholds) that induce a unit-elastic demand function for

the seller over an interval of prices which would induce the buyer to buy informa-

tion. That is, the fees for the thresholds in the menu are chosen in such a way that,

for any price in this interval, the buyer selects a threshold which keeps the seller’s

profit constant.

Why does the information firm not offer the buyer’s optimal signal structure, as

derived by Roesler and Szentes (2017)? As mentioned above, the information firm

does not want to maximize the buyer’s consumer surplus, which is what the buyer-

optimal signal structure does. Instead, it wants to maximize the value of information

to the buyer, i.e., the difference between the buyer’s consumer surplus when informed

and his consumer surplus when uninformed. The distinction is particularly clear in

the case in which the seller’s production cost is zero. Roesler and Szentes show that

then the buyer’s optimal signal structure gives rise to an efficient outcome: the seller

sets a low price and the buyer buys the good with probability one. The buyer would

have no incentive to pay any positive price for such a signal since he would know in

advance that its realization would be above the seller’s price. That is, the value of

information, once the seller has set a price, is zero. The unit-elastic demand function

induced by the optimal menu is similar to the one induced by the buyer-optimal signal

of Roesler and Szentes. However, we show in Section 6 that although there exists a

single signal which induces the optimal demand function, it is not possible for the

information firm to extract its optimal fee in this way—as above, the buyer would

not be willing to pay this fee. The information firm can, however, extract the optimal

fee by means of a menu of thresholds.

The presence of the third-party information firm tends to cause inefficiency—the

information firm sets the equilibrium threshold above the cost of production, because

setting it below the cost reduces the value of information for the buyer (hence the
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fee extractible), given that the seller price will exceed the cost. This inefficiency

dissipates and eventually disappears as production cost grows larger since there is

then less scope to go above it and thereby benefit. On the other hand, without the

information firm, surplus is higher when production cost is low. As a result, the

information firm reduces welfare when cost is low and increases it when cost is high,

the underlying reason being that information is more valuable for high cost goods.

We also consider, as benchmarks, the following two versions of the underlying

setting: (a) the seller commitment model, in which the order of moves of our main

model is reversed—first the seller makes a public commitment to a price and then

the information firm announces an information disclosure rule and fee; (b) the com-

petitive advisors model, in which many identical information firms competitively offer

information contracts to the buyer. In each of these benchmarks, the strategic inter-

action between buyer, seller and information provider is limited and the outcome in

each case is the same: the seller sets the monopoly price as if the buyer knows his

value for the good precisely, and the buyer learns whether or not his value is above

this price—in effect, the buyer obtains full information. For a uniform distribution

of buyer valuation this outcome gives lower total welfare than our main model, in

which a monopoly information provider commits to a menu of contracts. In other

words, in the uniform case, social welfare is improved, relative to the benchmarks, by

requiring that there should be a monopoly information firm who commits publicly to

an information policy.

The next Section provides an example to illustrate the key strategic considera-

tions facing the players. Section 3 sets up the model. In Section 4 we analyze the

equilibrium contract in the single-structure game. Section 5 contains the analysis of

the menu game. Section 6 discusses the relation between our results and those of

Roesler and Szentes (2017). Section 7 contains discussion of two benchmark cases

which give rise to full information. We discuss related literature in Section 8.

2 Illustrative Example

A computer game developer has created a new game and intends to sell it to a
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population of seasoned gamers, who have heterogeneous values for this game, de-

pending on their individual characteristics. The value (willingness to pay) of each

individual gamer i for the game is denoted by vi. Since the game is new, neither the

developer nor the gamer knows the value of vi before the purchase is made, but they

both know its distribution which we assume is uniform on [0, 1] in this illustration,

hence the mean of vi is µ = 0.5. However, there is a game analytics firm that has

accumulated (or has access to) sufficient data on individual gamers so that it can

figure out the true value of vi for each gamer more precisely.

In fact, the analytics firm (A) can publicly offer to supply information about vi in

a specific form (see below) to each individual gamer i for a fee f > 0. Since gamers

are ex ante identical we assume that A offers the same contract to all i and we refer

to a typical gamer as B, for ‘buyer’, and to his value as v. After observing the offer

made by A, the developer/seller (S) sets a price p ∈ (0, 1) for individual gamers to

purchase the new game. Then B decides whether to purchase the information from

A and whether to buy the good/game from S. In what specific form should A supply

the information in order to maximize its revenue?

Here, in order to illustrate the strategic problems faced by A and S, we consider

two possible information forms. Firstly, A could supply the precise true value v to

B, i.e., full information. Secondly, it could offer only to inform B whether v is above

or below a given threshold θ ∈ [0, 1], i.e., binary information.

In the first case, for A to have any revenue by offering full information for a fee f ,

B should purchase the information; then he will buy the good if and only if v exceeds

the seller’s price p, with an ex ante expected utility of∫ 1

p

(v − p)dv − f =
(1− p)2

2
− f.

He will indeed buy information if this exceeds his expected utility from buying the

good without first buying information, µ− p = 0.5− p, which is the case if p ≥
√

2f .

Hence, by setting p ≥
√

2f , S obtains an expected profit of (1−p)p which is maximized

at p = 1/2 for the monopoly profit of 1/4 (we assume S’s marginal cost is zero). If S

set p <
√

2f , on the other hand, her profit is p (because B buys the good without first
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buying information) which exceeds 1/4 if
√

2f > 1/4 or, equivalently, if f > 1/32.

Therefore, f = 1/32 is A’s maximal revenue if it supplies full information, because if

f > 1/32 then S would price low enough so that B bypasses information.

Now suppose that A offers, for fee f , to inform B whether v is above or below

threshold θ ∈ [0, 1]. B would buy this information only if he intends subsequently to

use it by buying the good if and only if A informs B that v is above θ. As the expected

value of the good is (1 + θ)/2 in this case, B’s expected utility with information is

(1− θ)
[1 + θ

2
− p
]
. (1)

B’s reservation utility without information is max{0.5− p, 0} so that value of infor-

mation for B is (1) minus max{0.5− p, 0}. B will purchase information when this is

larger than the cost of information f , that is, if

p :=
θ

2
+
f

θ
< p ≤ p̄ :=

1 + θ

2
− f

1− θ
. (2)

If p < p B will buy the good without information and if p > p̄ he will buy neither

information nor the good. Thus, by setting p in the range [p, p̄], S induces B to buy

the information and sells the good with probability 1 − θ. The maximal profit she

can get in this way is (1− θ)p̄, by setting p = p̄. Alternatively, she can set p ≤ p and

induce B to bypass the information and buy the good outright, securing a maximal

profit of p. Therefore, she will set a price that induces B to purchase information if

p ≤ (1− θ)p̄ ⇐⇒ f ≤ θ(1− θ − θ2)

2(1 + θ)
.

Foreseeing this, A maximizes f by setting the threshold θ at a level that maximizes

the fraction above, which is calculated as θ̂ ≈ 0.297. Hence, A offers to inform B

whether v is above or below θ̂ for a fee f̂ ≈ 0.07, which is well above 1/32, the

maximal fee achievable by offering to reveal the true value v precisely.

Can A extract a fee higher than f̂ by offering any of the numerous other forms

in which information on v may be supplied? We show below that if A is restricted

to offering a single information structure the answer is no: a single-threshold, binary

information structure is optimal, for general distribution of buyer value v and seller’s
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production cost.

As we have seen, the constraint which prevents A from raising the fee for infor-

mation above 0.07 is that S will price low and bypass him. For example, if A offers

a slightly higher threshold for a slightly higher fee, say (θ′, f ′) = (0.3, 0.0705), then

p ≈ 0.385 and p̄ ≈ 0.549 by (2), so that S’s maximal profit from inducing B to buy

information is (1 − θ)p̄ ≈ 0.3844. Therefore, S will charge p ≈ 0.385, inducing B to

bypass A and buy outright (i.e., with probability 1).

Suppose now that A offers both contracts, (θ̂, f̂) and (θ′, f ′), as a menu, and allows

B to choose one of them after S sets her price. Then, if S were to set p = p ≈ 0.385,

B would not buy outright but would instead purchase the contract (θ̂, f̂) and buy

the good when v ≥ θ̂ because p for (θ̂, f̂) is 0.384. To induce B to buy outright,

therefore, S would have to set p as low as 0.384 so that B bypasses (θ̂, f̂) as well as

(θ′, f ′); as a consequence, S will optimally set the maximal price that induces B to

buy the contract (θ′, f ′), for a higher profit of 0.3844 as shown above.

Therefore, A can extract a fee higher than f̂ by offering a menu of two contracts,

where the additional contract acts as a deterrent to S, preventing her from bypassing

A. This effect strengthens as more contracts are added: we show in Section 5 that it

is to A’s advantage to introduce a continuum of thresholds in order to deter S from

pricing low to bypass, while charging a high fee for information. The optimal menu

contains all thresholds from zero up to some maximum θe. Moreover, it turns out that

the fees for the different thresholds must be chosen so that S is indifferent between all

prices which induce different information purchases (i.e., the implied demand function

is unit-elastic) and, in equilibrium, S charges the highest such price.

3 Model

There is a single seller (S) of an indivisible object/good and a single potential

buyer (B). The value of the good to B, denoted by v, is distributed according to a

CDF F with support V ≡ [0, 1], continuous density F ′(v) and mean µ. Neither S nor

B knows the value of v; for each of them their subjective belief about v is given by
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F and this is common knowledge. There is also a third party, A (for ‘advisor’),4 who

can find out more precise information about v.

The advisor A maximizes his payoff by selling information about v to B. Our aim

is to establish his optimal selling scheme; in particular, what form the information

structures should take, and how much to charge for them. Specifically, A may sell

any signal structure (aka experiment) which is a function ψ : V → R, where R is

the set of real-valued random variables. Given v ∈ V , ψ(v) is the signal, possibly

stochastic, which A provides if the true state is v. For example, he could reveal the

true value of v, or he could reveal a partition element that contains it, or he could

provide a stochastic signal which is imperfectly informative about the value of v. We

denote the set of signal structures by Ψ.

Particularly useful in the sequel is the class of signal structures which reveal

whether or not v exceeds a certain threshold θ ∈ V . We refer to these as ‘single-

threshold’ structures. A single-threshold structure is denoted by Tθ : V → R where

Tθ(v) equals 0 (respectively, 1) with probability 1 if v < θ (respectively, if v ≥ θ).

The distribution of the posterior expectation of v which is implied by Tθ assigns

probability F (θ) to E(v|v < θ) and 1− F (θ) to E(v|v ≥ θ).

We denote by C the set of feasible contracts5 which A may offer, where

C ≡ {(ψ, f) |ψ ∈ Ψ, f ∈ R}.

In the general game that we analyze (Section 5) the advisor announces a menu of

contracts from which the buyer selects one. We refer to this as the menu game and

denote it by ΓM , defined as follows.

(1) A publicly announces a menu of contracts, i.e. a subset M ⊆ C.
(2) S announces price p ∈ R+; B observes p.

(3) B either selects one contract in M or none (i.e., rejects).

(4) If B selects contract (ψ, f) ∈M : B pays f to A; A observes and supplies to B

the realized signal as specified by ψ; B then decides either to buy S’s good for price

4Henceforth, for brevity, we generally refer to the information firm as the advisor.
5Note that allowing f to depend on the signal realization, or on B’s action, would introduce

moral hazard on the part of A.
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p, or not.

(5) If B rejected: B decides either to buy S’s good for price p, or not.

However, before analyzing the menu game we consider the single-structure game,

denoted Γ1, in which the advisor may only offer one contract, i.e., #(M) = 1. In

Section 4, we analyze the single-structure game partly as a benchmark, partly so

as to develop intuitions, but also because the single information structure case is of

independent interest since there may be situations in which the more general menu

case is infeasible.

All parties are risk-neutral expected utility maximizers and have quasi-linear util-

ity for money. Thus, if the good is traded at price p and B pays f to A, then S’s

payoff is p− c, where c ∈ [0, 1) is the cost of production, B’s payoff is v − p− f and

A’s is f .

We study perfect Bayesian equilibrium. It is characterized by backward induction

in this game because the belief on v at any information set is unambiguous6 and

every move is observed by all parties yet to make strategic decisions. The outcome

of an equilibrium refers to A’s fee, S’s price and the mapping from v to trading

probability, on the equilibrium path. These determine equilibrium welfare and each

player’s utility (as will become clear).

Modeling the advisor as offering a menu for the buyer to choose from is particularly

appropriate7 if S’s price p is unobservable by A. This is a natural assumption in many

situations. Even if there is a publicly quoted price, S may have the ability to make

adjustments to the price which are observable only by the buyer.8 In such a case the

true price is effectively private information to B and it is natural, and without loss

of generality, to assume that A proposes a menu. The same is true if the price is

observable to A but not verifiable.

We model the advisor as the first mover. As should be clear from the illustrative

6It is F at all information sets belonging to A, S and B at stages (1)–(3), and it is the Bayes-
updated posterior on v for any information set of B after he receives the signal from A.

7Though the analysis remains valid if A can observe p.
8For example, the seller may offer secret discounts, personalized prices or other kinds of side-

payments. A contract in which (ψ, f) is contingent on a verifiable list price named by the seller
would be vulnerable to such discounts, agreed collusively with the buyer.

11



example in the previous section, this means that part of A’s strategic objective when

designing the information structure is to influence the seller’s price in such a way as

to increase the value of information to the buyer. One reason why this order of moves

may be more appropriate than the reverse order, in which A reacts to S’s price, is

that, as just discussed, p may be unobservable by A. Furthermore, in many settings

it is natural to think of the advisor as able to move first and commit to a strategy.

Consider, for example, a setting in which the advisor is a consultant who provides

information to a sequence of clients (buyers). The advisor would like to set at the

outset an information policy which maximizes his long-run payoff. Potential clients

may observe, in a statistical sense, the outcomes of the consultant’s previous advice,

but only with a lag. Supposing that the consultant lacks commitment power, could

he gain by deviating from this policy, for example by negotiating with a given buyer

a higher information fee in exchange for a different structure of information, after the

seller has set her price? Such a deviation can only damage his future reputation and,

since the buyer has no way of knowing whether the information supplied is indeed

drawn from a different structure, this short-run renegotiation would not be credible.9

A plausible way to represent such a situation is a three-player game in which A moves

before S, and commits to a strategy.

Nevertheless we also consider, in Section 7, a game with the opposite order of

moves. That is, S first commits to a price, which A and B both observe, and A

then offers to B an information structure and fee (a menu would be redundant in

this situation). The unique equilibrium outcome is equivalent to the outcome when

a monopoly seller faces a fully informed buyer. For a large class of distributions F ,

including the uniform distribution, S gets a lower equilibrium payoff than in the menu

game ΓM . In other words, S would prefer not to commit, which provides a further

justification for modeling A as the first mover.

As will become clear, we can envisage the interaction between A and B in the

menu game as taking the following form. A asks B what price the seller is asking

9Note that, absent renegotiation, the consultant/advisor has no incentive to deviate from the
announced information policy despite the fact that B cannot observe whether he has done so. We
assume that A does not incur any costs of learning or communicating information.
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Figure 1

and then makes a recommendation of whether or not to buy the good; the fee for the

recommendation, and the rule used to determine the recommendation, are contingent,

according to the pre-specified policy, on the price which the buyer has reported.

4 The Equilibrium Single Contract

In this Section we characterize A’s equilibrium contract in the game Γ1. It is

straightforward to show that there exists a contract which will guarantee A a strictly

positive payoff in any continuation equilibrium; hence, in any equilibrium, A proposes

a contract with strictly positive fee, which B accepts. Suppose that A has announced

a contract (ψ, f) ∈ C, where f > 0, and S has announced price p. Let H(s) be

the distribution (CDF) of s implied by ψ, where s is the posterior expectation of v

after observing the signal.10 If B buys information, i.e. accepts contract (ψ, f), and

subsequently behaves optimally, then we denote his expected payoff by uI(p|(ψ, f)).

If he does not buy information we denote his payoff by uo(p). Hence

uI(p|(ψ, f)) ≡
∫ 1

p

(s− p)dH − f and uo(p) ≡

{
µ− p if p ≤ µ

0 if p > µ.
(3)

10 A distribution H is such a posterior distribution for some signal structure if and only if H is a
mean-preserving contraction of F , i.e., H second-order stochastically dominates F (see, e.g., Roesler
and Szentes (2017)).
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This is because, having bought information, B buys the good if and only if s is at

least p, thus with probability 1−H−(p) where H−(p) = limρ↑pH(ρ). Figure 1 shows

how uI and uo vary with p.

Note that uI decreases continuously in p ∈ [0, 1] from uI(0|·) = µ− f < uo(0) to

uI(1|·) = −f < uo(1); hence, its derivative exists a.e. and satisfies

u′I(p|·) = −(1−H(p)) ≥ −1 (4)

where the inequality is strict for all p>min{supp(H)}. Since u′I(p|·) increases in p,

uI is convex. The probability of trade is −u′I−(p|·), negative of the left derivative of

uI(p|·), which coincides with −u′I(p|·) if it exists.

If (ψ, f) is an equilibrium contract thatB accepts after S sets her price, uI(p|(ψ, f)) ≥
uo(p) for at least one p, hence for p = µ as well by convexity of uI and (4), as

is also apparent from Figure 1. Let p(ψ, f) ≤ µ and p̄(ψ, f) ∈ [µ, 1) be the two

points of intersection between uI(p|(ψ, f)) and uo(p). Both p(ψ, f) and p̄(ψ, f) are

uniquely determined11 and B buys information if and only if p ∈ (p(ψ, f), p̄(ψ, f)].12

If p ≤ p(ψ, f) then B buys the good outright and if p > p̄(ψ, f) he buys neither

information nor the good.

Now consider S’s choice of optimal price, given (ψ, f). Denote S’s expected payoff

from price p conditional on B optimally purchasing information by πI(p|(ψ, f)) and

conditional on B optimally not buying information by πo(p). Then

πI(p|(ψ, f)) = (p− c)(1−H−(p)) if p ∈ (p(ψ, f), p̄(ψ, f)], and

πo(p) =

{
p− c if p ≤ p(ψ, f)

0 if p > p̄(ψ, f).

Therefore, if there is any trade at all, the optimal price for S is either p(ψ, f), in which

case B buys outright, or the price p ∈ (p(ψ, f), p̄(ψ, f)] that maximizes πI(p|(ψ, f)),

in which case B buys information.

This implies that the problem faced by A at the outset of Γ1 is to choose a contract

11This follows because u′I(p|(ψ, f))>u′o(p) = −1 at p = p(ψ, f) and u′I(p|(ψ, f))<u′o(p) = 0 at
p = p̄(ψ, f).

12Without loss of generality, assume that B buys outright if indifferent.
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(ψ, f) ∈ C and a price p ∈ R+ for the seller that maximizes f subject to the two

constraints which ensure that S optimally chooses p and B will pay for information:

max
(ψ,f,p)∈C×R+

f s.t. p ∈ arg max
ρ∈(p(ψ,f),p̄(ψ,f)]6= ∅

πI(ρ|(ψ, f)) (5)

πI(p|(ψ, f)) ≥ max{πo(p(ψ, f)), 0}

Define a contract-price pair (ψ, f, p) ∈ C × R+ as optimal if it solves this problem.

The details of optimal contract structure depend on whether c ≥ µ or c < µ.

First, consider the case in which c ≥ µ, so that there can be no surplus if B does

not buy information (since cost exceeds expected benefit of production). The entire

surplus which is achievable with information can be extracted by A in the form of a

fee. This is because, with such a fee, B will optimally only trade if S prices in such

a way that the entire surplus accrues to B (and then, as fee, to A). Specifically, the

optimal contract-price pair is (Tc, f̄ , c), where f̄ =
∫ 1

c
(v − c)dF . That is, A offers a

single-threshold signal structure that informs B whether v exceeds c or not, S sets

price p = c, and the fee is B’s expected surplus from buying the good at price c if and

only if v ≥ c. Given this contract, B will not buy information (nor trade) if p > c

because then his surplus from trade would fall short of f̄ . Thus, it is optimal for S

to set price c and for B to buy information and trade if and only if v > c. Since this

outcome is efficient and A captures all the surplus, it is clearly optimal for A.

Furthermore, this is the unique equilibrium outcome (see Proposition 2 below).

However, the equilibrium information structure is not unique: for example, there is

an equilibrium in which the value of v is revealed precisely if v < c but if v ≥ c then

only that fact is revealed. Yet, any equilibrium triple (ψ, f, p) has f = f̄ and p = c

and is single-threshold-equivalent, as defined below, with threshold θ = c.

Definition A triple (ψ, f, p) ∈ C × R+ is single-threshold-equivalent if, for some

threshold θ ∈ (0, 1), ψ generates a posterior expectation s ≥ p if and only if v ≥ θ.

When c < µ it is no longer the case in equilibrium that A drives S’s payoff

down to zero because S could sell outright to B at a low price, yet it turns out that

again there is always a single-threshold optimal signal structure. The key findings

are summarized in Propositions 1 and 2 below. Proposition 1 shows that (i) the
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signal structure of every optimal contract (ψ, f) is essentially single-threshold, (ii)

S selects price p = p̄(ψ, f), the maximum price at which B buys information, and

(iii) S is indifferent between setting p and setting a low price p(ψ, f), thereby selling

outright. Figure 2 illustrates the situation for a single-threshold structure ψ = Tθ

when c < p(Tθ, f), so that πo(p(Tθ, f)) > 0. Proposition 2 establishes uniqueness of

the equilibrium outcome and characterizes it.

Proposition 1 Suppose that c < µ.

(a) For any optimal contract-price pair (ψ, f, p), p = p̄(ψ, f) and πI(p|(ψ, f)) =

πo(p(ψ, f)).

(b) Any optimal (ψ, f, p) is single-threshold-equivalent, and (Tθ, f, p) is also optimal,

where θ is the threshold above which the good is traded according to (ψ, f, p).

The intuition for Proposition 1 stems from two key observations. First, if S is

better off by inducing information purchase than not, i.e. πI(p|(ψ, f)) > πo(p(ψ, f)),

so is she when the fee is increased slightly, say to f ′ = f + ε. This is because

B’s optimized utility with information, uI(·|(ψ, f ′)), is lower only by ε, shrinking

the price range [p(ψ, f ′), p̄(ψ, f ′)] only slightly; hence, by continuity, S’s maximal

payoff from prices in this range (which induce information purchase) continues to

exceed πo(p(ψ, f
′)). We refer to this observation as the “equal-profit principle,” which

establishes that πI(p|(ψ, f)) = πo(p(ψ, f)) as stated in Proposition 1(a).
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To show that p = p̄(ψ, f), suppose the optimal price is p < p̄(ψ, f). Then A could

modify ψ slightly, say to ψ′, so that the trade probability stays constant as price in-

creases from p without affecting B’s utility at p (i.e., uI(p|(ψ′, f)) = uI(p|(ψ, f)) > 0):

for example, ψ′ pools into a single signal all signals of ψ that lead to a posterior expec-

tation of v in [p, 1]. Hence, B would buy the contract (ψ′, f) for prices slightly above

p, giving S a profit strictly above πI(p|(ψ, f)), thus above πo(p(ψ, f)) = πo(p(ψ
′, f)).

Then A could sell ψ′ for a slightly higher fee by the equal-profit principle, a contra-

diction. This establishes Proposition 1(a), as detailed fully in the Appendix.

Let (ψ, f, p) be an optimal contract and let q be the corresponding probabil-

ity of trade. The second key observation is that the most efficient way to trade

the good with probability q is to do so if and only if v is above threshold θ(q), where

1 − F (θ(q)) = q. To prove part (b), suppose that (ψ, f, p) is not single-threshold-

equivalent and A offers instead the threshold contract (Tθ(q), f). For p ≥ θ(q) B gets

strictly higher expected payoff by trading with probability q under Tθ(q) (i.e., if and

only if v ≥ θ(q)) than by trading with probability q under ψ. Since θ(q) ≤ p(ψ, f),

as we show in the Appendix, it follows that uI(·|(Tθ(q), f)) > uI(·|(ψ, f)) for all prices

in [p(ψ, f), p̄(ψ, f)]. Shifting uI up in this way reduces p and increases p̄. Hence, S’s

payoff from bypassing A (i.e., p(Tθ(q), f)) is lower and her maximum expected payoff

from inducing information purchase (i.e., p̄(Tθ(q), f)q since B buys with probability

q for all prices in (p(Tθ(q), f), p̄(Tθ(q), f)]) is strictly higher. Once again, we reach a

contradiction by the equal-profit principle, establishing Proposition 1(b).

By Proposition 1(b), any optimal contract-price pair is equivalent to a single-

threshold contract-price pair in their outcomes (A’s fee, S’s price, and the mapping

from v to trading probability). Hence, it suffices to focus on single-threshold con-

tracts to study optimal outcomes. For any threshold structure Tθ, A’s optimal fee

f(θ) equalizes S’s profit from charging p(Tθ, f) with that from charging p̄(Tθ, f).

Straightforward calculation shows that this implies that

f(θ) =

∫ 1

θ

vdF − µ

1 + F (θ)
+

cF (θ)2

1 + F (θ)
. (6)

The optimal threshold θ̂ maximizes f(θ), thus satisfies the first order condition
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(θ − c)(1 + F (θ))2 = µ− c, (7)

which has a unique solution θ̂ ∈ (c, µ) because the LHS increases in θ, from 0 at θ = c

to above µ− c at θ = µ.

The above identifies the unique single-threshold contract, (Tθ̂, f(θ̂)), that delivers

the optimal fee f(θ̂) for A. Hence, it constitutes an equilibrium path of the game Γ1

for A to offer this contract, for S to set price p = p̄(Tθ̂, f(θ̂)) and for B to accept A’s

contract and buy the good if and only if v ≥ θ̂. Moreover, every equilibrium of Γ1 is

outcome-equivalent to this equilibrium since, for any small ε > 0, A can, by offering

(Tθ̂, f(θ̂) − ε), guarantee that S prices so as to induce information purchase. This

leads to the following summary of the unique equilibrium outcome.

Proposition 2 The equilibrium outcome of Γ1 is unique and characterized as

follows.

(a) If c ≥ µ, the seller’s good is traded if and only if v ≥ c (hence, the outcome is

efficient); A’s fee is the total efficient surplus,
∫ 1

c
(v − c)dF ; S sets price c; B and S

both get zero expected payoff.

(b) If c < µ, the seller’s good is traded if and only if v ≥ θ̂ where θ̂ is the unique

solution to (7); c < θ̂ < µ (hence the outcome is inefficient) and θ̂ strictly increases

in c; A’s fee is f(θ̂) where f(·) is given by (6); S sets price

p̄(Tθ̂, f(θ̂)) =
µ− c[F (θ̂)]2

1− [F (θ̂)]2
> µ;

B’s expected payoff is 0 and S’s expected payoff is

µ− c
1 + F (θ̂)

= (θ̂ − c)(1 + F (θ̂)).

Effect of the Adviser on Welfare. Does the presence of A increase or decrease

total surplus, compared with a situation in which B is uninformed? Secondly, how

does it affect the payoffs of B and S?

If c ≥ µ then, without A, the outcome would be inefficient: if c > µ then there

would be no trade and if c = µ, trade would happen at price c, even if v < c. The
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advisor strictly increases total surplus, to its maximum, but is of no benefit to B or

S since they both get zero whether A is present or not.

If c < µ then, again, B does not benefit since he gets zero in either case. S is

strictly worse off when A is present. Without A, trade takes place at price µ and S

obtains payoff µ − c. With A present, S’s expected payoff, by Proposition 2(b), is

(µ− c)/(1 + F (θ̂)) < µ− c.
Whether A increases total surplus depends on the value of c. Total surplus with

A present is
∫ 1

θ̂
(v − c)dF . Therefore surplus increases if this exceeds µ − c, i.e., if∫ θ̂

0
(v−c)dF < 0, and decreases if the inequality is reversed. Note that

∫ θ̂(c)
0

(v−c)dF >

0 for c = 0 and
∫ θ̂(c)

0
(v − c)dF < 0 for c close to µ (since θ̂(c) < µ). Substituting∫ θ

0
(v − c)dF = 0 in (7) gives

θ + (2 + F (θ))

∫ θ

0

(θ − v)dF = µ.

The LHS strictly increases in θ, so, by continuity, there is a unique θ̂(c), hence a

unique c, at which
∫ θ̂(c)

0
(v − c)dF = 0. A increases total welfare if cost is above this

level and reduces welfare if cost is below it.

In conclusion, while the advisor may increase total surplus, and in some cases

induces full efficiency, he is of no benefit to the original trading partners. When

c < µ the seller in fact is made strictly worse off and so has an interest in lobbying

to prevent the advisor operating; when the seller is relatively inefficient (c close to µ)

such a restriction of information trade would be surplus-destroying.

The optimal signal structure is very different from the one in Roesler and Szentes

(2017). They derive the signal structure which maximizes the buyer’s expected payoff

if the seller chooses a profit-maximizing price in the knowledge of the buyer’s signal

structure but not its realization. This buyer-optimal structure is intricately designed

so as to induce a unit-elastic demand function for the seller. Propositions 1 and 2

show, by contrast, that when the signal structure is designed by a profit-maximizing

third-party, (i.e., to maximize the extractible consumer surplus), it takes a very sim-

ple, binary threshold form. We discuss in more detail the relation between our results

and those of Roesler and Szentes in Section 6.
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5 Equilibrium in the Menu Game

If c ≥ µ then the outcome of any equilibrium of the menu game ΓM is the same as

the unique equilibrium outcome of Γ1 since A can extract all the surplus by offering a

menu containing only the optimal single contract. Hence we consider the case c < µ

below. We show that the main equilibrium properties of Γ1 continue to hold; namely,

the optimal contract is single-threshold-equivalent, the equal-profit principle prevails,

S sets the maximal price which induces information purchase, and B’s net surplus

is zero. It turns out, however, that, unlike the optimal single contract, the optimal

menu induces a demand function for S such that S is indifferent between all prices

which induce information purchase (i.e., unit-elastic on the interval of such prices if

c = 0). As illustrated in Section 2, the additional contracts in the menu serve to

lower the price at which S can bypass A.

To facilitate exposition, we adopt an innocuous convention that a menu M always

includes the null contract (T0, 0), a contract offering no information for a zero fee (B

is only told that v ≥ 0). Then B always selects one contract from M ; selecting the

null contract is equivalent to rejecting all contracts.

A’s payoff from offering a menu M is determined in the ensuing continuation equi-

librium. To determine which menu is optimal for A to offer, therefore, a continuation

equilibrium must exist following any menu A may offer. For this reason, we assume

that in ΓM A may offer a menu from the set of menus, denoted by Υ, that have a

continuation equilibrium. We characterize all (perfect Bayesian) equilibria of ΓM .

First, we examine A’s maximal payoff obtainable in a continuation equilibrium

following (A’s offer of) a menu in Υ, denoted by f ∗. If f ∗ exists, it is clearly an

equilibrium of ΓM for A to offer any menu M that has a continuation equilibrium in

which A’s payoff is f ∗, followed by that continuation equilibrium. We show that f ∗

exists in the Appendix. To facilitate exposition, we first characterize f ∗ presuming it

exists , deriving key equilibrium properties in the process. Then we show that there

is no equilibrium of ΓM in which A’s payoff is less than f ∗.

We start with a simple observation that, following any menu M , A obtains his

maximal continuation payoff in a pure-strategy continuation equilibrium.
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Lemma 0 Given any continuation equilibrium following any menu M ∈ Υ, there

is a pure-strategy continuation equilibrium following M in which A is no worse off.

Proof. Consider an arbitrary continuation equilibrium following a menu M ∈ Υ,

in which A’s payoff is f e. Suppose S uses a mixed strategy in this continuation

equilibrium. Then, there is an on-path price pe such that A’s expected payoff in the

continuation game after pe is at least f e. Modify the equilibrium as follows: postulate

that B selects the contract, among optimal contracts given p, that gives the highest

profit to S for p = pe, but the one that gives the lowest profit to S for each p 6= pe.

The modified strategy of B is clearly optimal given M and each p, hence it is optimal

for S to set pe, generating a payoff no lower than f e for A. This completes the proof.

QED.

To characterize f ∗, therefore, we focus on pure-strategy continuation equilibria

following some menu in Υ. In each such equilibrium, for each p ∈ [0, 1], B would select

an optimal contract, say (ψ,f)∈M , and derive a utility uI(p|(ψ,f)) as defined in (3)

in Section 4. Hence, B’s optimized utility for p∈ [0, 1] in the continuation game is

UI(p|M) = max
(ψ,f)∈M

uI(p|(ψ, f)).

UI is the upper envelope of B’s payoff functions, derived from the contracts in M .13

Since each uI(p|(ψ, f)) is convex in p, so is UI .

We represent B’s strategy as a contract schedule (ψ(·), f(·)) : [0, 1] → Ψ × R

where (ψ(p), f(p)) ∈M is the optimal contract that B selects for p ∈ [0, 1]. If S sets

p and B selects (ψ(p), f(p)), trade takes place when the posterior induced by ψ(p) is

p or higher. We denote the probability of trade in this case by q(p) and S’s profit by

π(p|M) = (p− c)q(p). S sets an optimal price, say pe, that gives her highest expected

profit, determining A’s payoff as f(pe). Recall that q(p) = −u′I−(p|(ψ(p), f(p))) from

the previous section; it decreases in p because UI(p|M) is convex in p.

We may ignore contracts that B would never select for any p, as they do not affect

the continuation equilibrium. Hence, a pure-strategy continuation equilibrium follow-

ing some menu in Υ is represented by a strategy profile [ψ(·), f(·), pe] that satisfies

13Note that uI(p|(T0, 0)) = max{µ− p, 0} = u0(p).
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(a) UI(p|M)=uI(p|(ψ(p), f(p))) for all p ∈ [0, 1] where M={(ψ(p), f(p))}p∈[0,1], and

(b) pe ∈ arg maxp∈[0,1](p− c)q(p) where q(p) = −u′I−(p|(ψ(p), f(p))).

We call such a strategy profile a “ps-equilibrium” (for pure-strategy) equilibrium.

A ps-equilibrium [ψ(·), f(·), pe] is optimal if it delivers f ∗ for A, i.e., if f(pe) =

f ∗. The following Lemma shows that all fees are non-negative in an optimal ps-

equilibrium, since otherwise A could get a higher payoff by making a small equal

increase in all fees for non-null signals.

Lemma 1 If [ψ(·), f(·), pe] is optimal, f(p) ≥ 0 for all p ∈ [0, 1].

Hence, we consider ps-equilibria with nonnegative fees to identify optimal ps-

equilibria. If all contracts have nonnegative fees, it is optimal for B to select the null

contract when p = 0 or p = 1 because he will buy the good or not buy the good,

respectively, regardless of any further information. For a ps-equilibrium [ψ(·), f(·), pe]
with f(·) ≥ 0, therefore, there exist p(M) and p̄(M), where 0 ≤ p(M) < µ <

p̄(M) ≤ 1 and M is as defined in (a) above, such that B buys the good outright if

p≤p(M); buys neither information nor the good if p>p̄(M); and selects the contract

(ψ(p), f(p)) and buys the good with probability q(p) if p ∈ (p(M), p̄(M)], generating

a profit of π(p|M)=(p− c)q(p) for S.

The next Proposition shows that in any optimal ps-equilibrium (if exists) the con-

tracts are offered in such a way that the seller obtains identical profits from all prices

in [p(M), p̄(M)], i.e., she is indifferent between all prices which induce information

purchase, and selects the highest of these prices.

Proposition 3 Suppose [ψ(·), f(·), pe] is optimal. Let q(p) denote the probability

that the posterior induced by ψ(p) is p or higher and π(p|M) = (p− c)q(p). Then,

(i) p̄(M) = pe;

(ii) p(M)− c = π(pe|M);

(iii) π(p|M) = π(pe|M) for all p ∈ [p(M), p̄(M)];

(iv) q(pe) ≤ 1− F (c).

As in the equilibrium of the single-structure game, S charges the highest price at

which B buys information (by (i)), so that B’s net surplus is zero; and, by (ii), S is
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indifferent between doing so and bypassing A (by charging p(M)). However, by (iii),

now S is also indifferent between all prices in between. (ii) and (iii) together imply

that the limit of q(p), as p → p(M) from above, is 1 and that, as p increases from

p(M), q(p) decreases continuously, in a unit-elastic manner,14 to q(pe) at pe, and then

drops to zero. Given the threat of by-pass, this turns out to be the optimal way for

A to maximize the extractible consumer surplus.

The proof of part (i) is essentially analogous to the proof of the corresponding

statement in Proposition 1(a). More precisely, suppose that pe < p̄(M). A could

modify the menu by removing all contracts (ψ(p), f(p)) with q(p) < q(pe). Then S

could increase price above pe while maintaining the sale probability at q(pe), hence

strictly increasing her profit. Since she then would strictly prefer to choose such a

price than to bypass A, A could further modify the menu by making a small equal

increase in all the fees for non-null contracts and S would still price so as to induce

information purchase, contradicting optimality of M .

Next we sketch the argument in the proof of part (iii) of Proposition 3, for the

case c= 0. Consider the case that [ψ(·), f(·), pe] is optimal and satisfies (i) and (ii).

By optimality of pe, pq(p) ≤ peq(pe), i.e., π(p|M) =−pU ′I(p|M) ≤ −peU ′I(pe|M) =

π(pe|M) for all p ∈ [p(M), p̄(M)). Suppose that (iii) is not satisfied: π(p|M) <

π(pe|M) for some p ∈ [p(M), p̄(M)], as illustrated in Figure 3.

For p ≥ p(M), find θ̂(p) such that p(1 − F (θ̂(p)) = π(pe|M) and let ÛI(·) be the

solution to the differential equation −Û ′I(p) = 1− F (θ̂(p)) ,with the initial condition

ÛI(p(M)) = UI(p(M)|M). Then, since pÛ ′I(p) = peU ′I(p
e|M) for all p ≥ p(M), ÛI(p)

is steeper than UI(p|M), as illustrated, hence hits 0 at some p̂ < p̄(M) = pe.

To construct a ps-equilibrium in which B’s optimal payoff function is ÛI(·), let

f̂(p) satisfy uI(p|(Tθ̂(p), f̂(p))) = ÛI(p) for p ∈ [p(M), p̂]. Then, [Tθ̂(p), f̂(·), p̂] is a

ps-equilibrium.15 This is because (a) B’s optimal choice for price p ∈ [p(M), p̂] is

(Tθ̂(p), f̂(p)), since the graph of uI(p̃|(Tθ̂(p), f̂(p))) is tangent to the convex function

ÛI(·) at p, and (b) this gives S a profit of −pÛ ′I(p) = peq(pe); hence, since S is

14If c = 0. If c > 0 the demand function q(p) is unit-elastic with respect to mark-up.
15We show in the Appendix that f̂(·) ≥ 0.
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indifferent between all such prices, p̂ is an optimal price. Note, from p̂[1−F (θ̂(p̂))] =

peq(pe) and p̂ < pe, that 1− F (θ̂(p̂)) > q(pe). Therefore, since c = 0, total surplus is

strictly higher in this ps-equilibrium than in [ψ(·), f(·), pe]. However, B and S obtain

the same payoffs as in [ψ(·), f(·), pe], namely zero and π(pe|M) respectively, so A is

strictly better off, which is a contradiction. An analogous argument applies when (ii)

is not satisfied.

The next result shows that the on-path signal structure of an optimal ps-equilibrium

must be single-threshold-equivalent and, while the off-path structures need not be,

there is an optimal ps-equilibrium in which all of them are single-threshold.

Lemma 2 If [ψ(·), f(·), pe] is an optimal ps-equilibrium,

(i) (ψ(pe), f(pe), pe) is single-threshold-equivalent, and

(ii) there is an optimal ps-equilibrium [ψ∗(·), f ∗(·), pe] which is outcome-equivalent

to [ψ(·), f(·), pe] and ψ∗(·) consists of only single-threshold signal structures.

The arguments for (i) and (ii) are essentially as follows. Construct a new menu by,

for each p ∈ [0, 1], replacing ψ(p) by a threshold structure which gives the same trade

probability, q(p), and replacing f(p) by a fee which gives B the same utility as before.

In other words, the new contract is (Tθ(p), f
∗(p)), where 1− F (θ(p)) = q(p) and

uI(p|(Tθ(p), f ∗(p))) = uI(p|(ψ(p), f(p))). (8)

Geometrically, the graph of uI(p̃|(Tθ(p), f ∗(p)), as a function of p̃, is a supporting
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tangent to UI(·|M) at p. Given the new menu there is a continuation equilibrium in

which trade probability is as before, for each p, and S chooses pe, as before. Moreover,

if ψ(pe) is not single-threshold-equivalent then, since B strictly prefers Tθ(pe) to it, (8)

implies that f ∗(pe) > f(pe). Hence [ψ(·), f(·), pe] cannot have been optimal.

The properties in Proposition 3 and Lemma 2 define an optimization problem

the solution of which gives the optimal ps-equilibrium in single-threshold structures,

which we represent by [θ(·), f(·), pe] where θ(p) is the threshold16 chosen by B when

the price is p, i.e., ψ(p) = Tθ(p). Proposition 3(iii) shows that UI(p|M) satisfies

a differential equation (as illustrated above), and Proposition 3(i) gives boundary

condition UI(p
e|M) = 0. The solution is

UI(p|M) = (pe − c)qeln
(pe − c
p− c

)
for all p ∈ [(pe − c)qe + c, pe] (9)

where qe = q(pe). Proposition 3(ii) then, given that UI(p(M)|M) = µ−p(M), implies

that (pe, qe) satisfies

(pe − c)qe(1− ln(qe)) + c = µ. (10)

Denote by (P ) the following maximization problem:

max
(pe,qe)∈(0,1)2

qeE(v|v ≥ θ(pe))− peqe (11)

s.t. (10) and∫ 1

θ(p)

vdF (v)− pq(p)− (pe − c)qeln
(pe − c
p− c

)
≥ 0 (12)

for all p ∈ [(pe− c)qe + c, pe], where q(p) = (pe− c)qe/(p− c) and 1−F (θ(p)) = q(p).

The feasible set for this problem is non-empty as it contains (µ, 1), and is compact.

Hence, a solution exists by continuity. We show that this solution constitutes an

optimal ps-equilibrium as characterized below.

Proposition 4 [θ(·), f(·), p∗] is an optimal ps-equilibrium if and only if

(a) (p∗, q∗) solves (P ) for some q∗ ∈ [0, 1], and

(b) for all p ∈ [(p∗ − c)q∗ + c, p∗], 1− F (θ(p)) = q(p) and f(p) is given by the LHS of

16That is, in a slight abuse of notation, θ is a function of p in this Section, rather than of q. We
will also sometimes, where the meaning is clear, write θ for Tθ.
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(12) with (pe, qe) = (p∗, q∗), where q(p) = (p∗ − c)q∗/(p− c).

The expression for q(p) in (b) comes from Proposition 3(iii). The expression

for f(p), the LHS of (12), obtains because UI(p|M) in (9) is B’s expected payoff

when he buys contract (Tθ(p), f(p)) and then buys the good if and only if v ≥ θ(p).

Therefore Proposition 3(i)-(iii) and Lemma 1 imply that if [θ(.), f(.), pe] is an optimal

ps-equilibrium then it must satisfy the constraints of (P ), with f(.) equal to the LHS

of (12), and A’s equilibrium payoff is given by the maximand of (P ). Hence the max-

imized value of (P ) is an upper bound for f ∗. Furthermore, we show in the Appendix

that if (pe, qe) satisfies the constraints of (P ) then the associated triple [θ(.), f(.), pe],

with f(.) given by the LHS of (12), is a ps-equilibrium, with A’s equilibrium payoff

given by (11). It follows that the maximized value of (P ) is also a lower bound for

f ∗, hence equal to f ∗.

Finally, any equilibrium of ΓM must deliver f ∗ for A. This follows because A could

offer a slight perturbation of the optimal menu, in which the contract (Tθ(p∗), f(p∗))

is replaced by (Tθ(p∗), f(p∗)− ε); there is a unique continuation equilibrium following

this offer, in which A gets payoff f(p∗)− ε. Since this applies for any ε > 0, A’s payoff

in any equilibrium must be f(p∗).

In any equilibrium of ΓM , therefore, any on-path ps-equilibrium is either the op-

timal one characterized in Proposition 4, or outcome-equivalent to that although the

off-path signal structures are not all single-threshold. However, q(p) and UI(p) must

be as given by Proposition 4 and (9). Hence, if ψ(p) is not single-threshold then the

fee must be lower than f(p) as given by (12), to preserve the value of UI . Any such

contract can replace (θ(p), f(p)) as long as it gives a sale probability of q(p).

For many distributions F the non-negativity constraints in (P ) can be ignored, as

the following Lemma shows. Let πm be the optimal profit for S if B is fully informed,

i.e., πm = maxp(p− c)(1− F (p)).

Lemma 3 If [θ(·), f(·), p∗] is optimal with q∗ = 1− F (θ(p∗)),

(a) f((p∗ − c)q∗ + c) = 0 and

f ′(p) =
q(p)(p− θ(p))

p− c
for p ∈ [(p∗ − c)q∗ + c, p∗]; (13)
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(b) if (p∗ − c)q∗ > πm then all the non-negativity constraints given by (12) are slack

at the optimum of (P ).

f((p∗− c)q∗+ c) = 0 follows because the sale probability converges to 1 as p tends

to (p∗ − c)q∗ + c from above, and (13) from differentiating the LHS of (12). Suppose

that (pr, qr) solves the relaxed version of (P ), in which constraints (12) are ignored.

(a), which does not rely on the non-negativity constraints being satisfied, implies

that f is increasing, hence non-negative, if θ(p) ≤ p on [(pr − c)qr + c, pr]. However,

(p− c)
(
1−F (θ(p))

)
= (pr− c)qr ≥ πm ≥ (p− c)(1−F (p)). Hence f is non-negative.

Example: Uniform Distribution

Suppose that F is uniform on [0, 1] and c = 0. Then θ(p) = 1−q(p) and πm = 0.25

since, if B is fully informed, S sets price 0.5 and sells with probability 0.5. The relaxed

version of (P ) is

max
(pe,qe)

qe
(

1− qe

2

)
− peqe

subject to pe ∈ [0, 1], qe ∈ [0, 1], and peqe(1 − ln(qe)) = 0.5. The solution to this

problem is approximately qr = 0.63, pr = 0.543. Since prqr > πm = 0.25, this is

also the solution to (P ). A offers all thresholds from 0 up to 0.37, with associated

fees strictly increasing in the threshold. In an alternative, equivalent mechanism,

A asks B what S’s price is, and then makes a recommendation whether or not to

buy. The fee for the recommendation is increasing, and the probability of a ‘buy’

recommendation is decreasing, in the reported price. In Section 2 we showed that,

for this example, the maximum fee which A can charge is 0.07 when he is restricted

to offering a single information structure. He does substantially better in the menu

game since, by (11), the fee charged by A in equilibrium is approximately 0.089.

Effect of the Adviser on Welfare. The effect of the advisor on welfare, compared

to the case in which B is uninformed, is broadly similar to his effect when only a

single signal structure can be offered. If c ≥ µ the effect is identical since a menu

is redundant in that case. Suppose that c < µ. The equilibrium of the menu game,

like that of Γ1, is inefficient, since θ(pe) > c. To see this, note first that θ(pe) ≥ c
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by Proposition 3(iv). This inequality is strict because the derivative of total surplus

with respect to θ(pe) is −(θ(pe)− c)F ′(θ(pe)), which equals zero if θ(pe) = c, whereas

S, by (10), gets payoff (µ − c)/(1 − ln(qe)), which increases in qe, hence reduces in

θ(pe). Therefore A’s payoff increases locally as the threshold rises from c.

B, of course, obtains no benefit from A since his payoff remains at zero. S is

strictly worse off since her payoff is (p∗ − c)q∗ < µ− c by (10). As in the case of Γ1,

A’s effect on total social surplus depends on c. There exist two thresholds. c̃ and c̃′,

where 0 < c̃ ≤ c̃′ < µ, such that (1) A decreases social surplus if c < c̃ and (2) A

increases social surplus if c > c̃′. (1) follows from the fact that, as mentioned above,

the equilibrium of ΓM is inefficient, whereas the outcome without A is efficient if c = 0.

To show (2), consider the limit outcome as c → µ. The limit equilibrium outcome

of Γ1 is fully efficient by Proposition 2 (because c < θ̂ < µ) and A’s fee converges

to the full social surplus because S’s expected payoff, (θ̂ − c)(1 + F (θ̂)), converges

to zero. Therefore, in the menu game too, A’s equilibrium fee must converge to the

full social surplus; hence, in the limit, the equilibrium outcome is fully efficient. The

limit outcome in the absence of A is, however, bounded away from efficiency: the

limit amount of inefficiency is limc↑µ
∫ c

0
(c− v)dF =

∫ µ
0

(µ− v)dF > 0.

6 Relation to Roesler and Szentes (2017)

As we noted in Section 4 the adviser’s optimal single signal structure is very

different from the buyer-optimal signal of Roesler and Szentes (2017) (henceforth

RS). However, the optimal menu gives rise to a unit-elastic demand function which

is similar to the one which results from the buyer-optimal signal. Here we explore in

more detail the relation between our analysis and that of RS.

RS define an outcome (referred to below as an RS-outcome) as a pair (G, p) where

G is a feasible distribution of the buyer’s posterior expectation of v (i.e., F is a mean-

preserving spread of G) and p is optimal for the seller given G. We assume in this

Section that c = 0. The least-informative buyer-optimal outcome is efficient17 and

17For c > 0, buyer-optimal outcomes of RS are not generally efficient; they show that the good
is traded whenever valuation exceeds c (Proposition 2 of Online Appendix) so any inefficiency is
due to too much trade. In contrast, inefficiency in our optimal outcome is due to too little trade
(i.e., c < θ̂) when c < µ. The welfare comparison between the two outcomes can go either way. In
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gives rise to a unit-elastic demand. That is, it takes the form (Gz
π∗ , π

∗), where

Gz
y(s) =


0 if s ∈ [0, y)

1− y
s

if s ∈ [y, z)

1 if s ∈ [z, 1]

(14)

for any (y, z) such that 0 < y < z < 1. The seller is indifferent between all prices in

[π∗, z], the support of B’s posterior, and chooses π∗, so that trade takes place with

probability 1.

One way to understand the stark difference between our result in Section 4, that

optimality requires single-threshold equivalence, and that of RS is that the RS signal

is designed to make it optimal for the seller to charge a low price. Our advisor,

however, does not want to induce too low a price from S because that would enhance

the value of buying the good outright for B, reducing B’s willingness to pay for the

information offered. In the case where c = 0, B would in fact have no incentive to pay

any positive price for the RS signal since he would know in advance that its realization

would be above S’s price π∗. Proposition 1 shows that a threshold structure achieves

the dual aims of inducing an appropriately high price from S and also a high gross

consumer surplus for B, to be extracted via the fee.

There are three main points of difference between RS and our analysis of the

menu game. Firstly, in RS the seller sets the lowest S-optimal price whereas in our

analysis she sets the highest. Secondly, the equilibrium demand of the menu game

is unique, whereas in RS the signal which gives the unit-elastic demand function is

one of many buyer-optimal signals (the least informative one). The most important

contrast, however, is that the optimum in the menu game cannot be achieved by a

single signal structure—only by a menu with multiple contracts. This follows from

the fact that the optimum single signal is single-threshold-equivalent, by Proposition

1, whereas no single-threshold signal can produce the unit-elastic demand function

which, by Proposition 3, is optimal in ΓM—among prices which induce information

purchase, S strictly prefers the highest if the signal is single-threshold.

Example 1 of the Online Appendix of RS, for instance, welfare is higher in their outcome when c = 0
but in our outcome when c = 1/2.
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However, as follows from Lemma 4 below, there does exist an RS-outcome (Gp∗

p∗q∗ , p̃)

which gives the same demand function, consumer surplus and producer surplus as the

equilibrium of the menu game, which raises the question why the corresponding signal

is not optimal for A.

Lemma 4 F is a mean-preserving spread of Gp∗

p∗q∗ , where (p∗, q∗) solves (P ).

Proof Gp∗

p∗q∗ has an atom of q∗ at p∗, so its mean is∫ p∗

p∗q∗

p∗q∗

v
dv + p∗q∗ = p∗q∗ln

( 1

q∗

)
+ p∗q∗

which equals µ by (10). Therefore F is a mean-preserving spread of Gp∗

p∗q∗ if∫ p

p∗q∗

(
1− p∗q∗

v

)
dv ≤

∫ p

0

F (v)dv for all p ∈ [p∗q∗, p∗] ⇐⇒

φ(p) ≡
∫ p

0

F (v)dv − p+ p∗q∗ − p∗q∗ln
(p∗q∗

p

)
≥ 0 for all p ∈ [p∗q∗, p∗]. (15)

All the fees in the optimal menu are non-negative, i.e., from (12),

f(p) =

∫ 1

θ(p)

vdF (v)− p∗q∗ − p∗q∗ln
(p∗
p

)
≥ 0 for all p ∈ [p∗q∗, p∗],

which, after integrating by parts and using (10) and F (θ(p)) = 1− (p∗q∗/p), gives

f(p) =

∫ θ(p)

0

F (v)dv−θ(p)+
θ(p)p∗q∗

p
−p∗q∗ln

(p∗q∗
p

)
≥ 0 for all p ∈ [p∗q∗, p∗]. (16)

φ′(p) = F (p)− F (θ(p)) and, by (13), f ′(p) = q(p)(p− θ(p))/p, so that f ′(·) and φ′(·)
always have the same sign; moreover, at any turning-point, i.e., for any p such that

p = θ(p), f and φ have the same value. (15) then follows from (16) since φ(p∗q∗) ≥ 0

and f(·) is non-decreasing at p∗, otherwise A would get a higher fee from a slightly

lower seller price, contradicting optimality of the menu. �

Therefore (Gp∗

p∗q∗ , p) is an RS-outcome for every p ∈ [p∗q∗, p∗]. For p = p∗, in

particular, S sets the same price p∗ and B buys the good with the same probability

q∗ in the RS-outcome (Gp∗

p∗q∗ , p
∗) and in the equilibrium outcome of ΓM . However, B’s

surplus is nil in the former while in the latter it is f(p∗) > 0, which is transferred to
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A. This is because the threshold signal structure in the optimal menu, Tθ(p∗), informs

B precisely when v ≥ θ(p∗), but Gp∗

p∗q∗ garbles F by pooling realizations above θ(p∗)

with realizations below it, so that the expected value of v conditional on the signal

being at least p∗ is equal to p∗.

As p falls from p∗ to p∗q∗ in (Gp∗

p∗q∗ , p), B’s surplus increases continuously from

zero to µ− p∗q∗. Since µ− p∗q∗ ≥ f(p∗) because µ is maximal social surplus and the

total equilibrium surplus of ΓM is f(p∗) + p∗q∗, there exists p̂ ∈ [p∗q∗, p∗] such that

B’s surplus from the RS-outcome (Gp∗

p∗q∗ , p̂) is f(p∗).

However, as noted above, it cannot be that A can achieve this outcome and extract

B’s surplus with a single signal structure. Hence, it must be the case that p̂ < µ and

therefore B would prefer to buy outright rather than pay f(p∗) for the information,

which would leave him with zero payoff. In other words, the necessity of the menu

derives from the ability of B to bypass A.

Ravid, Roesler and Szentes (2022) study the case in which B privately acquires

a signal at an exogenous cost (increasing in informativeness of the signal) before S

sets a price, and characterize the limit outcome as the cost vanishes. Since S sets

her price without observing B’s signal, the game is strategically a simultaneous-move

game. In the benchmark case in which the cost of information is zero, equilibria are

Pareto-ranked (under a mild condition on the prior F ): in the best equilibrium B

learns v fully and S sets the monopoly price, and in the worst one B learns the buyer-

optimal signal of RS discussed above but S sets the highest price at which she would

obtain the same profit if B had the full information F instead. When information

cost is positive, B acquires a signal that generates unit-elastic demand on an interval

of prices which S randomizes over; as the cost vanishes this equilibrium converges

to the worst equilibrium of the zero-cost benchmark described above. They stress

the significant welfare loss when information acquisition is costly, even if the cost is

minuscule, as opposed to when it is freely available.

The equilibrium in our model should be robust to small costs A may incur to

supply signal structures, so long as the cost is increasing in informativeness of the

signal structure, because single-threshold structures would be least costly ones.
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7 Comparison with the Full-Information Case

In this section we discuss two variants of the game ΓM , in each of which the

monopoly outcome prevails in the sense that S charges the monopoly price as if B

knew the realization of his value v, and A sells information that effectively equips

B with full information. We then compare the equilibrium welfare with the welfare

achieved in our main model. The first variant differs from the main model in that

the order of moves of A and S is reversed: first S publicly sets her price p and then

A offers B a contract (ψ, f) ∈ C. (Note that there is no need to offer a menu if p is

set first and observed by A. Note also that the case in which S sets p first and p is

unobserved by A is accommodated by ΓM .) In the second variant there are multiple

informed third-party advisors who act competitively and may offer new contracts to

B at any stage before B buys S’s good.

1. Seller Moves First

The analysis of this game is straightforward. For an arbitrary p ∈ R+, consider a

contingency in which S has set price p. Then B’s reservation payoff (i.e., without A)

is max{µ−p, 0}, while his surplus would be maximal at
∫ 1

p
(v−p)dF when he buys the

good if and only if v ≥ p. Therefore, it is optimal18 for A to offer the single-threshold

signal structure Tp (as it is a signal structure with the maximal information value for

B) for a fee equal to its value of information, f =
∫ 1

p
(v − p)dF −max{µ − p, 0}. B

will pay the fee and then buy the good if and only if v ≥ p, generating a profit of

(p − c)(1 − F (p)) for S. Anticipating this, the seller will charge the monopoly price

pm(c) ∈ arg maxp(p− c)(1− F (p)), the seller-optimal price when B knows v. Hence

B’s expected payoff is max{µ − pm(c), 0}. The presence of A benefits B in the case

in which pm(c) < µ since, if there were no advisor, the seller would simply charge µ

and the buyer’s payoff would be zero.

2. Competitive Advisors

Suppose there are multiple competitive advisors, all fully-informed, who can offer

any menu of contracts. Suppose further that they can offer new contracts to B at

18And any optimal action is payoff-equivalent to this.
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any time until B purchases the good from S (in addition to any that have previously

been accepted). Then it is easy to see that competition drives the equilibrium fee

down to zero for a signal which tells B whether or not v exceeds p for any price

p that S may have set. Anticipating this, S sets the monopoly price pm(c). The

only difference between this case and the previous one is that the buyer captures

the consumer surplus (in excess of the buyer’s reservation payoff max{µ− pm(c), 0}),
whereas in the previous case the monopoly advisor does so.

How does the welfare (in the sense of total surplus) achieved in the full-information

monopoly outcome compare with that of our main model ΓM? We established above

that the equilibrium outcome of ΓM is fully efficient (i.e., the good is traded if and

only if v ≥ c) if c ≥ µ and that it converges to the fully efficient outcome as c → µ

from below. On the other hand, the monopoly price is strictly greater than c for all

c ∈ [0, 1), hence the level of inefficiency at the monopoly outcome is bounded away

from zero for all c ∈ [0, µ]. Consequently, there is a threshold ĉ < µ, which depends

on the distribution F , such that welfare is strictly higher in the equilibrium of ΓM

than in the monopoly outcome if c > ĉ.

A general welfare comparison between the two outcomes is tricky because it de-

pends on the distribution F as well as c. However, we show that the equilibrium of ΓM

is more efficient than the monopoly outcome for all c if F is a uniform distribution.

Since, as discussed earlier, the limit outcome of Ravid, Roesler and Szentes (2022) is

worse than the monopoly outcome, it follows that ΓM also results in a more efficient

outcome than the latter when F is uniform.

Proposition 5 (a) There is a threshold ĉ(F )<µ such that equilibrium total sur-

plus in ΓM is greater than that in the full-information monopoly outcome if c>ĉ(F ).

(b) The equilibrium total surplus in ΓM is greater than that in the full-information

monopoly outcome if F is a uniform distribution.

Although, from an aggregate welfare perspective, it is often better, as Proposition

5 shows, to have a monopoly advisor (with commitment power) than competitive

advisors, the buyer is, as noted above, better off when there are competitive advisors
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since he is then able to extract the consumer surplus. He is also strictly better off if

the seller, rather than the monopoly advisor, moves first if F and c are such that the

seller’s monopoly price pm(c) is less than µ.

8 Related Literature

There is an extensive literature on information design and sale. Early contribu-

tions are Admati and Pfleiderer (1986), who show that a monopoly seller of financial

information to rational investors may find it optimal to add noise to the informa-

tion, independently across information buyers; and Lewis and Sappington (1994),

who study a monopoly seller of a good who, for the purposes of price discrimination,

can provide a possibly noisy signal to the buyer without observing it, and show that

under some assumptions the monopolist prefers to provide either full information or

none. An early study of a third-party information provider is Lizzeri (1999). In this

paper a monopoly intermediary who is informed about a seller’s quality sets a fee

and commits to an information disclosure policy. The seller then decides whether to

pay the intermediary or sell direct. In the unique equilibrium all sellers pay the in-

termediary, who reveals no information beyond the fact that the seller has paid to be

certified. A seller who does not pay the intermediary is believed to be the worst type.

A key difference between this (and other papers in this literature, such as Albano

and Lizzeri (2001) and Biglaiser (1993)) and our paper is that our third party sells

information (in our case, to the buyer) which is not known to the seller.

The literature on Bayesian persuasion (e.g., Kamenica and Gentzkow (2011), Rayo

and Segal (2010), Kolotilin (2018)) is also concerned with design of information dis-

closure policies. In this literature a principal (sender) commits to the structure of

information to be observed by a receiver, who then takes an action. Our model is

different in a number of respects. Firstly, the information designer faces two players,

buyer and seller, and designs a game for them to play. Secondly, both information

and a product are sold, so that prices are crucial strategic variables. In the language

of Kamenica and Gentzkow, we combine two ways in which an agent can be induced

to do something, by pricing and by changing beliefs. In other words, our paper is
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in the mechanism design rather than pure information design tradition, in that the

designer can manipulate outcomes (in particular the information fee) as well as the

information structure. Bergemann and Morris (2019) survey the information design

literature with multiple as well as single receivers.

Among papers which study mechanism design combined with information design

are Bergemann and Pesendorfer (2007), Eso and Szentes (2007) and Bergemann,

Bonatti and Smolin (2018). In Bergemann and Pesendorfer (2007) an auctioneer first

chooses a signal structure for the bidders, which determines their private information,

and chooses an optimal auction for that structure. For example, with two bidders the

optimal information structure, if restricted to be symmetric across the two bidders,

has a binary threshold character. Eso and Szentes (2007) allow the auctioneer to de-

sign the information and selling mechanism as a single unit, i.e., the designer releases

information as part of the mechanism. They show that it is optimal to release to

the bidders all the available information which is orthogonal to their initial private

information. Li and Shi (2017), on the other hand, show that if the auctioneer is

not restricted to releasing garblings of the orthogonal information only (the ‘shock’)

then releasing full information is not optimal. Bergemann, Bonatti and Smolin (2018)

study a mechanism designer (data seller) who provides a menu of statistical experi-

ments for a data buyer with initial private information in return for payments which

cannot be dependent on the buyer’s action or the realized state or signal. The optimal

menu always includes a fully informative experiment as well as partially informative,

‘distorted’ experiments. Another study of information sale is Hörner and Skrzypacz

(2016), but the focus in that paper is on gradual release of information by an informed

agent, to mitigate a holdup problem.

Closer to our paper, because they concern a third party selling information to

players engaged in a trading relationship, are Yang (2019, 2022) and Lee (2021), but

they differ from our paper in multiple respects. In Yang (2019) the intermediary is

a platform between consumers and the monopoly firm who can only contract via the

platform. In Yang (2022) the intermediary sells information (about market segmenta-

tion) to the monopolist seller, rather than to the buyer as in our paper. In Lee (2021)
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too, the informed party deals with the seller, in the sense that it collects payments

from sellers for recommendations to buyers. Inderst and Ottaviani (2012) is another

paper that studies this issue. Bergemann and Bonatti (2019) review a number of

papers which study sale of information, particularly in markets for data, and provide

some results for a model in which a data broker buys information from consumers to

package and sell on to firms.

Since our paper studies a situation in which two principals (the information

provider and the seller of the good) sequentially design mechanisms for an agent it

is related to the literature on sequential common agency; Calzolari and Pavan (2006)

study sequential contracting of two principals with a single agent and the conditions

under which it is optimal for the first principal to sell information revealed in the

first contracting stage to the second principal. Our focus is different since our buyer

initially has no private information, the two principals choose mechanisms before the

agent acts and the first principal sells information to the agent.

A closely related paper, which we have discussed in more detail above, is Roesler

and Szentes (2017), which characterizes the signal structure which is optimal for the

buyer, assuming the seller knows the structure but does not observe the realization

of the signal. In Ravid, Roesler and Szentes (2022) the buyer may buy any structure

of information, at an exogenously given cost which varies with information content.

Our paper, by contrast, characterizes the structure of information which obtains if it

has to be bought from a monopoly provider who commits to a signal structure.
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Appendix

Proof of Proposition 1 (a) Let (ψ, f, p) be an arbitrary optimal contract-price

pair. Since information is purchased in any optimal contract-price pair, we have

uI(µ|(ψ, f)) ≥ 0. Hence, πI(p|(ψ, f)) ≥ πI(µ|(ψ, f)) > 0 given c < µ. Suppose

first that, given (ψ, f), S strictly prefers to charge p than to charge p(ψ, f), i.e.,

πI(p|(ψ, f)) > πo(p(ψ, f)). If, were A instead to offer (ψ, f + ε) for small ε > 0, by

continuity, p(ψ, f+ε) is only slightly greater than p(ψ, f) (the increase in fee shifts uI

down), so S’s profit from selling outright only increases slightly. Moreover, p̄(ψ, f+ε)

is only slightly smaller than p̄(ψ, f). Hence, by continuity, there must be p′ in the

interval (p(ψ, f + ε), p̄(ψ, f + ε)] such that πI(p
′|(ψ, f + ε)) ≥ πo(p(ψ, f + ε)). Since

this would refute the claim that (ψ, f, p) is optimal, we conclude that πI(p|(ψ, f)) =

πo(p(ψ, f)). To show that p = p̄(ψ, f), suppose that p < p̄(ψ, f). Suppose that

A offers (ψ′, f), where ψ′ is the same as ψ except that it pools into a single signal

all signals which lead to a posterior expectation in [p, 1]. Note that, under ψ, the

probability of a posterior in (p, 1] is strictly positive, otherwise uI(p
′|(ψ, f)) = −f < 0

for all p′ > p, contradicting p < p̄(ψ, f). Then, for p′ ≤ p, S’s demand is unchanged

but now it is constant in some interval [p, p + ε]. The remainder of the argument is

in the main text.
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(b) Let SI(ψ, f, p) denote the total expected surplus achieved when the price is p

and B buys the signal structure ψ for a fee f . That is,

SI(ψ, f, p) = uI(p|(ψ, f)) + πI(p|(ψ, f)) + f.

Claim 1 Suppose that (ψ, f, p) is optimal and also that, for some θ ∈ (0, 1),

(i) uI(p(ψ, f)|(ψ, f)) ≤ uI(p(ψ, f)|(Tθ, f)), and

(ii) SI(Tθ, f, p̄(Tθ, f)) ≥ SI(ψ, f, p).

Then, both (i) and (ii) hold as equalities, which implies that (Tθ, f, p̄(Tθ, f)) is optimal.

Proof of Claim 1 By (i), uI shifts up at p(ψ, f) when (ψ, f) is replaced by (Tθ, f).

uo is unchanged, so p(Tθ, f) ≤ p(ψ, f). This in turn means that S’s optimal profit from

selling outright is lower for (Tθ, f) than it is for (ψ, f), i.e., πo(p(Tθ, f)) ≤ πo(p(ψ, f)).

Given (Tθ, f), if S prices optimally subject to B buying information, i.e., sets price

p̄(Tθ, f), then B gets zero, A gets f , and so S’s profit is

πI(p̄(Tθ, f)|(Tθ, f)) = SI(Tθ, f, p̄(Tθ, f))−f ≥ SI(ψ, f, p)−f = πI(p|(ψ, f)) = πo(p(ψ, f))

(17)

where the inequality follows from (ii) and the last two equalities follow from part (a)

of the Proposition given that p = p̄(ψ, f) implies uI(p|(ψ, f)) = 0.

If (ii) is slack, the inequality in (17) is strict. If (i) is slack, uo(p(ψ, f)) <

uI(p(ψ, f)|(Tθ, f)) so that p(Tθ, f) < p(ψ, f) and thus πo(p(Tθ, f)) < πo(p(ψ, f)).

In either case, we have πI(p̄(Tθ, f)|(Tθ, f)) > πo(p(Tθ, f)). Hence, by continuity, if A

offered (Tθ, f + ε) for small enough ε > 0 then S would optimally price so that B

would accept A’s contract. Since this would refute optimality of (ψ, f, p), both (i)

and (ii) must hold as equalities.

Then, (i) implies uo(p(ψ, f)) = uI(p(ψ, f)|(Tθ, f)) so that p(Tθ, f) = p(ψ, f) and

thus πo(p(Tθ, f)) = πo(p(ψ, f)), and (ii) implies πI(p̄(Tθ, f)|(Tθ, f)) = πI(p|(ψ, f)).

Therefore, (Tθ, f, p̄(Tθ, f)) solves (5), thus is optimal. This proves the Claim.

Now, take an optimal triple (ψ, f, p). Denote by q(p′) the probability of trade

given (ψ, f) if the price is p′ and B buys information. For any q ∈ (0, 1), define θ(q)

by 1−F (θ(q)) = q. Conditional on buying with probability q, B’s expected utility is
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maximized by buying if and only if v ≥ θ(q). Since the probability of trade falls as

the price increases, θ(q(p0)) ≤ θ(q(p1)) if p0 ≤ p1. We consider two cases below.

(1) Suppose θ(q(p)) ≤ p(ψ, f). Then, (i) and (ii) of Claim 1 hold when θ = θ(q(p)).

To show (i): Since p(ψ, f) ≤ p, θ(q(p(ψ, f))) ≤ θ(q(p)) ≤ p(ψ, f). Therefore, for

price p(ψ, f) B’s expected utility from buying information is higher when the thresh-

old is θ(q(p)) than when it is θ(q(p(ψ, f))), which in turn is higher than when the struc-

ture is ψ, since then the probability of sale is q(p(ψ, f)) and B’s expected utility con-

ditional on this probability is maximized when B buys if and only if v ≥ θ(q(p(ψ, f)).

That is, uI(p(ψ, f)|(Tθ(q(p)), f)) ≥ uI(p(ψ, f)|(Tθ(q(p(ψ,f))), f)) ≥ uI(p(ψ, f)|(ψ, f)).

To show (ii): Conditional on trade probability q(p), total surplus is strictly larger

when trade takes place if and only if v ≥ θ(q(p)) than when it takes place with a

positive probability even if v < θ(q(p)). Hence, the inequality in (ii) holds when

θ = θ(q(p)), as a strict inequality if (ψ, f, p) is not single-threshold-equivalent.

It follows from Claim 1, therefore, that (ψ, f, p) is single-threshold-equivalent be-

cause otherwise the inequality (ii) would be slack for θ = θ(q(p)) as explained just

above, and also that (Tθ(q(p)), f, p̄(Tθ(q(p)), f)) is optimal. Note that the total surplus is

the same between (ψ, f, p) and (Tθ(q(p)), f, p̄(Tθ(q(p)), f)) because trade takes place for

the same set of v, and therefore, given that in each case A gets f and B’s surplus is

zero (by (a)), S’s expected payoff is also the same. This implies that p = p̄(Tθ(q(p)), f)

so that (Tθ(q(p)), f, p) is optimal, as desired.

(2) Suppose θ(q(p)) > p(ψ, f). If p(ψ, f) < c < µ then πo(p(ψ, f)) < 0 <

πI(µ|(ψ, f)) and also uI(µ|(ψ, f)) > 0, hence if the fee is increased to f + ε such that

p(ψ, f + ε) < c then S must price so as to induce information sale. As this would

contradict optimality of (ψ, f, p), we have p(ψ, f) ≥ c. Then, (i) and (ii) of Claim

1 hold when θ = p(ψ, f) but (ii) is slack as verified below, which violates Claim 1.

Hence, the current case is infeasible.

To show (i): Given the price p(ψ, f), B’s expected utility is maxmized when he

buys if and only if v ≥ p(ψ, f).

To show (ii): Since θ(q(p)) > p(ψ, f) ≥ c, total surplus is strictly higher when

trade takes place if and only if v ≥ p(ψ, f) than when it takes place if and only if
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v ≥ θ(q(p)), which in turn is no lower than that from ψ. QED.

Proof of Proposition 2 Part (a) has been proved in the main text. (b) To identify

the optimal single-threshold θ̂, note that for any θ ∈ (0, 1),

uI(p|(Tθ, f)) =

∫ 1

θ

vdF − p(1− F (θ))− f.

p(Tθ, f) and p̄(Tθ, f) are given respectively by uI(p|(Tθ, f)) = µ−p and uI(p|(Tθ, f)) =

0 so

p(Tθ, f) =

∫ θ
0
vdF + f

F (θ)
and p̄(Tθ, f) =

∫ 1

θ
vdF − f

1− F (θ)
.

By Proposition 1(a), f(θ), the optimal fee for threshold θ, is chosen so that

p(Tθ, f(θ))− c =
(
p̄(Tθ, f(θ))− c

)
(1− F (θ)),

so, after rearrangement, we get (6) which is reproduced below:

f(θ) =

∫ 1

θ

vdF − µ

1 + F (θ)
+

cF (θ)2

1 + F (θ)
. (6)

The optimal threshold θ̂ maximizes f(θ). Since

f ′(θ) =
[
− θ +

µ+ 2cF (θ) + cF (θ)2

(1 + F (θ))2

]
F ′(θ),

f ′(θ) = 0 if and only if the equation (7), reproduced below, holds:

(θ − c)(1 + F (θ))2 = µ− c. (7)

The LHS strictly increases from −c when θ = 0 to 4(1 − c) when θ = 1, so (7)

has a unique solution θ̂ and θ̂ ∈ (c, µ). Since f(0) = 0, f(1) = (c − µ)/2 < 0 and

f ′(0) = µF ′(0) > 0, f(θ) is a maximum at θ̂. θ̂ increases in c because the partial

derivatives of (θ − c)(1 + F (θ))2 + c are of opposite sign. S’s optimal price is

p̄(Tθ̂, f(θ̂)) =

∫ 1

θ̂
vdF − f(θ̂)

1− F (θ̂)
=

µ− c[F (θ̂)]2

1− [F (θ̂)]2
> µ

where the second equality is from (6) and the inequality from c < µ; S’s expected

payoff is (p̄(Tθ̂, f(θ̂))− c)(1− F (θ̂)) = µ−c
1+F (θ̂)

= (θ̂ − c)(1 + F (θ̂)) from (7).

41



To see that every equilibrium of Γ1 is outcome-equivalent to this equilibrium,

observe that by offering Tθ̂ for a slightly lower fee f ′ = f(θ̂) − ε, A can ensure that

S prices so that B accepts the contract for sure, guaranteeing his own payoff of at

least f(θ̂)− ε for any small ε > 0. Hence, A should get the optimal fee f(θ̂) in every

equilibrium, i.e., every equilibrium contract-price pair (ψ, f(θ̂), p) is optimal and thus,

by Proposition 1(b), (Tθ′ , f(θ̂), p) is optimal where θ′ is such that the good is traded

if and only if v ≥ θ′ when (ψ, f(θ̂)) is offered. Since θ̂ is the unique optimal single-

threshold, it follows that θ′ = θ̂ and p = p̄(Tθ̂, f(θ̂)). This establishes uniqueness of

equilibrium outcome. QED

Proof of Lemma 1 Let pe be the equilibrium price following announcement of M .

Let f ′ = inf{f |(ψ, f) ∈M} and suppose that f ′ < 0. If, at price p, B chooses to buy

the good with probability 1 he must also buy the information contract with the lowest

fee f ′ (subsequently ignoring the information), giving him payoff µ − p − f ′. Also

UI(p|M) ≥ −f ′ > 0 for all p ∈ [0, 1] since, given price p, B can guarantee a payoff

of at least −f ′. Hence UI(p|M) ≥ max{µ − p, 0} − f ′ for all p ∈ [0, 1]. Construct

a new menu M1 in which each fee for non-null contracts is increased by the same

small ε > 0; that is (ψ, f) ∈ M/{(T0, 0)} if and only if (ψ, f + ε) ∈ M1/{(T0, 0)},
where ε is sufficiently small that UI(p|M1) > max{µ − p, 0} for all p ∈ [0, 1]. There

exists an equilibrium for M1 in which, for each p ∈ [0, 1], B’s choice (and, hence, S’s

profit) is the same as in the original equilibrium, since B’s payoff from each non-null

choice is reduced by ε, while the null contract is still dominated, by a contract with

fee f ′+ε < 0, and S chooses pe as before. A’s payoff is higher by ε in this equilibrium,

contradicting the optimality of M . QED

Proof of Lemma 2 Let M∗ be the menu constructed from M by, for each p ∈
[0, 1], replacing (ψ(p), f(p)) by (Tθ(p), f

∗(p)), as defined in the main text. By (8),

f ∗(p) ≥ f(p) and the inequality is strict if ψ(p) is not single-threshold-equivalent.

Any single-threshold contract in M remains in M∗. Fix p ∈ [0, 1]. uI(p̃|(Tθ(p), f ∗(p)))
is continuous, equals µ− p̃− f ∗(p) ≤ µ− p̃ for p̃ ≤ E(v|v < θ(p)), has gradient −q(p)
for p̃ ∈ [E(v|v < θ(p)), E(v|v ≥ θ(p))], and equals −f ∗(p) ≤ 0 for p̃ ≥ E(v|v ≥ θ(p)).
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Furthermore, (a) uI(p|(Tθ(p), f ∗(p))) = UI(p|M) since, given menu M , (ψ(p), f(p)) is

optimal for B when the price is p, and (b) the graph of uI(p̃|(Tθ(p), f ∗(p))) is tangent

to UI(p̃|M) at p, since −q(p) ∈ [U ′I−(p|M), U ′I+(p|M)]. This implies, by convexity of

UI(.|M), that

uI(p̃|(Tθ(p), f ∗(p))) ≤ UI(p̃|M)

for all p̃ ∈ [0, 1]. This holds for all p ∈ [0, 1], so UI(p̃|M∗) ≤ UI(p̃|M). There-

fore, by (a) above, for any p ∈ [0, 1], (Tθ(p), f
∗(p)) is an optimal choice for B and

UI(p|M∗) = UI(p|M). This choice gives the same sale probability, namely q(p), as

(ψ(p), f(p)). Therefore there is an equilibrium continuation following the announce-

ment of M∗ in which, for any p ∈ [0, 1], B chooses (Tθ(p), f
∗(p)) and S chooses pe,

as in the equilibrium following M . If ψ(pe) is not single-threshold-equivalent then

this equilibrium gives A a payoff of f ∗(pe) > f(pe), contradicting optimality of M .

Hence ψ(pe) must be single-threshold-equivalent. Furthermore M∗ is optimal and the

equilibrium constructed above is outcome-equivalent to the one following M since the

equilibrium price, threshold and fee are all the same. QED

Proof of Proposition 3 First, we show that (pe−c)qe > 0, so that pe > c. For any

chosen (ψ, f) ∈ M , the probability is strictly positive that the posterior expectation

is at least µ. Hence S must get strictly positive profit in equilibrium since her profit

is strictly positive if p ∈ (c, µ).

Claim (a): p(M)− c ≤ (pe − c)qe and UI(p
e|M) ≥ 0.

Proof of Claim (a): In equilibrium, for any p < p(M), B buys with probability

1. Suppose that p(M) − c > (pe − c)qe. Then S could name a price p ∈ ((pe −
c)qe + c, p(M)), a profitable deviation since p − c > (pe − c)qe and (pe − c)qe is S’s

equilibrium profit. Hence p(M) ≤ (pe− c)qe+ c. UI(p
e|M) ≥ 0 because B can always

choose the null contract. This establishes Claim (a).

Claim (b): It is not the case that p(M)− c < (pe − c)qe and UI(p
e|M) > 0.

Proof of Claim (b): Suppose that p(M) − c < (pe − c)qe and UI(p
e|M) > 0, so

that pe < p̄(M). For ε > 0, consider a new menu Mε such that (θ, f) ∈ Mε/{(T0, 0)}
if and only if (θ, f − ε) ∈ M/{(T0, 0)}. Increasing all the fees for non-null contracts
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in this way lowers the graph of each uI(.|(θ(p), f(p))) uniformly unless (θ(p), f(p)) is

null, so that p(Mε) is slightly above p(M) and p̄(Mε) is slightly below p̄(M). Let ε be

small enough that p(Mε) − c < (pe − c)qe and pe < p̄(Mε). Then, given Mε, there is

an equilibrium continuation such that, for all p ∈ [p(Mε), p̄(Mε)] B chooses the same

threshold as before, i.e. chooses (θ(p), f(p) + ε). Hence, S’s profit from setting price

p is (p − c)q(p), as before, and, in this equilibrium, S chooses pe as before. A earns

f(pe) + ε > f(pe). This contradicts optimality of M and so establishes (b).

Claim (c): It is not the case that p(M)− c = (pe − c)qe and UI(p
e|M) > 0.

Proof: Suppose that p(M)− c = (pe− c)qe and UI(p
e|M) > 0. Let M2 be a menu

which is the same as M except that all thresholds θ > θ(pe) have been dropped.

UI(.|M2) coincides with UI(.|M) for p ≤ pe and its graph is linear with slope −qe for

p ∈ [pe, p̃], where UI(p̃|M2) = 0. Given menu M2 there is an equilibrium continuation

in which B selects θ(p) for all p ∈ [p(M), pe] and selects θ(pe) for all p ∈ [pe, p̃]. S’s

optimal price is p̃ since the probability of sale is constant at qe on [pe, p̃], and the

highest price at which S can sell outright is p(M) = (pe − c)qe < (p̃ − c)qe. A’s

payoff is f(pe). Now consider a menu M2(ε) which is the same as M2 except that

all fees for non-null contracts have been increased by the same small ε > 0. Then

p(M2(ε)) is slightly above (pe − c)qe and p̄(M2(ε)) is slightly below p̃. By continuity,

if ε is small enough then p(M2(ε)) < (p̄(M2(ε)) − c)qe. For this menu there is an

equilibrium continuation in which S charges p̄(M2(ε)) and sells with probability qe,

and A’s payoff is f(pe) + ε > f(pe). This contradicts optimality of M and hence

proves Claim (c).

Therefore UI(p
e|M) = 0, which establishes (i).

Next, we prove (iv), i.e., that qe ≤ 1−F (c), or θ(pe) ≥ c. Suppose that θ(pe) < c.

Consider menu M4 which is the same as M except that (θ(pe), f(pe)) is replaced by

(θ′, f(pe)), where θ′ = θ(pe) + ε ∈ (θ(pe), c) and ε is small. Then uI(.|(θ′, f(pe))) is

slightly flatter than uI(.|(θ(pe), f(pe))) and slightly greater at pe, so p̄(M4) is slightly

higher than p̄(M). If S sets p̄(M4) then B optimally selects (θ′, f(pe)) and S’s profit

would strictly exceed (pe − c)qe because B’s payoff would be zero but the total sur-

plus would be higher. It follows that if the menu were adjusted further by slightly
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increasing the fee for θ′ by η > 0 S would still price so that B selects (θ′, f(pe) + η).

This contradicts optimality of M and so proves (iv).

Denote (pe−c)qe+c by p. The above shows that UI(p|M) ≥ µ−p and UI(p
e|M) =

0. Furthermore, since pe is optimal for S, it must be the case that (p − c)q(p) ≤
(pe − c)qe for any p ∈ [p, pe].

Define a differentiable function g : [p, pe]→ R by

g′(p) = −(pe − c)qe

(p− c)

for all p ∈ [p, pe] and

g(p) = µ− p.

Let p̄(g) satisfy g(p̄(g)) = 0. Then g is a lower bound for UI on [p, p̄(g)]. Suppose, to

the contrary, that UI(p
′|M) < g(p′) for some p′ ∈ [p, p̄(g)]. UI(p|M) ≥ g(p), so it must

be that, for some p′′ ∈ [p, p′] at which UI is differentiable, −U ′I(p′′|M) > −g′(p′′) and

so q(p′′) > −g′(p′′). But then (p′′− c)q(p′′) > (pe− c)qe, which contradicts optimality

of pe for S, given menu M .

Suppose that there is a menu M̂ such that, for all p ∈ [p, p̄(g)], UI(p|M̂) = g(p).

Then, given this menu, S would be indifferent between all prices in this interval

and her optimal profit would be the same as her optimal profit given M , namely

(pe − c)qe. Therefore there would be an equilibrium continuation, following M̂ , in

which S charges p̄(g) and B buys with probability −g′(p̄(g)). S’s profit would be

(pe−c)qe and B’s payoff would be zero, since g(p̄(g)) = 0. These are the same payoffs

as those obtained by S and B in the equilibrium continuation which follows M .

Claim (d): If menu M̂ exists then UI(p|M) = g(p) for all p ∈ [p, p̄(g)].

Proof: Suppose that UI(p|M) 6= g(p) for some p ∈ [p, p̄(g)]. Then p̄(g) < pe since

U ′I(p|M) ≥ g′(p) for all p ∈ [p, p̄(g)] such that UI is differentiable.

Suppose uI(p|(θ(pe), f(pe))) > µ− p. Then a menu consisting solely of the single-

threshold contract (θ(pe), f(pe)) would be optimal and, since p((θ(pe), f(pe))) < p, S

would strictly prefer not to bypass A, contradicting Proposition 1(a). Suppose that

qe = 1 − F (c) and uI(p|(θ(pe), f(pe))) = µ − p. Then (θ(pe), f(pe)) would be an
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optimal single contract and θ(pe) = c, contradicting Proposition 2(b). This shows

that

(α) uI(p|(θ(pe), f(pe))) ≤ µ− p with strict inequality if qe = 1− F (c);

that is, the straight line with slope −qe that crosses the horizontal axis at pe lies

below g at p.

For p ∈ [p̄(g), pe] let q̂(p) be defined by (p − c)q̂(p) = (pe − c)qe. Then, since

(p− c)q̂(p) = p− c, we have

(p− p)q̂(p) = (p− c)q̂(p) + (c− p)q̂(p) = (p− c)(1− q̂(p)).

q̂(p) decreases in p ∈ [p̄(g), pe] and q̂(pe) = qe. Therefore, by (α) above, the straight

line with slope −q̂(p) that crosses the horizontal axis at p lies below g at p.

By (iv), qe ≤ 1− F (c). Consider two cases in turn.

(A) qe < 1−F (c). Take p∗ < pe such that q̂(p∗) ∈ (qe, 1−F (c)) and let (θ∗, f ∗) be

such that the graph of uI(.|(θ∗, f ∗)) is a straight line with slope −q̂(p∗) that crosses

the horizontal axis at p∗. Let M̂∗ be the menu consisting of M̂ plus (θ∗, f ∗). Given

this menu there is an equilibrium continuation in which S sets p∗, B then selects

(θ∗, f ∗), B’s payoff is zero, and S’s payoff is (p∗ − c)q̂(p∗) = (pe − c)qe. S and B

therefore obtain the same payoffs as in the equilibrium following menu M , but total

surplus is strictly higher since c < θ∗ < θ(pe), so A’s payoff is higher. This contradicts

optimality of M .

(B) qe = 1 − F (c). Given menu M̂ , total surplus increases as p increases in

[p, p̄(g)] because quantity −g′(p) decreases towards the efficient level 1−F (c). Hence

the corresponding fee increases more than B’s surplus, g(p), decreases, since S’s payoff

is constant. Let M̃ be the menu defined as M̂ modified by (1) adding (θ(pe), f(pe));

(2) removing all non-null contracts with fee below a fixed small ε > 0; and (3)

reducing the fee of each remaining non-null contract (excluding (θ(pe), f(pe))) by

ε. Let g̃(p) = UI(p|M̃). Then, for small enough ε, there exists p̃ ∈ (p, p̄(g)) such

that g̃(p) = uI(p|(θ(pe), f(pe))) on [p̃, pe] and the graph of g̃ crosses the line µ − p
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at p̃′ < p. Now modify M̃ further to M̃ ′ such that UI(p|M̃ ′) = g̃(p) on [p̃, pe] and

U ′I(p|M̃ ′) = g̃′(p) + η on [p′, p̃], where η > 0 is small. Note that the fees in M̃ ′ are all

non-negative since the trade probabilities are lower than for M̃ , hence more efficient,

and the payoffs of B and S are lower. For small enough η, the graph of UI(.|M̃ ′)

crosses µ− p at p′′ < p. With menu M̃ ′, S’s profit is uniquely maximized at pe, falls

as p reduces from pe, jumps up at p̃ but remains lower than (pe − c)qe by at least a

uniform amount on [p′′, p̃]. Therefore, by further modifying the menu by increasing

slightly all fees for non-null contracts equally, A can, by continuity, induce S to price

at pe, so obtaining a payoff above f(pe). This contradicts the optimality of M , hence

proves Claim (d).

Therefore, if we can show that M̂ exists, it will follow that, for an optimal menu

M , U(.|M) must coincide with g on [p, p̄(g) = pe], so that S is indifferent between all

prices in [p, pe] and U ′(p|M) = −1. This will prove (ii) and (iii) of Proposition 3.

To construct the menu M̂ , given the supposedly optimal menu M and associated

(pe, qe), we proceed as follows.

For p ∈ [p, p̄(g)], let qg(p) = −g′(p), i.e., the absolute value of the slope of g,

and let θg(p) be defined by 1 − F (θg(p)) = qg(p). Denote the fee corresponding to

threshold θg(p) by fg(p), where

fg(p) = qg(p)[E(v|v ≥ θg(p))− p]− g(p). (18)

The menu M̂ is then given by {(θg(p), fg(p))|p ∈ [p, p̄(g)]}∪(T0, 0). Suppose fg(p) ≥ 0

for all p ∈ [p, p̄(g)]. Then, for all such p, the graph of uI(.|(θg(p), fg(p))) is linear

wherever it lies above the graph of u0(.). (Recall that the graph of uI(.|(θg(p), fg(p)))
is piecewise linear with three pieces; the value at p1 on the left-hand piece is µ− p1−
fg(p) ≤ µ−p1 = max{µ−p1, 0} = uo(p1) and the value at p2 on the right-hand piece

is −fg(p) ≤ 0 = uo(p2).) By construction, the graph of uI(.|(θg(p), fg(p))) is tangent

to the convex function g(.) at p ∈ [p, p̄(g)]. This implies that g is the upper envelope

of the locally linear functions uI(.|(θf (p), fg(p))) on [p, p̄(g)]. Therefore it remains
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only to show that fg(p) ≥ 0 for all p ∈ [p, p̄(g)]. Since (p− c)qg(p) = (pe − c)qe

fg(p) =

∫ 1

θg(p)

vdF (v)− pqg(p)− g(p)

=

∫ 1

θg(p)

vdF (v)− peqe + c(qe − qg(p))− g(p).

Hence

f ′g(p) = −θg(p)F ′(θg(p))θ′g(p)− cq′g(p) + qg(p).

Since (p− c)qg(p) is constant, we have qg(p) + (p− c)q′g(p) = 0. Hence, since qg(p) =

1− F (θg(p)),
qg(p)

p− c
= F ′(θg(p))θ

′
g(p)

and so

f ′g(p) = −θg(p)
qg(p)

p− c
+ c

qg(p)

p− c
+ qg(p) = qg(p)

p− θg(p)
p− c

. (19)

qg(p) = −g′(p) = 1, so θg(p) = 0 and, by (18), fg(p) = 0. As p increases, the fee

increases as long as p ≥ θg(p). Suppose that fg(p) < 0 for some p ∈ [p, p̄(g)]. Then

there exists p̃ ∈ [p, p̄(g)] such that fg(p̃) < 0 and p̃ < θg(p̃).

Since U ′I(p|M) ≥ g′(p) for all p ∈ [p, p̄(g)] q(p̃) ≤ qg(p̃) and so θ(p̃) ≥ θg(p̃). Since

f(p̃) =

∫ 1

θ(p̃)

(v − p̃)dF (v)− UI(p̃|M)

and

fg(p̃) =

∫ 1

θg(p̃)

(v − p̃)dF (v)− g(p̃),

fg(p̃)− f(p̃) =

∫ θ(p̃)

θg(p̃)

(v − p̃)dF (v) + [UI(p̃|M)− g(p̃)]

≥
∫ θ(p̃)

θg(p̃)

(v − p̃)dF (v) ≥ 0,

where the last inequality follows because p̃ < θg(p̃). Therefore, since f(p̃) ≥ 0 by

Lemma 1, fg(p̃) ≥ 0. This shows that fg(p) ≥ 0 for all p ∈ [p = (pe − c)qe + c, p̄(g)].
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QED

Proof of Proposition 4 The argument in the main text establishes that an opti-

mal equilibrium must satisfy the constraints of (P ) and that A’s equilibrium payoff

corresponds to the maximand of (P ). Conversely, the argument in the proof of Propo-

sition 3 shows that, given (pe, qe), there is a menu and continuation equilibrium which

gives the value function g(.) for B on [p, p̄(g)] = [(pe − c)qe + c, pe], and a payoff for

A equal to the gross consumer surplus corresponding to (pe, qe), as long as (pe, qe)

satisfies (10) (which is equivalent to p̄(g) = pe) and the associated fees are all non-

negative. This proves that [M, θ(.), f(.), q(.), p∗, q∗] is an optimal equilibrium if and

only if (a)-(c) are satisfied. To show that every equilibrium is optimal, consider the

following modification to the optimal menu M . For small ε > 0, let M4(ε) be the

same as M except that (θ(pe), f(pe)) is replaced by (θ(pe), f(pe) − ε). Given M4(ε),

if S sets p slightly above pe B’s unique optimal choice is (θ(pe), f(pe)− ε), giving S a

profit strictly higher than (pe − c)qe. Hence, if A announces M4(ε), there is a unique

equilibrium continuation and it gives payoff f(pe) − ε to A. Since ε is arbitrary, A’s

payoff is f(pe) in any equilibrium, so every equilibrium is optimal. This proves the

Proposition. QED

Proof of Lemma 3 (b) is proved in the main text. For (pe, qe) corresponding

to a candidate equilibrium, (10) must be satisfied and, by Proposition 3, B’s value

function is given by g on [p, p̄(g)] = [(pe− c)qe + c, pe]. The corresponding menu must

be M̂ as defined in the proof of Proposition 3, and the fee function is fg(p), which

satisfies (19) by the argument in the proof. fg(p) = 0 by (12). QED

Proof of Proposition 5

(b) From maxp(p − c)(1 − p), the monopoly outcome is pm = 1+c
2

and qm = 1−c
2

,

generating payoffs πm = (pm − c)qm = (1−c)2
4

and um = (qm)2

2
= (1−c)2

8
for S and B,

and a total surplus of sm = qm(1− qm

2
)− cqm.

Consider our menu equilibrium [θ(.), f(.), q(.), p∗, q∗] for F (v) = v. We wish to

show that q∗ > qm for all c ∈ [0, 1/2].
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(1) We show that q∗ > qm for c < 0.25.

Presuming (p∗ − c)q∗ > πm (to be verified later), by Lemma 3(b), q∗ solves

max
0<q<1

∫ 1

1−q
vdv − µ− c

1− lnq
− cq = q(1− c)− q2

2
− µ− c

1− lnq
.

The first, second and third derivatives of the objective function are, respectively,

1− c− q− (µ− c)
q(1− lnq)2

, −1− (µ− c)(1 + lnq)

q2(1− lnq)3
and − (µ− c)(1 + lnq + (lnq)2)

q3(1− lnq)4
< 0.

Note that the first derivative is concave with negative values as q → 0 and q → 1, but

a positive value of 0.5−c−0.698(µ−c) ≥ 0 at q = 0.5 (with strict inequality if c < 0.5).

Hence, the objective function decreases from 0 as q increases from 0, then increases

from some q below 0.5 until at least q = 0.5 where its value is 0.08 + 0.091c > 0.

Therefore, q∗ > 0.5 > qm so long as (p∗ − c)q∗ ≥ πm = (1−c)2
4

so that the non-

negative fee condition is slack. Since (p∗− c)q∗ = µ−c
1−lnq∗

> 0.5−c
1−ln0.5

from (10), it suffices

to show that

0.5− c
1− ln0.5

− (1− c)2

4
≈ 0.045− 0.09c− 0.25c2 > 0

which is easily verified to be the case if c < 0.25.

(2) We show that f(p∗) > um for c ∈ [0.1, 0.5], which establishes that q∗ > qm as

explained below.

If q∗ ≤ qm, then
∫ 1

1−q∗(v − 1 + q∗)dv ≤
∫ 1

1−qm(v − pm)dv = um. Since f(.) is

non-decreasing at p∗ (else, p∗ − ε would be better for S), p∗ ≥ 1 − q∗ by Lemma

3(a). This means that S’s revenue is p∗q∗ ≥ (1 − q∗)q∗, which in turn implies that

f(p∗) =
∫ 1

1−q∗ vdv − p
∗q∗ ≤

∫ 1

1−q∗(v − 1 + q∗)dv ≤ um.

Since f(p∗) is no lower than the solution f̂ of Γ1, it suffices to show that f̂ > um.

By differentiating (6) wrt c and rearranging, we have

θ̂′(c) =
θ̂(2 + θ̂)

(1 + θ̂)2 + 2(θ̂ − c)(1 + θ̂)
=

θ̂(2 + θ̂)

(1 + θ̂)[1 + 3θ̂ − 2c]
> 0.
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Since f̂(c) = f(θ̂(c)) =
∫ 1

θ̂(c)
vdv + cθ̂(c)2−µ

1+θ̂(c)
from Prop 2, we get

f̂ ′(c) = −θ̂(c)θ̂′(c) +
(θ̂(c)2 + 2cθ̂(c)θ̂′(c))(1 + θ̂(c))− (cθ̂(c)2 − µ)θ̂′(c)

(1 + θ̂(c))2

= θ̂(c)
(3− c)θ̂(c)3 + 2θ̂(c)4 + 2µ+ θ̂(c)(2c+ µ− 1)

(1 + θ̂)3[1 + 3θ̂ − 2c]
> 0

where the inequality ensues because θ̂ ∈ (c, 1/2) and µ = 1/2. Hence, f̂(c) increases

in c with f̂(0.2) = 0.087 from θ̂(0.2) = 0.362 whereas um decreases in c with um(0.2) =

0.08. Therefore, f̂ of Γ1 exceeds um for c ∈ [0.2, 0.5] as desired. QED.
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